Evolution by Ancient Gene and Genome Duplication in Hexapods and Land Plants

Total Page:16

File Type:pdf, Size:1020Kb

Evolution by Ancient Gene and Genome Duplication in Hexapods and Land Plants Evolution by Ancient Gene and Genome Duplication in Hexapods and Land Plants Item Type text; Electronic Dissertation Authors Li, Zheng Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 11/10/2021 02:05:02 Link to Item http://hdl.handle.net/10150/645813 EVOLUTION BY ANCIENT GENE AND GENOME DUPLICATION IN HEXAPODS AND LAND PLANTS by Zheng Li __________________________ Copyright © Zheng Li 2020 A Dissertation Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2020 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by: Zheng Li, titled: “Evolution by Ancient Gene and Genome Duplication in Hexapods and Land Plants" and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Sep 10, 2020 _________________________________________________________________ Date: ____________ Michael S. Barker Sep 10, 2020 _________________________________________________________________ Date: ____________ Michael J. Sanderson Sep 10, 2020 _________________________________________________________________ Date: ____________ John J. Wiens Sep 10, 2020 _________________________________________________________________ Date: ____________ Wendy Moore Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. Sep 10, 2020 _________________________________________________________________ Date: ____________ Michael S. Barker Dissertation Committee Chair Department of Ecology & Evolutionary Biology 3 DEDICATION This dissertation is dedicated to my beloved mother, Guohuan He. 4 TABLE OF CONTENTS ABSTRACT.........................................................................................................................5 INTRODUCTION...............................................................................................................6 PRESENT STUDY............................................................................................................13 REFERENCES..................................................................................................................18 APPENDIX A: EARLY GENOME DUPLICATIONS IN CONIFERS AND OTHER SEED PLANTS………………………………………………………….........30 APPENDIX B: MULTIPLE LARGE-SCALE GENE AND GENOME DUPLICATIONS DURING THE EVOLUTION OF HEXAPODS...........................77 APPENDIX C: ANCIENT POLYPLOIDY AND LOW RATE OF CHROMOSOME LOSS EXPLAIN FERNS WITH HIGH CHROMOSOME NUMBERS.................156 APPENDIX D: PATTERNS AND PROCESSES OF DIPLOIDIZATION IN LAND PLANTS…………………………………………………...….......................................216 5 ABSTRACT Gene and genome duplications have been found across the eukaryotic tree of life. Yet, many aspects of evolution by gene and genome duplications remain unclear, especially ancient duplications. In my dissertation, I focus on the incidence of ancient gene and genome duplication in different lineages of land plants and hexapods, their impact on genome evolution, and the pattern and processes of diploidization following polyploidy. In Appendix A, I use transcriptomes of gymnosperms and outgroups, and a novel phylogenetic algorithm to provide the first comprehensive study of ancient WGD in gymnosperms. In Appendix B, I use over 150 insect genomes and transcriptomes to infer ancient WGDs and other large-scale gene duplications during the evolution of hexapods. In Appendix C, I investigate ancient WGD in ferns from over 140 fern transcriptomes and test the long standing hypothesis on high chromosome number in ferns. In Appendix D, I summarize current studies on the patterns and processes of diploidization in the land plants and provide directions for testing hypotheses and understanding diploidization in the future. As a whole, this work improves our understanding of the mode and tempo of eukaryotic genome evolution and diversity. 6 INTRODUCTION Polyploidy is perhaps most well recognized as an important component of plant evolution and speciation (Stebbins, 1950 Grant, 1981). In flowering plants and ferns about 15% and 31% speciation events, respectively, are due to recent polyploidization (Wood et al., 2009). Most land plants are now known to be ancient polyploids that have rediploidized (One Thousand Plant Transcriptomes Initiative, 2019). Comparative genomic studies have shown plant genomes are highly dynamic and plants experienced cycles of polyploidy followed by diploidization (Wolfe, 2001 Jiao et al., 2011 Arrigo and Barker, 2012 Li et al., 2015 Wendel, 2015a Van de Peer et al., 2017 One Thousand Plant Transcriptomes Initiative, 2019). Different from plants, polyploidy is considered to be rarer in animals (Muller, 1925 Orr, 1990 Mable, 2004). Recent advancements in genome sequencing and analyses have found ancient polyploidy across the tree of life (Aury et al., 2006 Storchová et al., 2006 Van de Peer et al., 2017 Li, Tiley, et al., 2018 One Thousand Plant Transcriptomes Initiative, 2019). Polyploidy is also an important component of genome evolution. Genome duplication can double the genome size and chromosome numbers during polyploid formation (Otto, 2007). The process of diploidization following polyploidy can significantly change genome content (Arrigo and Barker, 2012 Murat et al., 2017) and gene networks (Thomas et al., 2006 Freeling , 2009 Defoort et al., 2019) may have provided novel genetic variation that was important for the evolution of plant diversity (Tank et al., 2015 Landis et al., 2018). 