<<

Osteometry and size reconstruction of the Indian and Pacific Oceans’ , E. affinis andE. lineatus () Anais Marrast, Philippe Béarez

To cite this version:

Anais Marrast, Philippe Béarez. Osteometry and size reconstruction of the Indian and Pa- cific Oceans’ Euthynnus species, E. affinis and E. lineatus (Scombridae). Cybium :RevueIn- ternationale d’Ichtyologie, Paris : Muséum national d’histoire naturelle, 2019, 43, pp.187 - 198. ￿10.26028/cybium/2019-423-007￿. ￿hal-02401150￿

HAL Id: hal-02401150 https://hal.archives-ouvertes.fr/hal-02401150 Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Scientific paper

Osteometry and size reconstruction of the Indian and Pacific Oceans’ Euthynnus species, E. affinis and E. lineatus (Scombridae)

by

Anaïs Marrast* (1) & Philippe Béarez (1)

Abstract. – Two neritic species of scombrids ( and E. lineatus) from the Indo-Pacific and the Eastern Pacific are today classed as commercially important. They have long been exploited and are common findson coastal archaeological sites. Size reconstruction from isolated bones is interesting for both biologists and archaeologists. In archaeology, these studies make it possible to highlight strategies. Therefore, we built an osteometric model for these two species, using 31 specimens of E. affinis (FL: 274 mm to 828 mm, W: 305 g to 8674 g) from the Sultanate of Oman and 26 specimens of E. lineatus (FL: 294 mm to 614 mm, W: 481 g to 4200 g) from Ecuador. For E. affinis, the length-weight relationship is W = 1E-05 FL3.0682, and for E. lineatus, the relationship is W = 2E-05 FL2.9578, with r2 higher than 0.98 for both species. For the osteometric model, we used the neurocranium, premaxilla, dentary, anguloarticular, quadrate, hyomandibula, maxilla, opercle, anterior and posterior ceratohyals, scapula and vertebrae. For each bone, we took between 2 and 5 measurements and © SFI plotted the obtained values against the fork length. For all selected bones, we produce at least one regression 2 Submitted: 19 Oct. 2018 equation with a high r (> 0.9) that permits accurate estimates of the length and weight of Euthynnus individuals Accepted: 21 Feb. 2019 for both species. Editor: E. Dufour

Résumé. – Ostéométrie et reconstruction de la taille des espèces du genre Euthynnus des océans Indien et Pacifi- que, E. affinis et E. lineatus (Scombridae). Key words Euthynnus Deux espèces néritiques de scombridés (Euthynnus affinis et E. lineatus) de l’Indo-Pacifique et du Pacifique Osteometry Est sont aujourd’hui considérées comme commercialement importantes. Elles sont exploitées depuis longtemps Size reconstruction et sont souvent identifiées sur les sites archéologiques côtiers de cette partie du monde. La reconstitution de la Allometry taille d’un poisson à partir d’os isolés est d’un grand intérêt pour les biologistes et les archéologues. En archéo- Length-weight logie, ces études permettent notamment de renseigner les stratégies de pêches. Nous avons donc construit un relationship modèle ostéométrique pour ces deux espèces, en utilisant 31 spécimens d’E. affinis (FL : 274 mm à 828 mm, W : Ichthyoarchaeology 305 g à 8674 g) du Sultanat d’Oman et 26 spécimens d’E. lineatus (FL : 294 mm à 614 mm, W : 481 g à 4200 g) d’Équateur. Pour E. affinis, la relation longueur-poids est W = 1E-05 FL3,0682, et pour E. lineatus, la relation est W = 2E-05 FL2,9578, avec un r² supérieur à 0,98 pour les deux espèces. Pour le modèle ostéométrique, nous avons utilisé le neurocrâne, le prémaxillaire, le dentaire, l’anguloarticulaire, le carré, l’hyomandibulaire, le maxillaire, l’operculaire, les ceratohyaux antérieur et postérieur, la scapula et des vertèbres. Pour chaque os, nous avons pris entre 2 et 5 mesures et représenté les valeurs par rapport à la longueur à la fourche. Pour tous les os sélectionnés il y a au moins une équation de régression avec un r2 élevé (> 0,9) qui permet des estimations précises de la lon- gueur et du poids des individus des deux espèces Euthynnus.

Found worldwide in tropical to temperate waters, the also played an important role in ancient subsistence fisher- scombrid Euthynnus is represented by three different ies. Evidence that these neritic species were consumed by species: E. alletteratus (Rafinesque, 1810), the ; coastal populations is attested by their presence on many E. lineatus (Kishinouye, 1920), the black skipjack; and archaeological sites around the world, such as in the East- E. affinis (Cantor, 1849), the kawakawa or . ern Pacific (Béarez, 1996; Martínez et al., 2009; Béarez et The first is present in the Tropical Atlantic and the Medi- al., 2012), the Western Atlantic (Wing, 2001), the Mediterra- terranean, while the other two are present in the Tropical nean (Desse and Desse-Berset, 1994) and the Northern Indi- Eastern Pacific and the Indo-Pacific, respectively. Euthyn- an Ocean (Beech, 2004; Uerpmann and Uerpmann, 2003). nus species are epipelagic, essentially neritic fishes, which Apparently, Euthynnus affinis is less common in the Central occur in open waters but generally stay inshore. They have Pacific archaeological record, where it seems to be replaced a robust, elongated and streamlined body, and are known to by the closely related , Katsuwonus pelamis form large multi-species schools with other scombrids or (Linnaeus, 1758) (Lambrides and Weisler, 2017). even other taxa. These schools reach between 100 and 5000 Despite the fact that Euthynnus species, especially individuals (Collette and Nauen, 1983). E. affinis, have commercial importance, only a few papers All three species are currently commercially impor- provide information on their osteology or osteometry (Kishi- tant for both industrial and small-scale , but they nouye, 1923; Godsil, 1954; Mansueti and Mansueti, 1962),

(1) Archéozoologie, archéobotanique: sociétés, pratiques et environnements (AASPE), Muséum national d’histoire naturelle, CNRS, CP 56, 57 rue Cuvier, 75005 Paris, France. [[email protected]] [[email protected]] * Corresponding author [[email protected]]

Cybium 2019, 43(2): 187-198. https://doi.org/10.26028/cybium/2019-423-007 Osteometry of Euthynnus species Ma r r a s t & Bé a r e z

