Blackfin Tuna Thunnus Atlanticus and Little Tunny Euthynnus Alletteratus

Total Page:16

File Type:pdf, Size:1020Kb

Blackfin Tuna Thunnus Atlanticus and Little Tunny Euthynnus Alletteratus Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 12-12-2014 Reproductive parameters of two coastal pelagic fishes off southeast Florida: Blackfin unT a Thunnus atlanticus and Little unnT y Euthynnus alletteratus Sonia Ahrabi-Nejad Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Sonia Ahrabi-Nejad. 2014. Reproductive parameters of two coastal pelagic fishes off southeast Florida: Blackfin Tuna Thunnus atlanticus and Little Tunny Euthynnus alletteratus. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (25) https://nsuworks.nova.edu/occ_stuetd/25. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. NOVA SOUTHEASTERN UNIVERSITY OCEANOGRAPHIC CENTER Reproductive parameters of two coastal pelagic fishes off southeast Florida: Blackfin Tuna Thunnus atlanticus and Little Tunny Euthynnus alletteratus. By Sonia Ahrabi-Nejad Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University December 12, 2014 ! Table of Contents Abstract .............................................................................................................................. ii! Keywords ........................................................................................................................... ii! Acknowledgements .......................................................................................................... iii! Introduction ....................................................................................................................... 1! Reproduction and Histology ........................................................................................... 2! Coastal Pelagic Fish ........................................................................................................ 5! Blackfin Tuna .................................................................................................................. 9! Little Tunny .................................................................................................................. 12! Objectives ..................................................................................................................... 14! Materials and Methods ................................................................................................... 14! Sample Collection ......................................................................................................... 14! Laboratory Processing .................................................................................................. 17! Histological Analysis .................................................................................................... 17! Statistical Analysis ........................................................................................................ 18! Results .............................................................................................................................. 19! Sample Collection ......................................................................................................... 19! Histological Gamete Description .................................................................................. 20! Gonadosomatic Index (GSI) ......................................................................................... 33! Spawning Seasonality ................................................................................................... 35! Female Spawning Frequency ........................................................................................ 40! Discussion ........................................................................................................................ 44! Conclusion ....................................................................................................................... 54 Appendix A: Histological Procedure ............................................................................. 56! References ........................................................................................................................ 58! ! ! i! Abstract The ability to manage a fish stock relies on an understanding of life history characteristics and basic biology of the species. Numerous age-growth studies are facilitated by the relative ease of ageing fishes through hard-part analyses. Determining reproductive parameters for fish populations is equally important for stock assessments and management, and histological examination of gonads provides the most accurate determination of fecundity and spawning periods. Coastal pelagic fishes are often targeted commercially and recreationally due to their easy access by private vessels. However, there are few studies researching the biology and reproduction of recreational fishes in the waters of Southeastern Florida that would lead to a better understanding for management practices. The objective of this study was to provide baseline reproductive data for two fishes particularly important to Florida fisheries: the coastal pelagic scombrids Blackfin Tuna Thunnus atlanticus and Little Tunny Euthynnus alletteratus. Archived gonad samples from 2010-2014 for these two species were evaluated, and GSI values and histological examination indicated one spawning