7 Ancient genome duplications in gymnosperms Polyploidy is a common mode of speciation and evolution in angiosperms (Stebbins, 1950 Grant, 1981). The signatures of ancient WGD are found in most of the vascular plants (One Thousand Plant Transcriptomes Initiative, 2019). Recent analyses also provide evidence that an ancient WGD shared by seed plants, and all flowering plants experienced another round of paleopolyploidy (Jiao et al., 2011). In contrast, there is little evidence indicating whole genome duplication played a significant role in the gymnosperms (Wood et al., 2009), except in a few genera (such as Ephedra) in which polyploidy is prevalent (Ahuja, 2005 Ickert-Bond et al., 2020). One of the major consequences of polyploidy is the increase in genome size by doubling the whole genome (Otto, 2007). Many gymnosperms, especially conifers, have huge genomes (Murray, 1998 Ahuja et al., 2005). The first gymnosperm genome sequenced, the Norway spruce, was published in Nature in 2014. In this study, researchers found evidence of the seed plant genome duplication but no ancient WGD specific to gymnosperm (Nystedt et al., 2013). They proposed the large genome size in conifers is due to transposable element proliferation without ancient WGD (Nystedt et al., 2013). However, this result contradicted some previous studies on G-banding in chromosomes and genome size of conifers which suggested ancient WGD might have occurred during the evolution of conifers (Drewry, 1982 Ahuja, 2005). Before my dissertation research, little was known about ancient genome duplication in gymnosperms. It was also unclear whether the seed plant WGD is restricted to seed plants or shared with monilophytes. In Appendix A, I used 24 transcriptomes of gymnosperms and three outgroups, and a novel phylogenetic algorithm 8 to provide the first comprehensive study of ancient WGD in gymnosperms. My study also improved the phylogenetic placement of the ancestral seed plant WGD. Ancient gene and genome duplications in hexapods Different from plants, polyploidy has long been considered rarer in animals (Muller, 1925 Orr, 1990). Although less common, polyploidy has been found in some animal lineages (Otto and Whitton, 2000 Mable, 2004). Multiple recent WGDs have been recorded in fish (Mable et al., 2011). All teleost fish have polyploid ancestry and all the Salmonidea share another ancient WGD (Van de Peer et al., 2003 Van de Peer, 2004 Meyer and Van de Peer, 2005 Berthelot et al., 2014). More broadly, Ohno hypothesized that two rounds of ancient WGDs (the 2R hypothesis) occurred in the ancestry of all the vertebrates (Ohno, 1970). According to this hypothesis, most vertebrates, including humans, are descendants of an ancient polyploid (Makalowski, 2001). Although whether two rounds of WGDs occurred has been debated (Furlong and Holland, 2002 Hughes and Robert, 2003 Kasahara, 2007), several recent genomic studies provide strong evidence for the 2R hypothesis (Dehal et al., 2005) (Putnam et al., 2008 Smith et al., 2013). Recent genomic analyses also revealed multiple paleopolyploidies in the ancestry of various invertebrate lineages. In chelicerates, evidence of ancient WGD has been found in horseshoe crabs (Nossa et al., 2014 Kenny et al., 2017 Nong et al., 2020 Shingate et al., 2020) and spiders (Clarke et al., 2015 Schwager et al., 2017). Genome and chromosome number
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • TAXON:Woodwardia Radicans (L.) Sm. SCORE:9.0 RATING:High Risk
    TAXON: Woodwardia radicans (L.) SCORE: 9.0 RATING: High Risk Sm. Taxon: Woodwardia radicans (L.) Sm. Family: Blechnaceae Common Name(s): chain fern Synonym(s): Blechnum radicans L. European chain fern rooting chainfern Assessor: Chuck Chimera Status: Assessor Approved End Date: 3 Nov 2016 WRA Score: 9.0 Designation: H(HPWRA) Rating: High Risk Keywords: Naturalized, Ornamental, Shade-Tolerant, Rooting Bulbils, Wind-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens y=1, n=0 n 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 y Creation Date: 3 Nov 2016 (Woodwardia radicans (L.) Page 1 of 16 Sm.) TAXON: Woodwardia radicans (L.) SCORE: 9.0 RATING: High Risk Sm.