Table I. – Description of the measurements illustrated in figure 2. Measurement Anatomical element Measurement description number ncr 1 Distance from the anterior part of the vomer to the posterior part of the basioccipital Neurocranium / ncr ncr 2 Maximal width of the vomer ncr 3 Maximal width between sphenotics pmx 1 Length of the anterior dorsal process (without teeth) Distance from the anterior tip of the pmx to the posterior base of the dorsal process Premaxilla / pmx pmx 2 (without teeth) pmx 3 Medio-lateral width at posterior level of the dorsal process dn 1 Length of the dorsal dentigerous branch Dentary / dn dn 2 Height of the symphysis dn 3 Distance from the symphysis to the postero-lateral incisure ang 1 Total length ang 2 Distance from the dorsal curvature to the posterior part of the articular process Anguloarticular / ang ang 3 Medio-lateral width of the articular facet ang 4 Total height of the articular qd 1 Total width of the articular condyle Quadrate / qd qd 2 Distance from the articular condyle to the tip of the preopercular process hm 1 Total height Hyomandibula / hm hm 2 Greatest medio-lateral width at level of the opercular process hm 3 Greatest distance between the sphenotic facet and the opercular process mx 1 Total length Maxilla / mx mx 2 Height of the main axis mx 3 Greatest width of the anterior portion op 1 Cranio-caudal length of the articular fossa Opercle / op op 2 Greatest height op 3 Height of the articular fossa ach 1 Greatest cranio-caudal length Anterior ceratohyal / ach ach 2 Height of the external median bridge pch 1 Greatest cranio-caudal length Posterior ceratohyal / pch pch 2 Greatest dorso-ventral height sca 1 Distance between the scapular foramen and the articular facet Scapula / sca sca 2 Medio-lateral width of the articular facet M1 Anterior height of the centrum, including the neural prezygapophyses M2 Greatest width at level of neural prezygapophyses First vertebra/ pc 1 M3 Length of the centrum M4 Posterior height of the centrum M5 Posterior width of the centrum M1 Anterior height of the centrum M2 Anterior width of the centrum Vertebrae M3 Length of the centrum M4 Posterior height of the centrum M5 Posterior width of the centrum M1 Height of the ural centrum Hypural plate / hp M2 Width of the ural centrum M3 Height of the triangular plate while more information on their growth is available (e.g. often scale allometrically with total length. The reconstruc- Landau, 1965; Mulhia-Melo, 1980; Valeiras et al., 2008). tion of fish lengths from isolated bones is significant for both In fish, body shape, as well as body parts or organs, most biology and archaeology (Reitz et al., 1987). In biology, it

188 Cybium 2019, 43(2) Ma r r a s t & Bé a r e z Osteometry of Euthynnus species

Table II. – Biometric information concerning Euthynnus affinis and specimens (TL, FL and SL in mm; P in g). Species Number in collection TL FL SL W Species Number in collection TL FL SL W Euthynnus affinis MNHN-ICOS-01132 889 828 790 8674 Euthynnus affinis MNHN-ICOS-00984 319 288 275 343 Euthynnus affinis MNHN-ICOS-01131 842 806 772 8091 Euthynnus affinis MNHN-ICOS-00983 308 274 263 305 Euthynnus affinis MNHN-ICOS-01130 795 721 685 6420 Euthynnus lineatus MNHN-ICOS-01608 666 614 578 4200 Euthynnus affinis MNHN-ICOS-00320 776 725 682 6600 Euthynnus lineatus – 619 565 530 3250 Euthynnus affinis MNHN-ICOS-00239 765 714 690 5950 Euthynnus lineatus MNHN-ICOS-01630 580 525 490 2517 Euthynnus affinis MNHN-ICOS-00319 722 679 654 4900 Euthynnus lineatus MNHN-ICOS-01609 565 525 493 2500 Euthynnus affinis MNHN-ICOS-1433 690 592 630 4330 Euthynnus lineatus MNHN-ICOS-01629 510 466 440 1723 Euthynnus affinis MNHN-ICOS-00295 678 631 605 4050 Euthynnus lineatus – 510 444 420 1750 Euthynnus affinis MNHN-ICOS-00273 671 622 600 4030 Euthynnus lineatus MNHN-ICOS-01618 506 455 430 1457 Euthynnus affinis MNHN-ICOS-00238 660 611 590 3600 Euthynnus lineatus – 500 438 414 1716 Euthynnus affinis MNHN-ICOS-00296 640 587 567 3150 Euthynnus lineatus MNHN-ICOS-01612 495 435 412 1394 Euthynnus affinis MNHN-ICOS-00297 636 588 565 3000 Euthynnus lineatus MNHN-ICOS-01625 495 444 420 1450 Euthynnus affinis MNHN-ICOS-00298 626 575 553 2850 Euthynnus lineatus MNHN-ICOS-01627 470 423 400 1335 Euthynnus affinis MNHN-ICOS-00272 616 552 552 2788 Euthynnus lineatus MNHN-ICOS-01624 450 396 375 1129 Euthynnus affinis MNHN-ICOS-00994 610 539 521 2670 Euthynnus lineatus MNHN-ICOS-01626 445 407 385 1143 Euthynnus affinis MNHN-ICOS-00299 609 560 539 2950 Euthynnus lineatus MNHN-ICOS-01628 430 385 365 1005 Euthynnus affinis MNHN-ICOS-00271 584 543 530 2446 Euthynnus lineatus MNHN-ICOS-01620 425 380 360 944 Euthynnus affinis MNHN-ICOS-00300 578 525 507 2500 Euthynnus lineatus MNHN-ICOS-01621 418 380 360 886 Euthynnus affinis MNHN-ICOS-00986 570 510 489 2102 Euthynnus lineatus MNHN-ICOS-01611 413 374 355 883 Euthynnus affinis MNHN-ICOS-00107 564 519 499 2000 Euthynnus lineatus MNHN-ICOS-01623 412 364 345 828 Euthynnus affinis MNHN-ICOS-00301 536 497 481 1940 Euthynnus lineatus MNHN-ICOS-01622 401 359 340 727 Euthynnus affinis MNHN-ICOS-00311 531 497 477 1983 Euthynnus lineatus MNHN-ICOS-01619 390 348 330 750 Euthynnus affinis MNHN-ICOS-01103 513 486 472 1797 Euthynnus lineatus MNHN-ICOS-01613 360 326 310 646 Euthynnus affinis MNHN-ICOS-00985 495 423 406 1334 Euthynnus lineatus MNHN-ICOS-01614 350 316 300 550 Euthynnus affinis MNHN-ICOS-00312 492 455 438 1484 Euthynnus lineatus MNHN-ICOS-01610 346 311 295 481 Euthynnus affinis MNHN-ICOS-00249 467 431 414 1151 Euthynnus lineatus MNHN-ICOS-01615 340 316 300 558 Euthynnus affinis MNHN-ICOS-00960 425 383 368 998 Euthynnus lineatus MNHN-ICOS-01617 330 294 280 535 Euthynnus affinis MNHN-ICOS-00956 398 359 349 694 Euthynnus lineatus MNHN-ICOS-01616 320 294 280 524 Euthynnus affinis MNHN-ICOS-00955 393 353 342 703 allows the estimation of prey size in the diet of predators (e.g. affinis and E. lineatus. We focused on these two species from , billfishes, sharks). In archaeology, length reconstruc- the Indian and Pacific Oceans, because of their importance tions are important for the study of ancient fisheries since they in this area both for modern and ancient fisheries (e.g. Béa- allow the estimation of the fish biomass represented in the rez and Lunniss, 2003; Rohit et al., 2012); the third commer- site: human population consumption, information about the cially important species is excluded because information on fish sizes targeted (juveniles/adults) and fishing gear design osteometry in E. alletteratus is already available (Desse and (e.g. mesh size of fishing nets, size of fish hooks). Size recon- Desse-Berset, 1994). struction also allows the perception of changes in fish catches Euthynnus affinis is found throughout the Indo-Pacific through time, and inferences about the evolution of fishing Ocean, from East Africa, the Red Sea and the Persian Gulf techniques or the status of the exploitation of the species to to Hawaii, Polynesia. Its maximum fork length is 100 cm, be made (Reitz et al., 1987; Thieren and Van Neer, 2016; with a maximum weight of 13.6 kg, but the average length Prestes-Carneiro and Béarez, 2017; Lidour et al., 2018). is about 60 cm (Collette and Nauen, 1983). Unlike other The study of the relationships between body part lengths tunas, which can resist temperatures down to 10°C, it is or between length and body weight is of particular value in always found in warm waters, between 18° to 29°C (Brill, management (Ricker, 1958), ecological studies (Kul- 1994). In the Arabian Sea, the species reaches between 50 bicki et al., 2005) or body size reconstruction from isolated and 65 cm in its third year of age, and spawning is observed parts (Casteel, 1974; Lidour et al., 2018). all year round with peaks during June and October (Rohit et In this study, we present the relationship between select- al., 2012). Euthynnus lineatus lives in the Eastern Pacific, ed fish bone measurements and fish length for Euthynnus along the coast of Western America, from California to Peru.