season for both species. Little Tunny spawn April through August, and Blackfin Tuna spawn May through June. Additionally both species have asynchronous oocyte development, and are batch spawners. Postovulatory follicles were used to estimate spawning frequency; for Blackfin Tuna, mean spawning occurs once every 1.49 days, and for Little Tunny, mean spawning occurs once every 1.47 days. Comparison of otolith age data to these results indicates that Little Tunny mature at a smaller size and younger age than Blackfin Tuna. Size at 50% maturity for male Blackfin Tuna was 435.2 mm TL, for female Blackfin Tuna was 392.3 mm TL, and for male Little Tunny was 347.77 mm TL. Age at 50% majority for male Blackfin Tuna was 0.66 years, and for male Little Tunny was 0.50 years. In addition to providing important baseline data for fisheries management, this study collaborated with previous research to improve accuracy of reproductive age assessments. Finally, reproductive parameter studies of fishes in Florida and the Greater Caribbean area commercial and recreational fisheries provide information important for future ecosystem based management. Keywords: coastal pelagic, gonadal histology, Blackfin Tuna, Little Tunny ! ii! Acknowledgements ! Thank you to my family, friends, and loved ones for supporting me throughout this journey. Thanks to all my committee members for knowledge and laboratory assistance; especially my major professor, Dr. David Kerstetter, for his expertise with fisheries and fish biology; Abby Renegar for helping with the histology techniques; and Nancy Brown-Peterson with helping me learn to read the slides and reproduction guidance. Thanks to the fisheries lab for help with collection and processing of samples, and volunteering at fishing tournaments. Special thanks go to Travis Moore for his initial collections and information on the coastal pelagic fish complex and Jessy Adams for sharing her age-growth data. Thanks to everyone who helped provide samples, including the fishing captains and tournament coordinators. This project was funded by the Nova Southeastern University President Faculty Research and Development Grant. Additional support was provided by a scholarship from the Yamaha Contender Miami Billfish Tournament and the Gulf and Caribbean Fisheries Institute Ronald L. Schmied Scholarship. !iii! Introduction A majority of the human population lives in close proximity to the ocean (Worm et al. 2006), and an even greater percent relies on services provided by the ocean. Humans have been consuming fish caught from the ocean for thousands of years, but the onset of industrialized fishing methods has allowed access to new fishing areas and reduced ocean biomass (Myers and Worm 2003, Pauly and Palomares 2005, Worm et al. 2006). Obtaining an estimate of fish biomass reduction as a result of fishing is complicated, as catch per unit effort does not account for naturally occurring changes in fish populations (Walters 2003). Human-impacted marine ecosystems are experiencing a decline of species richness and average fish size (Worm et al. 2006). With the exploitation of large fish, fishing pressure often moves to the next desirable species lower on the food web. However, animals occupying lower trophic levels are smaller leading to an increase in numbers caught to equal total weight of catches for larger fishes (Pauly et al. 1998). To sustain a fish population, management needs to maintain a balance of spawning stock to continue population growth. An accurate method to estimate the spawning stock biomass and female egg production of commercially important fish will improve our collective knowledge of factors influencing population dynamics
Recommended publications
  • Rey, J.C. and Cort, J.L. 1978. Nota Sobre Los Primeros Resultados De La Campaña De Marcado De Túnidos Frente Al Litoral De Castellón
    110 Rey, J.C. and Cort, J.L. 1978. Nota sobre los primeros resultados de la campaña de marcado de túnidos frente al litoral de Castellón. Bol. Inst. Esp. Oceanogr. 4 (3): 140–142 Rey, J.C. and Cort, J.L. 1981. Contribution à la connaissance de la migration des Scombridae en Méditerranée Occidentale. Rapp. P-V, Commn. Int. Explor. Scient. Mer Méditerr., 27: 97–98. Rey, J.C., Alot, E. and Ramos, A. 1984. Sinopsis biológica del bonito, Sarda sarda (Bloch), del Mediterráneo y Atlántico Este. Iccat, Coll. Vol. Sci. Pap. 20(2): 469–502. Rey, J.C., Alot, E. and Ramos, A. 1986. Growth of the Atlantic bonito (Sarda sarda Bloch, 1793) in the Atlantic and Mediterranean area of the Strait of Gibraltar. Inv. Pesq. 50 (2): 179–185. Robert, M. and Roesti. 1966. The Declining Economic Role of the Mediterranean Tuna Fishery American Journal of Economics and Sociology 25 (1), 77–90. Rodriguez Roda, J. 1966. Estudio de la bacoreta, Euthynnus alleteratus (Raf.) bonito, Sarda sarda (Bloch) y melva, Auxis thazard (Lac.), capturados por las almadrabas españolas. Inv. Pesq. 30: 247–292. Rodriguez Roda, J. 1981. Estudio de la edad y crecimiento del bonito, Sarda sarda (Block), de la costa sudatlantica de España. Inv. Pesq. 45(1):181–186. Rodriguez Roda, J. 1983. Edad y crecimiento de la melva, Auxis rochei (Risso), del Sur de España. Invest. Pesq. (Barc.), 47 (3): 397–402. Sabatés, A. and Recasens, L. 2001. Seasonal distribution and spawning of small tunas, Auxis rochei (Risso) and Sarda sarda (Bloch) in the northwestern Mediterranean.