    [Show full text]
  • Roadside Landscaping with Native Plants in the Czech Republic: a Review
    Horticulture International Journal Review Article Open Access Roadside landscaping with native plants in the Czech Republic: a review Abstract Volume 2 Issue 3 - 2018 Czech Republic has a unique experience in greening the roadsides. The changes that Mohammad Hasan Chowdhury,1 Mohammad were implemented in the early 1990s have had also been incorporated into the roadside 2 landscape in recent years making the Czech Republic one of the forerunners in Sujoun Lasker 1Department of Food Technology and Nutrition Science, greening the roadsides. Most of the roadside landscaping designs were inspired from Noakhali Science and Technology University, Bangladesh western landscapes comprises mostly of exotic species, which do not reconcile with the 2Department of Geography and Environment, Jahangirnagar environmental conditions of the Czech Republic. The intensive use of exotic species University, Bangladesh in artificial vegetation, high water requirements for the Czech Republic greenery with water shortages are causing major environmental and ecological challenges. Correspondence: Mohammad Hasan Chowdhury, Fortunately, the Czech Republic hosts a unique flora and fauna that show remarkable Department of Food Technology and Nutrition Science, adjustment to harsh weather conditions. Here we emphasize the use of native plants Noakhali Science and Technology University, Sonapur, due to their potential to develop roadside landscapes in water shortage conditions, Noakhali-3814, Bangladesh, Email [email protected] leading to reduced water usage for roadside landscaping. The preservation of native biodiversity of the Czech Republic will be an added benefit. In this article the main Received: April 02, 2018 | Published: May 14, 2018 aspects of the Czech Republic roadside landscaping efforts, with the associated water resources using native plants in landscaping, problems in promoting native plants contrast to non-native plants in landscaping and possible solutions are discussed.
    [Show full text]
  • The Effects of Fossorial Mammals on Alpine Treeline
    THE EFFECTS OF FOSSORIAL MAMMALS ON ALPINE TREELINE DYNAMICS IN THE AMERICAN WEST DISSERTATION Presented to the Graduate Council of Texas State University-San Marcos in Partial Fulfillment of the Requirements for the Degree Doctor of PHILOSOPHY by Clayton J. Whitesides, B.S., M.S. San Marcos, Texas August 2012 THE EFFECTS OF FOSSORIAL MAMMALS ON ALPINE TREELINE DYNAMICS IN THE AMERICAN WEST Committee Members Approved: ______________________________ David R. Butler, Chair ______________________________ Nathan A. Currit ______________________________ Richard W. Dixon ______________________________ George P. Malanson Approved: _______________________________________ J. Michael Willoughby Dean of the Graduate College COPYRIGHT by Clayton James Whitesides 2012 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, Clayton J. Whitesides, refuse permission to copy in excess of the “Fair Use” exemption without my written permission. ACKNOWLEDGEMENTS The culmination of this project has taken place over several years and has been, at times, a source of joy and at others, a source of consternation. During these times, I have received much support from a variety of people who deserve acknowledgement. First, I would like to recognize my committee members. Occasionally, they were the source of my consternation , but more often than not, they provided sound advice that enabled me to complete my degree.