Cybium 2019, 43(2) 189 Osteometry of Euthynnus species Ma r r a s t & Bé a r e z

Figure 1. – General view of Euthynnus affinis (A) and Euthynnus lineatus (B) and some selected vertebrae: eight first precaudals (lateral vieuw) and nine first preurals (lateral and dorsal views).

Its maximum fork length is 84 cm, with a maximum weight tus from Ecuador, Tropical Eastern Pacific. In order to attain of 9 kg, but the average length is about 60 cm (Collette and the most representative samples, and to avoid the need Nauen, 1983). Along the coast of Central America, spawning for extrapolation, specimens were collected from within season occurs from October to June (Schaefer, 1987). the widest size range possible. For all specimens, the total length (TL), fork length (FL), and standard length (SL) were recorded to the nearest millimetre (mm), and the total fresh Material and methods weight (W) was recorded to the nearest gram (g) (Tab. I). Their complete skeletons were prepared in the Muséum For this study, we analysed 31 specimens of Euthynnus national d’Histoire naturelle in Paris, where they are now affinis from the Gulf of Oman and 26 specimens of E. ������linea- stored (Tab. II).

190 Cybium 2019, 43(2) Ma r r a s t & Bé a r e z Osteometry of Euthynnus species

Figure 2. – Description of the measurements used (see Tab. I).

Cybium 2019, 43(2) 191 Osteometry of Euthynnus species Ma r r a s t & Bé a r e z

In order to obtain reliable size reconstructions, our Among archaeological material, depending on preser- osteometric model was based on the allometric principle, vation, bones can be severely fragmented, with only their which gives the best predictive model (Teissier, 1948; Cas- strongest parts, mostly articular joints, surviving. For this teel, 1974; Reitz et al., 1987). Indeed, allometry takes into reason, some bone measurements were taken on parts select- account the fact that different parts of the body may have ed for their good preservation, and several flat bones (e.g. distinct growth rates, which is a common feature in fish. The preopercle, subopercle, interopercle), which do not preserve length-weight relationship is represented by a power function well, were not considered in this study. According to our of the type: W = aFLb (Teissier, 1948; Le Cren, 1951), where archaeological observations and research on the bones most- W is the total weight of the fish (g), FL is the fork length ly used in biometric studies (Desse, 1984), we decided to (mm), “a” is a constant and “b” is the allometric coefficient. focus our study on the bones more easily assigned to species: The length-length relationships are expressed as FL = aBMb, premaxilla, dentary, maxilla, opercle, quadrate, anguloartic- where BM is the bone measurement. The accuracy of the ular, ceratohyal, hyomandibula and neurocranium (Fig. 1). equations was evaluated by the coefficient of determination We then added the scapula because this bone is often well (r2) and the standard error of estimate (SEE). preserved among scombrids in an archaeological context.

Figure 3. – Length-length and length-weight relationships for Euthynnus affinis (left) and Euthynnus lineatus (right).