    [Show full text]
  • Proximate and Genetic Analysis of Blackfin Tuna
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.366153; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PROXIMATE AND GENETIC ANALYSIS OF BLACKFIN TUNA (T. atlanticus). Yuridia M. Núñez-Mata1, Jesse R. Ríos Rodríguez 1, Adriana L. Perales-Torres 1, Xochitl F. De la Rosa-Reyna2, Jesús A. Vázquez-Rodríguez 3, Nadia A. Fernández-Santos2, Humberto Martínez Montoya 1 * 1 Unidad Académica Multidisciplinaria Reynosa Aztlán – Universidad Autónoma de Tamaulipas. Reynosa, Tamaulipas. 2 Centro de Biotecnología Genómica – Instituto Politécnico Nacional. Reynosa, Tamaulipas. 3 Centro de Investigación en Salud Pública y Nutrición – Universidad Autónoma de Nuevo León. Monterrey, Nuevo León. *Correspondence: [email protected] ORCID: 0000-0003-3228-0054 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.366153; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The tuna meat is a nutritious food that possesses high content of protein, its low content of saturated fatty acids makes it a high demand food in the world. The Thunnus genus is composed of eight species, albacore (T. alalunga), bigeye (T. obesus), long tail tuna (T. tonggol), yellowfin tuna (T. albacares), pacific bluefin tuna (T. orientalis), bluefin tuna (T. maccoyii), Atlantic bluefin tuna ( T. thynnus) and blackfin tuna (T. atlanticus). The blackfin tuna (BFT) (Thunnus atlanticus) represent the smallest species within the Thunnus genus.
    [Show full text]
  • Estimating Age and Growth of Little Tunny, Euthynnus Alletteratus, Off the Coast of Senegal, Using Dorsal Fin Spine Sections
    SUMMARY PAPER Estimating Age and Growth of Little Tunny, Euthynnus alletteratus, off the Coast of Senegal, Using Dorsal Fin Spine Sections PATRICE M. CAYRE 1 and TAIB DIOUP ABSTRACT Estimates of age were made from counts of growtb bands on dorsal spine sections of 491 little tunny, Euthynnus alletteratus, captured off the coast of Senegal during 1979. Analysis of marginal growtb bands (by montb) indicates that these bands are probably formed during tbe cold season (November-May). Mean size at estimated age was deter­ mined for tbe first 8 yr of life. These results, tbougb not validated, closely approximated other studies for young fisb (estimated ages 1-3), but were bigbly variable for older age categories. Tbe index of average percent error (E) for age nates from our study was 10.5% and infers good precision. RESUME r La determination de I'age de 491 thonines, Euthynnus alletteratus, a ele Iaite par complage des anneaux de croissaneesurdeseoupes transversales du premier rayon de la nageoire dorsale. L'analyse mensuelle de la nature du bord externe des coupes, Indique que les annuli (i.e., zones translucides) se Iormeraient au cours de la saison froide (novembre a mail. Les tailles moyennes correspondant aux ages de I a 8 ans sonl donnees, Usresultats, bien que non valides par d'autres metbodes, sont Ires voisins de ceux exposes dans d'autres travaux pour les ages de I a 3 ans; des differences non negligeables apparaissent cependant pour res poissons plus ages. L'index de pourcentage moyen d'erreur (E) entre les ages attribues par les deux auteurs est de 10.50/0ce qui indique une bonne precision de la methode utilisee, INTRODUCTION age of little tunny collected off Senegal by counting growth bands on sections of dorsal spines, 2) determine the time of Commercial tuna fisheries in the eastern tropical Atlantic band formation by analysis of marginal growth bandspine sec­ seem to have reached their maximum sustainable yield for tions, and 3) estimate the degree of precision (repeatability) of most species (ICCAT 1977-82).