    [Show full text]
  • Ecological Site R058AC616MT Thin Breaks (TB) RRU 58A-C 11-14" P.Z
    Natural Resources Conservation Service Ecological site R058AC616MT Thin Breaks (TB) RRU 58A-C 11-14" p.z. Accessed: 09/24/2021 General information Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. Associated sites R058AC049MT Silty-Steep (SiStp) RRU 58A-C 11-14" p.z. (combined R058AC046MT, R058AC047MT & R058AC048MT into this site) R058AC057MT Shallow (Sw) RRU 58A-C 11-14" p.z. R058AC058MT Very Shallow (VSw) RRU 58A-C 11-14" p.z. Table 1. Dominant plant species Tree Not specified Shrub Not specified Herbaceous Not specified Physiographic features This site is typically a complex of several ecological sites, primarily Shallow and Very Shallow. It occurs on steep to very steep slopes, usually in excess of 25 percent. Outcroppings of hard bedrock and soft sedimentary beds are major features. Slope aspect can be any direction and can be significant. Table 2. Representative physiographic features Landforms (1) Esca rpment (2) Bluff (3) Ridge Elevation 2,250–4,500 ft Slope 25% Water table depth 60 in Aspect E, S, W Climatic features Major Land Resource Area (MLRA) 58AC in Montana is considered to have a continental climate characterized by cold winters, hot summers, low humidity, light rainfall, and much sunshine. Extremes in temperature are typical. The climate is the result of this MLRA’s location in the geographic center of North America. There are few natural barriers on the northern Great Plains and the winds move freely across the plains and account for rapid changes in temperature.
    [Show full text]
  • Diversity of Pteridophytes in Western Ghats
    Plant Archives Volume 21, No 1, 2021 pp. 1115-1129 e-ISSN:2581-6063 (online), ISSN:0972-5210 Plant Archives Journal home page: www.plantarchives.org DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.148 DIVERSITY OF PTERIDOPHYTES IN WESTERN GHATS- A REVIEW Athira Krishnan1 and Rekha K.2* 1Department of Botany, Sree Narayana College, Nattika, Thrissur, Kerala, India-680566 2Department of Botany, St. Mary’s College,Thrissur, Kerala, India- 680020. *E-mail: [email protected] (Date of Receiving-28-11-2020 ; Date of Acceptance-19-02-2021) Pteridophytes are vascular cryptogams that dominated the earth 250 million years ago. Currently, there are 13,600 species of pteridophytes around the world, and is the second most dominant plant group. In India, there are 1200 pteridophyte species with 70 families and 192 genera. The pteridophyte hotspots in India are the Himalayas, Western Ghats, Eastern Ghats, Central India, and Andaman and the Nicobar Islands. The Western Ghats occupies only 6% of the Indian landmass and still holds a pteridophyte diversity of 383 species. Fern and fern allies are highly sensitive to changes in their natural habitat, thus habitat ABSTRACT destruction, anthropogenic influences, climate change, etc., are causing a fast decline in their population. Epiphytic species are easily destroyed due to the felling of trees and because of this at present 41- 43% of epiphytic pteridophytes in India are reported to be threatened. It necessitates the frequent analysis of the pteridophyte flora of a region to ensure the existence of its species diversity. The potential of in-vitro and ex-situ conservation techniques can be explored for the conservation of threatened pteridophyte species.
    [Show full text]
  • Environmental Weeds of Coastal Plains and Heathy Forests Bioregions of Victoria Heading in Band
    Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band b Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Contents Introduction 1 Purpose of the list 1 Limitations 1 Relationship to statutory lists 1 Composition of the list and assessment of taxa 2 Categories of environmental weeds 5 Arrangement of the list 5 Column 1: Botanical Name 5 Column 2: Common Name 5 Column 3: Ranking Score 5 Column 4: Listed in the CALP Act 1994 5 Column 5: Victorian Alert Weed 5 Column 6: National Alert Weed 5 Column 7: Weed of National Significance 5 Statistics 5 Further information & feedback 6 Your involvement 6 Links 6 Weed identification texts 6 Citation 6 Acknowledgments 6 Bibliography 6 Census reference 6 Appendix 1 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed alphabetically within risk categories. 7 Appendix 2 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by botanical name. 19 Appendix 3 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by common name. 31 Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria i Published by the Victorian Government Department of Sustainability and Environment Melbourne, March2008 © The State of Victoria Department of Sustainability and Environment 2009 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.