192 Cybium 2019, 43(2) Ma r r a s t & Bé a r e z Osteometry of Euthynnus species

For each cranial bone, we took between 2 and 4 measure- Results ments (Tab. I, Fig. 2), based on previous works by Morales and Rosenlund (1979) and Desse (1984). All the measure- The specimens of Euthynnus affinis have a FL ranging ments were taken with a digital caliper (0.01 mm). Osteolog- from 274 mm to 828 mm, and a weight ranging from 305 ical nomenclature followed Dye and Longenecker (2004). g to 8674 g (Tab. II; Fig. 3). The specimens of Euthynnus lineatus have a FL ranging from 294 mm to 614 mm, and a For the vertebrae, the problem of identifying their posi- weight ranging from 481 g to 4200 g (Tab. II; Fig. 3). tion along the spinal column was overcome by using the The two species are allopatric except for a few stray Global Rachidian Profile (GRP) (Desseet al., 1989). Since specimens, and hence should not be confused. However, they the last precaudal and first caudal vertebrae are very similar, can also be separated by the spots and lines on their body or GRP allows one to select parts of the spinal column where sorted by differences in their vertebrae; Euthynnus lineatus the vertebral diameter does not vary much, which means always has a marked hyperostosis in its 5th and 6th preural that any vertebra in the segment could give the same size vertebrae (Béarez et al., 2005). Both Euthynnus species can reconstruction. The GRP can also be used to estimate the be differentiated from the closely related Katsuwonus pela- Minimum Number of Individuals (MNI) of Euthynnus in mis thanks to the presence of lines on the abdomen, and oste- fish bones assemblages. In order to construct this profile, we ologically on the basis of their vertebrae. Katsuwonus pela- took 5 measurements on each vertebra from modern speci- mis has precaudal vertebrae with thinner and more elongate mens, for which all the vertebrae were conserved with their holes over the median ridge on the lateral parts of the centra original rank. than Euthynnus species. The relationships between lengths or between length and Otoliths were not studied, as they are very small and are weight given by the power regression equations are highly generally not recovered, either in archaeological material or significant for both species. Most determination coefficients stomach contents. (r2) are over 0.9, scoring slightly higher in Euthynnus affinis. All the measurements were plotted against the FL of These significant correlations between the skeleton parts and individuals (in mm). We chose FL instead of TL because the size and weight of individuals allow reliable reconstruc- Euthynnus species have a strong lunate tail that makes meas- tions of life size. Some measurements are, however, less sig- uring the total length difficult, and because FL is the most nificant; forE. affinis , this is the case for the M2 of the DN frequently used length in tuna-like fisheries. (0.83), and the M3 of the PU1 (0.81); and for E. lineatus, the

Figure 4. – Global rachidian profiles of Euthynnus affinis (MNHN-ICOS-00983: SL = 263 mm, FL = 274 mm, W = 305 g; MNHN- ICOS-00986: SL = 489 mm, FL = 510 mm, W = 2102 g; MNHN-ICOS-1130: SL = 685 mm, FL = 721 mm, W = 6420 g) and Euthynnus lineatus (dotted line, PB-6664: SL = 493 mm, FL = 525 mm, W = 2500 g).

Cybium 2019, 43(2) 193 Osteometry of Euthynnus species Ma r r a s t & Bé a r e z SEE 28.5115 25.3686 17.0673 19.0342 50.6276 27.3033 40.7968 38.5846 58.6627 47.0356 55.1539 44.6035 54.9784 94.4206 34.9156 41.2237 27.8959 55.2000 31.0050 37.1870 26.8710 61.6445 80.4127 24.8901 27.4408 22.8050 44.9523 60.6825 33.4825 41.6108 18.6626 33.2386 10.8054 2 r 0.9726 0.9837 0.9568 0.8212 0.9583 0.9221 0.9597 0.9295 0.7991 0.9269 0.8846 0.9391 0.8773 0.6800 0.9259 0.9193 0.9747 0.9068 0.9587 0.9552 0.9624 0.8712 0.7413 0.9185 0.9655 0.9841 0.9076 0.8136 0.8618 0.9378 0.9857 0.9418 0.9929 0.8353 0.7348 0.6699 0.8467 0.7214 0.874 0.7116 0.6888 0.863 0.7378 1.007 0.7337 0.7828 0.7367 1.1016 0.8284 0.895 0.9144 0.8992 0.9266 0.9457 0.8941 0.8911 0.6503 0.8713 1.0121 0.8866 0.7452 0.8969 0.7671 0.9435 0.7646 0.9698 E quation y = 76.249x y = 81.646x y = 76.102x y = 78.257x y = 85.039x y = 75.543x y = 88.874x y = 79.894x y = 91.448x y = 97.825x y = 70.821x y = 101.23x y = 79.489x y = 127.39x y = 112.46x y = 68.921x y = 95.787x y = 84.676x y = 95.697x y = 92.624x y = 100.06x y = 113.02x y = 188.3x y = 125x y = 95.695x y = 105.41x y = 117x y = 204.59x y = 162.45x y = 104.8x y = 120.61x y = 129.02x y = 36.528x M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 Measurement hp pu 6 pu 5 pu 4 pu 3 pu 2 pu 1 Bone ). Number of specimens: 30. specimens: of Number ). b aBM = SEE

