The Italian Annotated Bibliography on Small Tunas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NOTE on the Fishery and Some Aspects of the Biology of Dogtooth Tuna, Gymnosarda Unicolor (Ruppell)From Minicoy, Lakshadweep
I. mar. biol. Ass. India, 47 (1) : 111 - 113, Jan. - June, 2005 NOTE On the fishery and some aspects of the biology of dogtooth tuna, Gymnosarda unicolor (Ruppell)from Minicoy, Lakshadweep M.Sivadas and A.Anasukoya Research Centre of Central Marine Fisheries Research Institute, Calicut - 673 005, India Abstract The results of a study, on the fishery and biology of dogtooth tuna, Gymnosarda unicolor (Ruppell), conducted at Minicoy during 1995 to 1999 are presented. The resource is exploited from around the reef areas during July-August or September for sustenance when the usual fishing activities like pole and line and trolling are suspended. The total catch in a season varied from 56 to 481 kg. The size ranged from 44 to 126 cm fork length with the modal group at 58 and 62 cm. The length-weight relationship was found to be Log W = -4.5337 + 2.77 Log L. Fish below 70 cm size was found to be immature. The dogtooth tuna, Gymnosarda unicolor Material and methods (Ruppell) is a tropical Indo-Pacific epipe- Data on catch and biological aspects lagic species usually found around coral such as length, weight, feeding condition, reefs. In India, they are reported from maturity, etc were collected almost on a Andaman-Nicobar and from daily basis at the landing centre itself Lakshadweep Islands (Silas and Pillai, during each season. The entrails of the 1982). In Lakshadweep, they are not fishes are removed at the landing centre exploited by pole and line and troll line but are caught regularly, though in few itself before they are taken home. -
Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis -
India's National Report to the Scientific Committee of the Indian Ocean
IOTC–2015–SC18–NR09[E] India’s National Report to the Scientific Committee of the Indian Ocean Tuna Commission’2015 Premchand, L. Ramalingam, A. Tiburtius, A. Siva, Ansuman Das, Rajashree B Sanadi and Rahul Kumar B Tailor Fishery Survey of India Government of India, Botawala Chambers, Sir. P. M. Road, Mumbai 0 INFORMATION OF FISHERIES, RESEARCH AND STATISTICS In accordance with IOTC Resolution 15/02, final YES scientific data for the previous year was Communication F.No.43-6/2014 Fy. II, dated provided to the Secretariat by June of the 03/07/2015 to the Ministry of Agriculture and current year, for all fleets other than Farmer’s Welfare, New Delhi. longline(e.g., for a National report submitted to the Secretariat in 2015, final data for the 2014 Calendar year must be provided to the Secretariat by 30 June’2015) In accordance with IOTC Resolution 15/02, YES provisional longline data for the previous year Communication F.No.43-6/2014 Fy.II, was provided to the Secretariat by 30 June of 03/07/2015 to the Ministry of Agriculture and the current year (e.g., for a National report Farmer’s Welfare, New Delhi. submitted to the Secretariat in 2015, final data for the 2014 Calendar year must be provided to the Secretariat by 30 June’2015) Reminder: Final longline data for the previous year is due to the Secretariat by 30 December of the current year (e.g., for a National report submitted to the Secretariat in 2015, final data for the 2014 Calendar year must be provided to the Secretariat by 30 June’2015) If no, please indicate the reason(s) and intended actions: - Executive Summary Tuna and tuna like fishes are one of the components of pelagic resources. -
Proximate and Genetic Analysis of Blackfin Tuna
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.366153; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PROXIMATE AND GENETIC ANALYSIS OF BLACKFIN TUNA (T. atlanticus). Yuridia M. Núñez-Mata1, Jesse R. Ríos Rodríguez 1, Adriana L. Perales-Torres 1, Xochitl F. De la Rosa-Reyna2, Jesús A. Vázquez-Rodríguez 3, Nadia A. Fernández-Santos2, Humberto Martínez Montoya 1 * 1 Unidad Académica Multidisciplinaria Reynosa Aztlán – Universidad Autónoma de Tamaulipas. Reynosa, Tamaulipas. 2 Centro de Biotecnología Genómica – Instituto Politécnico Nacional. Reynosa, Tamaulipas. 3 Centro de Investigación en Salud Pública y Nutrición – Universidad Autónoma de Nuevo León. Monterrey, Nuevo León. *Correspondence: [email protected] ORCID: 0000-0003-3228-0054 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.366153; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The tuna meat is a nutritious food that possesses high content of protein, its low content of saturated fatty acids makes it a high demand food in the world. The Thunnus genus is composed of eight species, albacore (T. alalunga), bigeye (T. obesus), long tail tuna (T. tonggol), yellowfin tuna (T. albacares), pacific bluefin tuna (T. orientalis), bluefin tuna (T. maccoyii), Atlantic bluefin tuna ( T. thynnus) and blackfin tuna (T. atlanticus). The blackfin tuna (BFT) (Thunnus atlanticus) represent the smallest species within the Thunnus genus. -