    [Show full text]
  • Illinois Exotic Species List
    Exotic Species in Illinois Descriptions for these exotic species in Illinois will be added to the Web page as time allows for their development. A name followed by an asterisk (*) indicates that a description for that species can currently be found on the Web site. This list does not currently name all of the exotic species in the state, but it does show many of them. It will be updated regularly with additional information. Microbes viral hemorrhagic septicemia Novirhabdovirus sp. West Nile virus Flavivirus sp. Zika virus Flavivirus sp. Fungi oak wilt Ceratocystis fagacearum chestnut blight Cryphonectria parasitica Dutch elm disease Ophiostoma novo-ulmi and Ophiostoma ulmi late blight Phytophthora infestans white-nose syndrome Pseudogymnoascus destructans butternut canker Sirococcus clavigignenti-juglandacearum Plants okra Abelmoschus esculentus velvet-leaf Abutilon theophrastii Amur maple* Acer ginnala Norway maple Acer platanoides sycamore maple Acer pseudoplatanus common yarrow* Achillea millefolium Japanese chaff flower Achyranthes japonica Russian knapweed Acroptilon repens climbing fumitory Adlumia fungosa jointed goat grass Aegilops cylindrica goutweed Aegopodium podagraria horse chestnut Aesculus hippocastanum fool’s parsley Aethusa cynapium crested wheat grass Agropyron cristatum wheat grass Agropyron desertorum corn cockle Agrostemma githago Rhode Island bent grass Agrostis capillaris tree-of-heaven* Ailanthus altissima slender hairgrass Aira caryophyllaea Geneva bugleweed Ajuga genevensis carpet bugleweed* Ajuga reptans mimosa
    [Show full text]
  • 2R Or Not 2R Is Not the Question Anymore
    CORRESPONDENCE LINK TO ORIGINAL ARTICLE LINK TO INITIAL CORRESPONDENCE origin of evolutionary novelties are highly interesting questions, but they remain 2R or not 2R is not the largely unsolved11. However, evidence for the two rounds of genome duplication dur- question anymore ing chordate evolution is very strong, and it would seem safe to say that the debate Yves Van de Peer, Steven Maere and Axel Meyer over 2R is settled and is no longer an open question12. As we point out in our Opinion article1, it is only the evolutionary effects of In his comments on our Opinion article in passing in our recent review on WGDs events such as WGDs on evolution that are (The evolutionary significance of ancient and their significance for evolution in Nature debated1,11, and no longer whether or not genome duplications. Nature Rev. Genet. Reviews Genetics1. two rounds of WGD occurred during the 10, 725–732 (2009))1 Amir Ali Abbasi Abbasi2, however, questions the support evolution of chordates. (Piecemeal or big bangs: correlating the for the 2R hypothesis, claiming that it still Yves Van de Peer and Steven Maere are at the vertebrate evolution with proposed models remains debated today. He points out cor- Department of Plant Systems Biology, VIB (Flanders of gene expansion events. Nature Rev. Genet. rectly that evidence for the 2R hypothesis Institute of Biotechnology), B-9052 Ghent, Belgium. 6 Jan 2010 (doi:10.1038/nrg2600-c1))2 was based initially on data from only a Axel Meyer is at the Department of Biology, University argues that it is not justified to speculate small number of genes and vertebrate and of Konstanz, D-78457 Konstanz, Germany.
    [Show full text]
  • Fern Gazette
    ISSN 0308-0838 THE FERN GAZETTE VOLUME ELEVEN PART FIVE 1977 THE JOURNAL OF THE BRITISH PTERIDOLOGICAL SOCIETY THE FERN GAZETTE VOLUME 11 PART 5 1977 CONTENTS Page ECOLOGICAL NOTES Observations on some rare Spanish ferns iri Cadiz Province, Spain - B. Molesworth-AIIen 27 1 Unl:>ranched plants of Equisetum palustre L. - G. Halliday 276 Cyrtomium fa lcatum naturalised on Rhum - P. Corkh i/1 277 MAIN ARTICLES A pteridophyte flora of the Derbyshire Dales National Nature Reserve - A. Wil lmot 279 Ferns in the Cameroons. 11. The pteridophytes of the evergreen forests - G. Ben/ 285 An ecological survey of the ferns of the Canary Islands - C. N. Page 297 A new record of Synchytrium athyrii on Athyrium filix-femina - E. MUller & J.J. Schneller 313 Further cytogenetic studies and a reappraisal of the diploid ancestry in the Dryopteris carthusiana complex - M. Gibby & S. Wa lker 315 Cytology and reproduction of Ch eilanthes fa rinosa from Yemen -S.C. Verma 325 Lunathyrium in the Azores; a postscript- W.A. Sledge 33 1 SHORT NOTES Dryopteris x brathaica Fraser-Jenkins & Reichstein hybr.nov., the putative hybrid of D.carthusiana x D. fil ix-mas - C.R. Fraser-Jenkins & T.· Reichstein 337 No menclatural notes on Dryopteris - C.R. Fraser-Jenkins & A.C. Jermy 378 REVIEWS 278,329,341,342 [THE FERN GAZETTEVolum e 11 Part 4 was published 1st June 1976] Published by THE BRITISH PTERIDOLOGICAL SOCIETY, c/o Department of Botany, British Museum (Natural History), London SW7 5BD. FERN GAZ. 11(5) 1977 271 ECOLOGICAL NOTES OBSERVATIONS ON SOME RARE SPANISH FERNS IN CADIZ PROVINCE, SPAIN PTERIS SERRULATA Forskal.