    [Show full text]
  • PROXIMATE and GENETIC ANALYSIS of BLACKFIN TUNA (T. Atlanticus)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.366153; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PROXIMATE AND GENETIC ANALYSIS OF BLACKFIN TUNA (T. atlanticus). Yuridia M. Núñez-Mata1, Jesse R. Ríos Rodríguez 1, Adriana L. Perales-Torres 1, Xochitl F. De la Rosa-Reyna2, Jesús A. Vázquez-Rodríguez 3, Nadia A. Fernández-Santos2, Humberto Martínez Montoya 1 * 1 Unidad Académica Multidisciplinaria Reynosa Aztlán – Universidad Autónoma de Tamaulipas. Reynosa, Tamaulipas. 2 Centro de Biotecnología Genómica – Instituto Politécnico Nacional. Reynosa, Tamaulipas. 3 Centro de Investigación en Salud Pública y Nutrición – Universidad Autónoma de Nuevo León. Monterrey, Nuevo León. *Correspondence: [email protected] ORCID: 0000-0003-3228-0054 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.366153; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The tuna meat is a nutritious food that possesses high content of protein, its low content of saturated fatty acids makes it a high demand food in the world. The Thunnus genus is composed of eight species, albacore (T. alalunga), bigeye (T. obesus), long tail tuna (T. tonggol), yellowfin tuna (T. albacares), pacific bluefin tuna (T. orientalis), bluefin tuna (T. maccoyii), Atlantic bluefin tuna ( T. thynnus) and blackfin tuna (T. atlanticus). The blackfin tuna (BFT) (Thunnus atlanticus) represent the smallest species within the Thunnus genus.
    [Show full text]
  • A Global Valuation of Tuna an Update February 2020 (Final)
    Netting Billions: a global valuation of tuna an update February 2020 (Final) ii Report Information This report has been prepared with the financial support of The Pew Charitable Trusts. The views expressed in this study are purely those of the authors. The content of this report may not be reproduced, or even part thereof, without explicit reference to the source. Citation: Macfadyen, G., Huntington, T., Defaux, V., Llewellin, P., and James, P., 2019. Netting Billions: a global valuation of tuna (an update). Report produced by Poseidon Aquatic Resources Management Ltd. Client: The Pew Charitable Trusts Version: Final Report ref: 1456-REG/R/02/A Date issued: 7 February 2020 Acknowledgements: Our thanks to the following consultants who assisted with data collection for this study: Richard Banks, Sachiko Tsuji, Charles Greenwald, Heiko Seilert, Gilles Hosch, Alicia Sanmamed, Anna Madriles, Gwendal le Fol, Tomasz Kulikowski, and Benoit Caillart. 7 February 2020 iii CONTENTS 1. BACKGROUND AND INTRODUCTION ................................................................... 1 2. STUDY METHODOLOGY ......................................................................................... 3 3. TUNA LANDINGS ..................................................................................................... 5 3.1 METHODOLOGICAL ISSUES ....................................................................................... 5 3.2 RESULTS ...............................................................................................................