24.6110 25.1211 23.3623 31.3574 20.2419 26.8131 26.1528 25.7346 23.7504 22.4173 24.4229 20.8602 24.0301 19.5661 26.6451 23.0957 22.5433 19.3550 22.6466 32.0832 25.2329 22.4637 22.8178 27.0491 28.4812 32.2053 30.6535 26.6567 33.4870 34.8516 36.2072 27.1680 33.8715 30.0470 20.3948 24.1060 21.2338 35.7684 30.6240 20.3260 (FL 2 r 0.948 0.9611 0.9782 0.9634 0.9776 0.9821 0.9781 0.9774 0.9813 0.9794 0.9796 0.9607 0.9746 0.9862 0.9765 0.9854 0.9814 0.9799 0.9876 0.9825 0.9794 0.9576 0.9732 0.9855 0.9815 0.9769 0.9742 0.9873 0.9859 0.9803 0.9826 0.9429 0.9752 0.9483 0.9547 0.9832 0.9812 0.9833 0.9437 0.9853 affinis 0.8361 0.7935 0.8904 0.8561 0.846 0.7664 0.9638 0.8568 0.7534 0.7931 0.9658 0.8516 0.7909 0.8386 0.7829 0.9615 0.887 0.7948 0.8464 0.8174 0.8916 0.7966 0.8936 0.827 0.9397 0.9348 0.7932 0.8616 0.7901 0.7577 0.7717 0.8281 0.7849 0.7082 0.7303 0.9731 0.9041 0.7867 0.8387 0.8654 Euthynnus E quation y = 93.054x y = 91.977x y = 81.568x y = 95.817x y = 87.8x y = 99.801x y = 93.731x y = 74.105x y = 95.142x y = 94.939x y = 99.7x y = 88.715x y = 71.441x y = 96.084x y = 88.869x y = 99.252x y = 93.264x y = 70.966x y = 89.226x y = 91.029x y = 98.073x y = 89.005x y = 68.36x y = 87.407x y = 90.845x y = 87.091x y = 86.755x y = 70.606x y = 78.462x y = 91.675x y = 72.634x y = 79.641x y = 72.345x y = 68.2x y = 77.557x y = 76.065x y = 75.238x y = 73.197x y = 62.63x y = 82.699x M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 Measurement pc 3 pc 4 pc 5 pc 6 pc 7 pc 8 pu 8 pu 7 Bone SEE 16.2846 16.8776 18.8479 23.5420 29.4210 47.3650 21.7980 30.1513 22.5286 18.2458 17.4743 36.0657 24.2272 46.2016 13.1806 16.1084 24.0559 36.5657 15.9913 53.9242 19.0873 31.0683 16.0867 41.8872 20.7912 27.8825 41.4283 64.5534 21.5510 38.3012 30.9592 16.7135 35.2393 21.7212 34.6229 26.7243 23.2340 28.3761 129.4188 127.8943 2 r 0.965 0.954 0.9905 0.9896 0.9873 0.9754 0.9590 0.8804 0.9824 0.9751 0.9855 0.9875 0.9551 0.9789 0.9183 0.9919 0.9906 0.9772 0.9489 0.9878 0.8526 0.9807 0.9635 0.9635 0.9635 0.9888 0.9388 0.9814 0.9720 0.9442 0.8261 0.9756 0.9351 0.9638 0.9885 0.9769 0.9508 0.9712 0.9752 0.9749 1.1057 0.9248 1.0276 0.9622 1.1768 1.0738 1.1571 1.0632 0.8451 0.9619 0.8209 0.9942 1.0322 0.9556 0.9561 1.095 0.8733 1.0276 1.0117 1.0117 1.0117 1.015 0.9054 0.8013 0.8895 0.8727 1.0239 0.7589 0.83 0.8141 0.8127 0.8063 0.8575 0.8287 1.0903 0.9348 0.9489 1.0095 0.8378 0.8566 E quation y = 5.2615x y = 48.424x y = 9.0822x y = 36.07x y = 37.19x y = 196.25x y = 5.8451x y = 95.52x y = 16.744x y = 5.4654x y = 22.201x y = 145.12x y = 34.909x y = 152.57x y = 21.565x y = 10.867x y = 33.302x y = 67.172x y = 8.5473x y = 139.72x y = 80.859x y = 45.382x y = 45.382x y = 45.382x y = 11.192x y = 118.95x y = 29.724x y = 41.277x y = 163.54x y = 120.51x y = 61.202x y = 48.714x y = 122.94x y = 86.297x y = 95.078x y = 90.397x y = 94.487x y = 85.87x y = 88.639x y = 83.534x M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 dn 1 dn 2 dn 3 qd 1 qd 2 op 1 op 2 op 3 ncr 1 ncr 2 ncr 3 sca 1 sca 2 hm 1 hm 2 hm 3 mx 1 mx 2 mx 3 ach 1 ach 2 ang 1 ang 2 ang 3 ang 4 pch 1 pch 2 pmx 1 pmx 2 pmx 3 Measurement dn qd op ncr sca hm mx ach ang pch pc 1 pc 2 pmx Bone Table III. – Allometric relationships between fork length and bone measurements for measurements bone and length fork between relationships Allometric – III. Table

194 Cybium 2019, 43(2) Ma r r a s t & Bé a r e z Osteometry of Euthynnus species SEE 14.8095 15.1965 27.9809 30.7155 20.2352 24.7902 21.9593 19.8445 22.9266 26.0025 29.1562 26.6779 28.4824 29.6267 18.7833 21.7323 19.0983 35.5598 22.5869 15.1082 20.7788 31.0818 52.5358 15.2665 13.7251 16.0636 27.8399 35.4401 19.9379 19.7091 15.8317 17.2272 12.3732 2 r 0.9644 0.9591 0.8704 0.8861 0.9000 0.9247 0.9367 0.9373 0.9172 0.9145 0.8993 0.8983 0.9035 0.8516 0.9316 0.9269 0.9368 0.8284 0.9172 0.9621 0.9380 0.8399 0.6140 0.9619 0.9666 0.9602 0.8907 0.8139 0.9361 0.9457 0.9620 0.9574 0.9769 0.8253 0.7377 0.6829 0.8457 0.6819 0.8177 0.6573 0.803 0.9486 0.7791 1.0079 0.7369 0.9052 0.913 0.9427 1.1591 0.9064 0.8842 0.9504 1.0126 0.9491 0.9405 0.7143 1.0065 0.9649 0.9767 1.0684 0.8565 0.8996 0.9281 1.1331 0.9193 0.936 E quation y = 74.286x y = 77.152x y = 66.189x y = 72.887x y = 87.447x y = 79.027x y = 92.497x y = 51.701x y = 72.841x y = 84.831x y = 66.265x y = 95.139x y = 52.582x y = 84.878x y = 71.284x y = 58.598x y = 79.557x y = 76.141x y = 88.878x y = 72.424x y = 95.165x y = 100.72x y = 181.57x y = 75.509x y = 89.367x y = 90.365x y = 103.31x y = 209.23x y = 97.379x y = 103.16x y = 105.9x y = 108.85x y = 33.944x M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 Measurement hp pu 6 pu 5 pu 4 pu 3 pu 2 pu 1 Bone ). Number of specimens: 21-22. specimens: of Number ). b aBM =