TUNA FISHERY in KENY a Prepared by Dorcus Sigana National Component 4
IOTC-2009-SC-INF09 TUNA FISHERY IN KENY A prepared by Dorcus Sigana National Component 4 In Kenya, Tuna fishery is carried out artisanally and industrially. Artisanal fishermen sell their catch to the domestic market while Industrial fishermen process and export to the European Union market. Fishing is mainly confined to the coastal waters up to 50 meters depth. At Ungwana Bay, fishing has been extended to groups up to 200 meters for deep- water lobsters, prawns and demersal fishes. The larger pelagic fishes comprise the tuna and tuna-like species and the larger carangids, which are caught in large numbers between 15–200 meters depth mostly in June and July. Surveys on marine fisheries resources of Kenya dates back from 1951 when the East African Marine Fisheries Research Organization was formed, during which time the emphasis was on pelagic species. During the surveys on pelagic fishes between 1951 and 1954 catches of 0.52 kg/line/hr were obtained. 22% of the total catch was Scomberomorus commerson (Williams, 1956). In the same survey it was observed that tunas, especially the yellow fin tuna Thunnus albacares was present throughout the year, but with marked increase during the Southeast monsoon and very close to the shore up to 4 km off-shore. Other tunas that were found in the area were Albacare Thunnus alalunga, the dogtooth tuna Gymnosarda unicolor, small tuna Euthynnus affinis and skipjack Katsuwonus pelamis. Although these species were found within the Kenya waters they are unexploited. The Norad report states that Tunas are unique among fishes in having limited thermo- regulatory capacity. -
Among the World's Most Popular Game Fishes, Tunas Are Also
ÜBER-FISH Among the World’s Most Popular Game Fishes, Tunas Are Also Some of the Most Highly Evolved and Sophisticated of All the Ocean’s Predators BY DOUG OLANDER DANIEL GOEZ DANIEL 74 DECEMBER 2017 SPORTFISHINGMAG.COM 75 The Family Tree minimizes drag with a very low reduce the turbulence in the Tunas are part of the family drag coefficient,” optimizing effi- water ahead of the tail. Scombridae, which also includes cient swimming both at cruise Unlike most fishes with broad, mackerels, large and small. But and burst. While most fishes bend flexible tails that bend to scoop there are tunas, and then there their bodies side to side when water to move a fish forward, are, well, “true tunas.” moving forward, tunas’ bodies tunas derive tremendous That is, two groups don’t bend. They’re essentially thrust with thin, hard, lunate WHILE MOST FISHES BEND ( sometimes known as “tribes”) rigid, solid torpedoes. ( crescent-moon-shaped) tails dominate the tuna clan. One is And these torpedoes are that beat constantly, capable of THEIR BODIES SIDE TO SIDE Thunnini, which is the group perfectly streamlined, their 10 to 12 or more beats per second. considered true tunas, charac- larger fins fitting perfectly into That relentless thrust accounts WHEN MOVING FORWARD, terized by two separate dorsal grooves so no part of these fins for the unstoppable runs that fins and a relatively thick body. a number of highly specialized protrudes above the body surface. tuna make repeatedly when TUNAS’ BODIES DON’T BEND. The 15 species of Thunnini are features facilitate these They lack the convex eyes of hooked. -
Executive Summary
CALIFORNIA’S WETFISH INDUSTRY: ITS IMPORTANCE – PAST, PRESENT & FUTURE Executive Summary In major measure, California’s fishing industry was founded on “wetfish.” So called traditionally because these fish were conveyed from ocean to can with minimal preprocessing, “wet from the sea”, sardines, mackerels, squids and anchovies, as well as coastal tunas, have represented the lion’s share of commercial fishery landings in the Golden State since before the turn of the 20th Century. Today sardines, jack and Pacific mackerel, anchovy and market squid are called, for management purposes, Coastal Pelagic Species (CPS). Another link among these species: all are harvested primarily with round-haul nets (lampara and purse seine). The complex of fisheries that comprises the wetfish industry has shaped the character of California’s culture in addition to the infrastructure of California’s fishing industry. The immigrant fishermen of Asian, Italian, Slavic and other nationalities introduced new fishing gear and helped to build the fishing ports of San Pedro and Monterey, as well as San Diego and San Francisco. Although changed in many ways, the wetfish industry today remains an essential, critically important part of California’s fishing industry as a whole. In the year 2000, the wetfish fishery complex produced about 455.5 million pounds (227,734 short tons) of fish, 83.6 percent of total commercial fishery landings in California, valued at $38.9 million ex-vessel, or 29.3 percent of total value of all fisheries in California. This report is subdivided -
Use of Productivity and Susceptibility Indices to Determine the Vulnerability of a Stock: with Example Applications to Six U.S