    [Show full text]
  • Thunnus Alalunga (Bonnaterre, 1788)
    click for previous page SCOMBR Thun 1 1983 FAO SPECIES IDENTIFICATION SHEETS FAMILY: SCOMBRIDAE FISHING AREA 51 (W. Indian Ocean) Thunnus alalunga (Bonnaterre, 1788) OTHER SCIENTIFIC NAMES STILL IN USE: Germo alalunga (Bonnaterre, 1788) Thunnus germo (Lacèpede, 1800) VERNACULAR NAMES: FAO: En – Albacore Fr – Germon Sp – Atún blanco (=Albacora) NATIONAL: DISTINCTIVE CHARACTERS: A large species with an elongate, fusiform body, deepest at a more pelvic fin posterior point than in other tunas (at, or only slightly anterior to, second dorsal fin rather than near middle of first dorsal fin base). Eyes rather large; gillrakers 25 to 31 on first arch. Two dorsal fins separated only by a narrow interspace, the second clearly lower than the first and followed by 7 to 9 finlets; pectoral fins remarkably long, usually 30% of fork length or longer, reaching well beyond origin of second dorsal fin (usually up to second dorsal finlet); 2 flaps (interpelvic process) between pelvic fins; anal fin followed by 7 or 8 finlets. Small scales on body; corselet of larger scales developed but not very distinct. Caudal peduncle very slender, bearing on each side a strong interpelvic lateral keel between 2 smaller keels. Liver striated on ventral surface. process Swimbladder present. Colour: back metallic dark blue, lower sides and belly whitish; a faint lateral iridescent blue band runs along sides in live fish; first dorsal fin deep yellow, second dorsal and anal fins light yellow, anal finlets dark; posterior margin of caudal fin white. DISTINGUISHING CHARACTERS OF SIMILAR SPECIES OCCURRING IN THE AREA: All other species of Thunnus: pectoral fins shorter, never reaching beyond posterior end of second dorsal fin base in adults (however, young specimens of T.
    [Show full text]
  • SYNOPSIS on the BIOLOGY of YELLOWFIN TUNA Thunnus (Neothunnus) Albacares (Bonnaterre)1788(PACIFIC OCEAN)
    Species Synopsis No. 16 FAO Fisheries Biology Synopsis No, 59 FIb/S59 (Distribution restricted) SAST - Tuna SYNOPSIS ON THE BIOLOGY OF YELLOWFIN TUNA Thunnus (Neothunnus) albacares (Bonnaterre)1788(PACIFIC OCEAN) Exposé synoptique sur la biologie du thon à nageoires jaunes Thunnus (Neothimnus) albacares (Bonnaterre)1788(Océan Pacifique) Sinopsis sobre la. biología dei atítn de aleta amarilla Thunnus (Neothunnus) aibacares (Bonnaterre) 1788 (Ocano Pacífico) Prepared by MILNER B, SCHAEFER, GORDON C,, BROADHEAD and CRAIG J, ORANGE Inter -American Tropical Tuna Commission La Jolla, California, U, S,, A, ISHERIES DIVISION, BIOLOGY BRANCH tOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS R,ome, 1963 538 FIb/S59 Tuna 1:1 i IDENTITY Body plump, wholly covered with scales, which differ in size and form in different parts i. iTaxonomy of the body.Corselet well deveioped but its boundary is not distinct.Tle lateral line has a 1. 1. 1Definition peculiar curve above the pectorals.Teeth rather feeble.Single series of small conical /Fo11owing Berg (1940) modified according to teeth in both jaws.They are sharp and curve Fraser-Brunner (1950)J inward.Villiform teeth on the vomers palatines and pterygoids.Many dentigerous calcareous Phylum VERTEBRATA plates are found on the palate.The denticles on Subphylum Craniata these plates are quite similar to those found on Superclass Gnathostomata the vomer, palatines and pterygoids. Thus the Series Pisces roof of the mouth-cavity is quite rough, contrary Class Teleostomi to the nearly smooth roof in the Katsuwonidae. Subclass Actinopterygii Three lobes of the liver subequal.Intestine Order Perciformes rather long, with three folds.Pyloric tubes Suborder Scombroidei developed only on the posterior convex side of Family Scombridae the duodenum.