    [Show full text]
  • Sagebrush Identification Guide
    Sagebrush Identification Table For Use With Black Light For Use in the Inter-Great Basin Area Fluoresces Under Ultraviolet Branching Mature Plant Plant Nomenclature Light Leaf shape and size Plant Growth Form Environment Comments Pattern Height Water Alcohol Leaves 3/4 ‐1 1/4 in. Uneven topped; Main stem is undivided and trunk‐like at base;. Located long; long narrow; Leaf Uneven normally in drainage bottoms; Small concave areas and valley floors, but will normally be 4 times Colorless to Very topped; always on deep Non‐saline Non‐calcareous soils. Vegetative leader is greater Brownish to longer than it is at its "V"ed Mesic to Frigid 3.5 ft. to Very Pale blue Floral stems than 1/2 the length of the flower stalk from the same single branch. In Basin Basin Big Sagebrush Artemisia Reddish‐Brown widest point; Leaf branching/ Xeric to Ustic greater than 8 tridentata subsp. tridentata (ARTRT) Rarely pale growing there are two growth forms: One the Typical tall form (Diploid); Two a shorter to colorless margins not extending upright 4000 to 8000 ft. ft. Brownish‐red throughout form that looks similar to Wyoming sagebrush if you do not look for the trunk outward; Crushed leaves the crown (around 1 inch or so); the branching pattern; and the seedhead to vegetative have a strong turpentine leader characteristics (Tetraploid). smell Uneven Leaves 1/2 ‐ 3/4 inches topped; Uneven topped; Main stem is usually divided at ground level. Plants will often Mesic to Frigid Wyoming Big Sagebrush Colorless to Very Colorless to pale long; Leaf margins curved Floral stems Spreading/ keep the last years seed stalks into the following fall.
    [Show full text]
  • Types of Sagebrush Updated (Artemisia Subg. Tridentatae
    Mosyakin, S.L., L.M. Shultz & G.V. Boiko. 2017. Types of sagebrush updated ( Artemisia subg. Tridentatae, Asteraceae): miscellaneous comments and additional specimens from the Besser and Turczaninov memorial herbaria (KW). Phytoneuron 2017-25: 1–20. Published 6 April 2017. ISSN 2153 733X TYPES OF SAGEBRUSH UPDATED (ARTEMISIA SUBG. TRIDENTATAE , ASTERACEAE): MISCELLANEOUS COMMENTS AND ADDITIONAL SPECIMENS FROM THE BESSER AND TURCZANINOV MEMORIAL HERBARIA (KW) SERGEI L. MOSYAKIN M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine 2 Tereshchenkivska Street Kiev (Kyiv), 01004 Ukraine [email protected] LEILA M. SHULTZ Department of Wildland Resources, NR 329 Utah State University Logan, Utah 84322-5230, USA [email protected] GANNA V. BOIKO M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine 2 Tereshchenkivska Street Kiev (Kyiv), 01004 Ukraine [email protected] ABSTRACT Corrections and additions are provided for the existing typifications of plant names in Artemisia subg. Tridentatae . In particular, second-step lectotypifications are proposed for the names Artemisia trifida Nutt., nom. illeg. (A. tripartita Rydb., the currently accepted replacement name), A. fischeriana Besser (= A. californica Lessing, the currently accepted name), and A. pedatifida Nutt. For several nomenclatural types of names listed in earlier publications as "holotypes," the type designations are corrected to lectotypes (Art. 9.9. of ICN ). Newly discovered authentic specimens (mostly isolectotypes) of several names in the group are listed and discussed, mainly based on specimens deposited in the Besser and Turczaninov memorial herbaria at the National Herbarium of Ukraine (KW). The Turczaninov herbarium is particularly rich in Nuttall's specimens, which are often better represented and better preserved than corresponding specimens available from BM, GH, K, PH, and some other major herbaria.
    [Show full text]