SEE 9.8539 11.4856 11.2349 16.1027 16.2237 13.0374 19.1812 14.4475 16.5201 12.5691 12.5919 16.6341 14.8547 14.7645 10.8009 17.6235 15.0148 10.7737 13.0997 13.3523 13.1225 15.6394 10.3154 15.9765 17.5928 12.4849 16.7757 12.3476 15.8354 16.3713 15.4095 14.2249 13.9942 21.9828 13.2195 16.0456 14.5925 14.6216 13.3459 15.9994 (FL 2 r 0.9523 0.9586 0.9756 0.9328 0.9681 0.9561 0.9814 0.9728 0.9543 0.9698 0.9636 0.9853 0.9562 0.9579 0.9835 0.9708 0.9728 0.9735 0.9623 0.9843 0.9626 0.9852 0.9766 0.9584 0.9740 0.9650 0.9771 0.9581 0.9600 0.9880 0.9612 0.9649 0.9688 0.9224 0.9667 0.9650 0.9627 0.9645 0.9703 0.9526 0.8843 0.7676 0.9178 0.739 0.8883 0.7372 0.9922 0.8881 0.7459 0.8652 0.7485 1.0055 0.8621 0.8033 0.8561 0.7783 0.9584 0.8764 0.8407 0.8269 0.827 0.9966 0.8646 0.8404 0.8544 1.0592 0.8679 0.8562 0.9511 0.8947 0.8279 0.7501 0.8302 0.7781 0.7909 0.8812 0.7184 0.9113 0.837 0.7905 Euthynnus lineatus Euthynnus E quation y = 80.503x y = 92.853x y = 74.23x y = 80.806x y = 93.419x y = 87.856x y = 95.764x y = 66.936x y = 85.087x y = 93.042x y = 91.387x y = 94.873x y = 65.317x y = 89.463x y = 85.373x y = 91.791x y = 91.835x y = 70.199x y = 86.939x y = 81.702x y = 95.315x y = 86.356x y = 63.899x y = 85.875x y = 82.357x y = 87.744x y = 83.59x y = 53.373x y = 83.315x y = 78.969x y = 56.832x y = 77.57x y = 47.155x y = 70.661x y = 81.658x y = 72.173x y = 76.775x y = 55.136x y = 63.831x y = 81.749x M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 Measurement pc 3 pc 4 pc 5 pc 6 pc 7 pc 8 pu 8 pu 7 Bone SEE 9.5511 9.8153 9.5603 9.9004 11.1191 11.6257 11.3792 15.5911 28.4773 14.3914 14.4471 35.1222 12.9910 18.1801 19.3894 12.0622 16.2330 14.9794 19.1446 12.9685 10.5917 13.3588 20.5952 39.0486 23.9390 19.2882 12.0354 17.8224 30.4365 18.9375 20.8655 19.3598 77.6146 26.1891 14.1715 17.2075 15.7454 15.2220 12.3854 14.4513 2 r 0.9111 0.9830 0.9818 0.9208 0.9617 0.9625 0.7958 0.9658 0.9381 0.9263 0.9828 0.9748 0.9623 0.9617 0.9342 0.9673 0.9805 0.9738 0.9275 0.9817 0.7420 0.9326 0.9781 0.9479 0.9792 0.8175 0.9788 0.9389 0.9376 0.9365 0.9825 0.9696 0.9054 0.9691 0.9641 0.9626 0.9655 0.9770 0.9600 0.9647 1.0382 0.8981 0.8584 0.9366 0.8737 1.0757 0.8874 1.0777 1.0359 0.7959 0.9678 0.8703 0.931 0.9767 0.9241 0.8823 1.07 0.8272 0.9445 0.921 0.9108 0.8538 1.0286 0.7096 0.9932 0.8551 0.8322 0.8006 0.9536 0.7853 0.7953 0.7355 0.8222 0.8322 0.9048 0.7677 0.8419 0.9765 0.7989 0.7227 E quation y = 6.4785x y = 52.438x y = 16.363x y = 34.318x y = 37.78x y = 196.67x y = 7.8663x y = 98.44x y = 27.315x y = 6.9066x y = 22.924x y = 144.44x y = 32.717x y = 136.55x y = 24.759x y = 12.386x y = 34.503x y = 71.948x y = 8.7044x y = 136.68x y = 91.704x y = 52.815x y = 12.756x y = 108.09x y = 12.953x y = 156.93x y = 29.943x y = 44.995x y = 147.72x y = 139.65x y = 62.112x y = 52.691x y = 105.42x y = 90.784x y = 103.43x y = 85.893x 105.46x y = 81.186x y = 77.802x y = 91.489x M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 dn 1 dn 2 dn 3 qd 1 qd 2 op 1 op 2 op 3 ncr 1 ncr 2 ncr 3 sca 1 sca 2 hm 1 hm 2 hm 3 mx 1 mx 2 mx 3 ach 1 ach 2 ang 1 ang 2 ang 3 ang 4 pch 1 pch 2 pmx 1 pmx 2 pmx 3 Measurement dn qd op ncr sca hm mx ach ang pch pc 1 pc 2 pmx Bone Table IV. – Allometric relationships between fork length and bone measurements for measurements bone and length fork between relationships Allometric – IV. Table

Cybium 2019, 43(2) 195 Osteometry of Euthynnus species Ma r r a s t & Bé a r e z measurements with the lowest r2 are the M3 of the premax- lated bones. Some differences in determination coefficients illa (0.79), and the M2 of the maxilla (0.74). indicate that some measurements are more appropriate than Taking all the M2 measurements of the vertebrae for others for size reconstruction. However, all selected bones one individual, we built a GRP for three different speci- had at least one regression equation with a high r2 (> 0.9) mens of E. affinis (Fig. 4). We observed that the vertebral that should permit accurate estimates of the length or weight diameters (M2) are very homogeneous among the last pre- of Euthynnus individuals, and we recommend using the best- caudal and the first caudal vertebrae (rank 5 to 29). The pro- fitted regressions whenever possible. file forE. lineatus is very similar (Fig. 4: dot-line) as is the Similar work has previously been done by Desse and one for E. alletteratus (Desse and Desse-Berset, 1994: 72). Note, however, that the diameter of the last caudal is higher Desse-Berset (1994) on E. alletteratus using dentary meas- in E. lineatus, a fact that could be linked to the hyperostotic urements for size reconstruction of archaeological remains condition of the preural vertebrae in this species. from the Cape Andreas Kastros site (Cyprus). As they used The GRP allows to obtain a rather good estimate of the a linear model the results are not directly comparable, but length and weight of an individual, even when it is not pos- the GRP curve they present is very similar to the one of sible to assign a precise rank to an isolated vertebra from the E. affinis. Indeed, as all Euthynnus species have a very sim- median part of the backbone (Desse et al., 1989). ilar shape it is likely that our models can also be used for However, we have to contrast these results after observ- E. alletteratus. ing the standard error of estimate (SEE), which indicates the The data presented here should facilitate reconstructions prediction error. Here, we have a large ranging of SEE val- of diet and feeding behaviour of piscivorous species, includ- ues (Tabs III, IV). In E. affinis, the majority of the length- ing past humans, and help reconstruct fishing activities and length relationships presented SEE values oscillating around human impact on neritic scombrids at least at a regional 37; for E. lineatus, the SEE values obtained were lower than those obtained for E. affinis, around 18. scale.