    [Show full text]
  • Genetic Species Identification – SBT Market Presence in China: Draft Final Report To
    CCSBT-ESC/1409/18CCSBT-CC/1610/23 OCEANS AND ATMOSPHERE DRAFT Final Report to TRAFFIC International Genetic species identification – SBT market presence in China. Campbell Davies, Jessica Farley, Peta Hill, Matt Lansdell and Peter Grewe Report to TRAFFIC and CCSBT Secretariat 2 October 2016 Copyright © Commonwealth Scientific and Industrial Research Organisation 2016. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO. Important disclaimer CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. CSIRO is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document please contact [email protected]. Acknowledgments Our thanks go to Joyce Wu and TRAFFIC for providing the tissue samples and associated data. This work was funded by the CCSBT and CSIRO Oceans and Atmosphere.
    [Show full text]
  • The Italian Annotated Bibliography on Small Tunas
    SCRS/2020/061 Collect. Vol. Sci. Pap. ICCAT, 77(9): 34-84 (2020) THE ITALIAN ANNOTATED BIBLIOGRAPHY ON SMALL TUNAS C. Piccinetti1, P. Addis2, A. Di Natale3, F. Garibaldi4, F. Tinti5 SUMMARY The Italian scientists have a long tradition of studies and research on many large pelagic species including, among others, the small tunas. The various small tuna species are important for the Italian fishery since many centuries, mostly from a socio-economical point of view. Some non- indigenous species are now present in the ICCAT Convention area. This is the first attempt to list together the many papers published so far by Italian scientists, concerning the biology of these species, the fisheries and many other scientific and cultural issues. The aim of this paper is to provide an annotated bibliography, with specific key words, even if it is surely incomplete, because of the many papers published over the years. This bibliography, which includes 309 annotated citations, was set together to serve the scientists and to help them in finding some rare references that might be useful for their work. RÉSUMÉ Les scientifiques italiens ont une longue tradition d'études et de recherches sur de nombreuses de espèces de grands pélagiques y compris, entre autres, les espèces de thonidés mineurs. Les différentes espèces de thonidés mineurs sont importantes pour la pêche italienne depuis de nombreux siècles, principalement d'un point de vue socio-économique. Certaines espèces non autochtones sont maintenant présentes dans la zone de la Convention de l’ICCAT. Il s'agit de la première tentative de répertorier les nombreux articles publiés à ce jour par des scientifiques italiens concernant la biologie de ces espèces, les pêcheries et de nombreuses autres questions scientifiques et culturelles.
    [Show full text]
  • Download the Report
    February 2006 WHAT’S ON THE HOOK? MERCURY LEVELS AND FISH CONSUMPTION SURVEYED AT A GULF OF MEXICO FISHING RODEO Kimberly Warner Jacqueline Savitz ACKNOWLEDGEMENTS: We wish to thank the organizers of the 73rd Annual Deep Sea Fishing Rodeo, particularly Pat Troup, Mike Thomas, and the anglers, the National Seafood Inspection Lab, the Dauphin Island Sea Lab, and the invaluable assistance of Dr. Bob Shipp, Dr. Sean Powers, Melissa Powers, the hard working DISL graduate students and Oceana staff, including Gib Brogan, Phil Kline, Mike Hirshfield, Suzanne Garrett, Bianca Delille, Sam Haswell, Heather Ryan and Dawn Winalski. TABLE OF CONTENTS: 4 Executive Summary 5 Major Findings 6 Recommendations 8 Introduction 10 Results 10 Mercury Levels 14 Fish Consumption 16 Fish Consumption and Mercury Levels 18 Recommendations 19 Methods 20 Appendices 20 Table A1 Raw Mercury Data 25 Table A2 Gulf Comparisons 30 Table A3 US EPA Risk-based Consumption Guideline 31 Endnotes EXECUTIVE SUMMARY: In the past few years, seafood lovers have become increasingly concerned about mercury levels in Gulf of Mexico fish. Unfortunately, anglers have not had the in- formation they need to help them decide which fish may be safer to eat, despite the fact that recreational anglers and their families typically eat more fish than the average population. In fact, recent studies have found that people who live in coastal areas of the United States have higher levels of mercury in their blood than residents from inland areas.1 The purpose of this report is to help provide infor- mation to recreational anglers in the Gulf of Mexico on which fish may be higher in mercury than others, which would be safer to eat, and which species are in need of further monitoring.