Acknowledgements. – We would like to thank Salem el-Ghazali, Discussion and conclusion Khamis Nasser, Héctor Parrales, Cruz Elías Pincay, Enrique Toro, Elena Maini and many other fishermen for their help in catching the fish. Eric Pellé and the ‘Service des Préparations Ostéologiques When we compare our length-weight relationship results et Taxidermiques’ of the MNHN for his help in the preparation of with the previously published data, we can see a great simi- the skeletons. Thanks are also due to Gabriela Prestes Carneiro for larity between the equations values (Tab. V). For E. affin- her advice, Alice Diaz Chauvigné, and Jill Cucchi for copy-editing. is, our results are very close to those of Sivasubramaniam (1966) and Silas (1967) for the Indian waters, with an ‘a’ value close to 0.00001 (10-5) and a ‘b’ value close to 3.06, References E. lineatus indicating an isometric growth. For our allomet- Béarez P., 1996. – Comparaison des ichtyofaunes marines ric coefficient ‘b’ value, is a little lower than the one given actuelle et holocène et reconstitution de l’activité halieutique by Klawe and Calkins (1965) and Schaefer (1982). Finally, dans les civilisations précolombiennes de la côte du Manabí if we compare these results with those obtained for the third sud (Équateur). Unpubl. Ph.D. dissertation. Paris: Muséum species, Euthynnus alleteratus, national d’Histoire naturelle. which lives in the , Table V. – Fork length (mm) to weight (g) equation parameters for the three species of Euthyn- we observe a similar trend. Dif- nus. ferences in shape may be due to Species Geographic area Reference ‘a’ value ‘b’ value the overall health of the fish or to E. affinis Indian Ocean Morrow, 1954 0.000018 2.9630 ecological differences in the differ- E. affinis Indian Ocean Sivasubramaniam, 1966 0.000013 3.0249 ent areas. Collections made from E. affinis Indian Ocean Silas, 1967 0.000013 3.0287 different locations would definitely E. affinis India James et al., 1993 0.000021 2.9500 give a better picture of the general E. affinis India Rohit et al., 2012 0.000033 2.8890 growth pattern of Euthynnus spe- cies. E. affinis Oman Present study 0.000010 3.0635 In this article, we have pre- E. lineatus Eastern Pacific Klawe and Calkins, 1965 0.000011 3.0817 sented regression equations, which E. lineatus Eastern Pacific Schaefer, 1982 0.000011 3.0683 allow the estimation of the length E. lineatus Ecuador, Eastern Pacific Present study 0.000020 2.9982 and weight of E. affinis and E. lin- E. alleteratus Turkey, Kahraman and Oray, 2001 0.000090 2.7256 eatus individuals from their iso- E. alleteratus Tunisia, Mediterranean Sea Hajjej et al., 2009 0.000025 2.9264