    [Show full text]
  • SMALL TUNAS SMT-1. Generalities the Species Under The
    2019 SCRS REPORT 9.12 SMT – SMALL TUNAS SMT-1. Generalities The species under the Small Tunas Species Group include the following tuna and tuna-like species: – BLF Blackfin tuna (Thunnus atlanticus) – BLT Bullet tuna (Auxis rochei) – BON Atlantic bonito (Sarda sarda) – BOP Plain bonito (Orcynopsis unicolor) – BRS Serra Spanish mackerel (Scomberomorus brasiliensis) – CER Cero (Scomberomorus regalis) – FRI Frigate tuna (Auxis thazard) – KGM King mackerel (Scomberomorus cavalla) – LTA Little tunny (Euthynnus alletteratus) – MAW West African Spanish mackerel (Scomberomorus tritor) – SSM Atlantic Spanish mackerel (Scomberomorus maculatus) – WAH Wahoo (Acanthocybium solandri) – DOL Dolphinfish (Coryphaena hippurus) Knowledge on the biology and fishery of small tunas is very fragmented. Furthermore, the quality of the knowledge varies according to the species concerned. This is due in large part to the fact that these species are often perceived to have little economic importance compared to other tunas and tuna-like species, and owing to the difficulties in conducting sampling of the landings from artisanal fisheries, which constitute a high proportion of the fisheries exploiting small tuna resources. The large industrial fleets often discard small tuna catches at sea or sell them on local markets mixed with other by-catches, especially in Africa. The amount caught is rarely reported in logbooks; however observer programs from purse seine fleets have recently provided estimates of catches of small tunas. Small tuna species can reach high levels of catches and values in some years and have a very high relevance from a social and economic point of view, because they are important for many coastal communities in all areas and a main source of food.
    [Show full text]
  • C1. Tuna and Tuna-Like Species
    163 C1. TUNA AND TUNA-LIKE SPECIES exceptional quality reached US$500 per kg and by Jacek Majkowski * more recently even more, but such prices referring to very few single fish do not reflect the INTRODUCTION situation with the market. Bigeye are also well priced on the sashimi markets. Although The sub-order Scombroidei is usually referred to yellowfin are also very popular on these markets, as tuna and tuna-like species (Klawe, 1977; the prices they bring are much lower. For Collette and Nauen, 1983; Nakamura, 1985). It is canning, albacore fetch the best prices due to composed of tunas (sometimes referred to as true their white meat, followed by yellowfin and tunas), billfishes and other tuna-like species. skipjack for which fishermen are paid much less They include some of the largest and fastest than US$1 per kg. The relatively low prices of fishes in the sea. canning-quality fish are compensated by their The tunas (Thunnini) include the most very large catches, especially in the case of economically important species referred to as skipjack and yellowfin. Longtail tuna principal market tunas because of their global (T. tonggol) is becoming increasingly important economic importance and their intensive for canning and the subject of substantial international trade for canning and sashimi (raw international trade. The consumption of tuna and fish regarded as delicacy in Japan and tuna-like species in forms other than canned increasingly, in several other countries). In fact, products and sashimi is increasing. the anatomy of some tuna species seems to have The tunas other than the principal market species been purpose-designed for canning and loining.
    [Show full text]