196 Cybium 2019, 43(2) Ma r r a s t & Bé a r e z Osteometry of Euthynnus species

BEarez P. & Lunniss R., 2003. – Scombrid fishing at Salango Klawe W.L. & Calkins T.P., 1965. – Length-weight relation- (Manabí, Ecuador) during the first millennium BC.In : Proceed- ship of black skipjack tuna Euthynnus lineatus. Calif. Fish ings of the 12th meeting of the Fish Remains Working Group of Game, 51(3): 214-216. the International Council for Archaeozoology, 4-8 Sep. 2003, Kulbicki M., Guillemot N. & Amand M., 2005. – A gen- Guadalajara, Mexico (Guzmán A.F., Polaco O.J. & Aguilar F.J., eral approach to length-weight relationships for New Caledoni- eds), pp. 27-32. an lagoon fishes.Cybium , 29(3): 235-252. BEarez P., Gay P. & Lunniss R., 2012. – Sea fishing at Salan- Lambrides A.B. & Weisler M.I., 2017. – Late Holocene go (Manabí Province, Ecuador) during the Middle Formative Marshall Islands archaeological tuna records provide proxy Machalilla phase. Lat. Am. Antiq., 23(2): 195-214. evidence for ENSO variability in the western and central Pacif- BEarez P., Meunier F.J. & Kacem A., 2005. – Description ic Ocean. JICA. doi: 10.1080/15564894.2017.1315350. morphologique et histologique de l’hyperostose vertébrale chez Landau R., 1965. – Determination of age and growth rate in Euthynnus lineatus la thonine noire, (Teleostei : Perciformes : Euthynnus alletteratus and E. affinis using vertebrae. Rapp. P. Scombridae). Cah. Biol. Mar., 46(1): 21-28. V. Réun. Comm. Int. Explor. Sci. Mer Medit., 18(2): 241-243. Beech M.J., 2004. – In the Land of the Ichthyophagi: Modelling Fish Exploitation in the Arabian Gulf and Gulf of Oman from Le Cren E.D., 1951. – The length-weight relationship and sea- the 5th millennium BC to the Late Islamic period. 315 p. sonal cycle in gonad weight and condition in the perch (Perca Oxford: Archeopress. fluviatilis). J. Anim. Ecol., 20(2): 201-219. Brill R.W., 1994. – A review of temperature and oxygen toler- Lidour K., Vorenger J. & Béarez P., 2018. – Size and ance studies of tunas pertinent to fisheries oceanography, move- weight estimations of the spangled emperor (Teleostei: ment models and stock assessments. Fish. Oceanogr., 3(3): Lethrinidae: Lethrinus nebulosus) from bone measurements 204-216. elucidate the fishing grounds exploited and ancient seasonality at Akab (United Arab Emirates). Int. J. Osteoarchaeol., doi: Casteel R.W., 1974. – A method for estimation of live weight of 10.1002/oa.2683. fish from the size of skeletal elements. Am. Antiq., 39(1): 94-98. Mansueti R.J. & Mansueti A.J., 1962. – Little tuna, Euthyn- nus alletteratus, in northern Chesapeake Bay, Maryland, with Collette B.B. & Nauen C.E., 1983. – Scombrids of the an illustration of its skeleton. Chesapeake Sci., 3(4): 257-62. world. An annotated and illustrated catalogue of tunas, macker- els, bonitos and related species known to date. FAO species Martínez M.F., Jiménez M. & Cooke R., 2009. – Fishing at catalogue. FAO Fish. Synop., 125(2): 1-137. Rome: FAO. pre-Hispanic settlements on the Pearl Island Archipelago (Pan- ama, Pacific), II: Bayoneta Island (900-1300CE). In: Proceed- Desse J., 1984. – Propositions pour une réalisation collective d’un ings of the 15th meeting of the Fish Remains Working Group of corpus: fiches d’identification et d’exploitation métrique du e the International Council for Archaeozoology, 3-9 Sep. 2009, squelette des poissons. In: 2 Rencontres d’archéo-ichtyologie Poznan and Torun, Poland (Makowiecki D., Hamilton-Dyer S., Notes et monographies techniques (N. Desse-Berset, ed.). , 16: Riddler I., Trzaska-Nartowski N. & Makohonienko M., eds), 67-86. Valbonne: CRA-CNRS. pp. 172-178. Desse J. & Desse-Berset N., 1994. – Osteometry and fishing strategies at Cape Andreas Kastros (Cyprus, 8th millennium Morales A. & Rosenlund K., 1979. – Fish bone measure- BP). Ann. Mus. R. Afr. Cent., Ser. 8, Sci. Zool., 274: 69-79. ments: An attempt to standardize the measuring of fish bones from archaeological sites. 48 p. Copenhagen: Zoological Muse- Desse J., Desse-Berset N. & Rocheteau M., 1989. – Les um. profils rachidiens globaux. Reconstitution de la taille des pois- sons et appréciation du nombre minimal d’individus à partir des Morrow J.E., 1954. – Data on dolphin, and little pièces rachidiennes. Rev. Paléobiol., 8(1): 89-94. tuna from East Africa. Copeia, 1954(1): 14‑16. Dye T.S. & Longenecker K.R., 2004. – Manual of Hawaiian Mulhia-Melo A.F., 1980. – Synopsis of biological data on the fish remains identification based on the skeletal reference col- black skipjack tuna, Euthynnus lineatus, Kishinouye, 1920. In: lection of Alan C. Ziegler and including otoliths. Special Publi- Synopses of Biological Data on Eight Species of Scombrids cation, 1: 1-143. Honolulu: Society for Hawaiian Archaeology (Bayliff W.H., ed.). IATTC Special Report n° 2. 520 p. La Jolla: and Bishop Museum Press. IATTC. Godsil H.C., 1954. – A descriptive study of certain tuna-like fish- Prestes-Carneiro G. & Béarez P., 2017. – Swamp-eel es. Fish Bull., 97: 1-188. (Synbranchus spp.) fishing in Amazonia from pre-Columbian to present times. J. Ethnobiol., 37(3): 380‑397. Gould S.J., 1966. – Allometry and size in ontogeny and phylog- eny. Biol. Rev., 41(4): 587-638. Reitz E. J., Quitmyer I.R., Hale H.S., Scudder S.J. & Wing E.S., 1987. – Application of allometry to zooarchaeolo- Hajjej G., Hattour A., Allaya H., Jarboui O. & Bouain gy. Am. Antiq., 52(2): 304-317. A., 2009. – Sex-ratio, relation taille-masse et coefficient de condition de la thonine commune Euthynnus alletteratus (Rafi- RICKER W.E., 1958. – Handbook of computation for biological nesque, 1810) des côtes tunisiennes. Bull. INSTM, 36: 39-44. studies of fish populations. Bull. Fish Res. Board Can., 119: James P.S.B.R., Pillai P.P., Pillai N.G.K., Jayaprakash 1-300. A.A., Gopakumar G., Kasim M., Sivadas M. & Koya Rohit P., Chellappan A., Abdussamad E.M., Joshi K.P.S., 1993. – Fishery, biology and stock assessment of small K.K., Koya K.P.S., Sivadas M., Ghosh S., MarRathi- tunas. In: Tuna Research in India (Sudarsan D. & John M.E., nam A.M.M., Kemparaju S., Dhokia H.K., Prakas- eds), pp. 123-148. Bombay: Fishery Survey of India. an D. & Beni N., 2012. – Fishery and bionomics of the little Kahraman A.E. & Oray I.K., 2001. – The determination of tuna, Euthynnus affinis (Cantor, 1849) exploited from Indian age and growth parameters of Atlantic little tuny Euthynnus waters. Indian J. Fish., 59(3): 37-46. alleteratus (Rafinesque, 1810) in Turkish waters. Collective Schaefer K.M., 1982. – Length-weight relationship of the black Vol. Sci. Pap., ICCAT, 52: 719-732. skipjack, Euthynnus lineatus. IATTC Int. Rep., 17: 1-15. Kishinouye K., 1923. – Contributions to the comparative study Schaefer K.M., 1987. – Reproductive biology of black skip- of the so-called scombroid fishes. J. Coll. Agric. Imp. Univ. jack, Euthynnus lineatus, an eastern Pacific tuna.IATTC Bull., Tokyo, 8(3): 293-475. 19(2): 166-260.

Cybium 2019, 43(2) 197 Osteometry of Euthynnus species Ma r r a s t & Bé a r e z

Silas E.G., 1967. – Tuna fishery of the Tinnevelly coast, Gulf of Valeiras X., Macías D., Gómez M.J., Lema L., Godoy Mannar. Mar. Biol. Ass. India Symp. Ser., 1: 1083-1120. D., De Urbina J.O. & De la Serna J.M., 2008. – Age and Sivasubramaniam K., 1966. – Distribution and length-weight growth of Atlantic little tuna (Euthynnus alletteratus) in the relationship of tunas and tuna-like fishes around Ceylon. Bull. western Mediterranean Sea. Collect. Vol. Sci. Pap. ICCAT, Fish. Res. Stn, Ceylon, 19: 27‑46. 62(5): 1638-1648. Teissier G., 1948. – La relation d’allométrie. Sa signification WING E.S., 2001. – The sustainability of resources used by native statistique et biologique. Biometrics, 4(1): 14-53. Americans on four Caribbean islands. Int. J. Osteoarchaeol., 11: 112-126. Thieren E. & Van Neer W., 2016. – New equations for the size reconstruction of sturgeon from isolated cranial and pecto- ral girdle bones. Int. J. Osteoarchaeol., 26: 203-210. Uerpmann H.P. & Uerpmann M., 2003. – Stone Age Sites and their Natural Environment The Capital Area of Northern Oman. Part III. 266 p. Wiesbaden: Dr. Ludwig Reichert.

198 Cybium 2019, 43(2)