Use of productivity and susceptibility indices to determine the vulnerability of a stock: with example applications to six U.S. fisheries. Wesley S. Patrick1, Paul Spencer2, Olav Ormseth2, Jason Cope3, John Field4, Donald Kobayashi5, Todd Gedamke6, Enric Cortés7, Keith Bigelow5, William Overholtz8, Jason Link8, and Peter Lawson9. 1NOAA, National Marine Fisheries Service, Office of Sustainable Fisheries, 1315 East- West Highway, Silver Spring, MD 20910; 2 NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way, Seattle, WA 98115; 3NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112; 4NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center, 110 Shaffer Road, Santa Cruz, CA 95060; 5NOAA, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, 2570 Dole Street, Honolulu, HI 96822; 6NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, FL 33149; 7NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, 3500 Delwood Beach Road, Panama City, FL 32408; 8NOAA, National Marine Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543; 9NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, 2030 South Marine Science Drive, Newport, OR 97365. CORRESPONDING AUTHOR: Wesley S. Patrick, NOAA, National Marine Fisheries Service, Office of Sustainable Fisheries, 1315 East-West -
Spillover of the Atlantic Bluefin Tuna Offspring from Cages in the Adriatic Sea: a Multidisciplinary Approach and Assessment
RESEARCH ARTICLE Spillover of the Atlantic bluefin tuna offspring from cages in the Adriatic Sea: A multidisciplinary approach and assessment Tomislav DzÏoić1☯*, Gordana Beg Paklar1☯, Branka Grbec1☯, Stjepan Ivatek-SÏ ahdan2☯, Barbara Zorica3☯, Tanja SÏ egvić-Bubić4☯, Vanja ČikesÏ Keč3☯, Ivana Lepen Pleić4☯, Ivona Mladineo4☯, Leon GrubisÏić4☯, Philippe Verley5☯ 1 Physical Oceanography Laboratory, Institute of Oceanography and Fisheries, Split, Croatia, 2 Research and Development Division, Meteorological and Hydrological Service, Zagreb, Croatia, 3 Laboratory of a1111111111 Fisheries Science and Management of Pelagic and Demersal Resources, Institute of Oceanography and a1111111111 Fisheries, Split, Croatia, 4 Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Split, a1111111111 Croatia, 5 Institute de recherche pour le developpement, UMR Botany and Modelling of Plant Architecture a1111111111 and Vegetation, Montpellier, France a1111111111 ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: DzÏoić T, Beg Paklar G, Grbec B, Ivatek- During routine monitoring of commercial purse seine catches in 2011, 87 fingerling speci- SÏahdan S, Zorica B, SÏegvić-Bubić T, et al. (2017) Spillover of the Atlantic bluefin tuna offspring from mens of scombrids were collected in the southern Adriatic Sea. Sequencing of the mito- cages in the Adriatic Sea: A multidisciplinary chondrial DNA control region locus inferred that specimens belonged to the Atlantic bluefin approach and assessment. PLoS ONE 12(11): tuna, Thunnus thynnus (Linnaeus, 1758) (N = 29), bullet tuna, Auxis rochei (Risso, 1810) e0188956. https://doi.org/10.1371/journal. pone.0188956 (N = 30) and little tunny, Euthynnus alletteratus, Rafinesque, 1810 (N = 28). According to previously published growth parameters, the age of the collected specimens was estimated Editor: Aldo Corriero, Universita degli Studi di Bari Aldo Moro, ITALY at approximately 30±40 days, suggesting they might have been spawned in the Adriatic Sea, contrary to the current knowledge. -
Introduction Tunas and Other Large Highly-Migratory Species
CHAPTER 1: AUTHOR: LAST UPDATE: OVERVIEW SECRETARIAT Jan. 25, 2006 1. Overview 1.1 What is ICCAT? Introduction Tunas and other large highly-migratory species are typically assessed and managed through international arrangements. Since the distribution of such stocks is not limited to the waters of any single sovereign nation, such arrangements are necessary in order to share the available research and fishery information. The International Commission for the Conservation of Atlantic Tunas is responsible for the conservation of tunas and tuna-like species in the Atlantic Ocean and adjacent seas. The organization was established at a Conference of Plenipotentiaries, which prepared and adopted the International Convention for the Conservation of Atlantic Tunas signed in Rio de Janeiro, Brazil, in 1966. After a ratification process, the Convention entered formally into force in 1969. The official languages of ICCAT are English, French and Spanish. The Commission's work requires the collection and analysis of statistical information relative to current conditions and trends of the fishery resources in the Convention. About 30 species are covered by the Convention: Atlantic bluefin (Thunnus thynnus thynnus), yellowfin (Thunnus albacares), albacore (Thunnus alalunga), bigeye tuna (Thunnus obesus) and skipjack (Katsuwonus pelamis); swordfish (Xiphias gladius); billfishes such as white marlin (Tetrapturus albidus), blue marlin (Makaira nigricans), sailfish (Istiophorus albicans) and spearfish (Tetrapturus pfluegeri & T. belone); mackerels such as spotted Spanish mackerel (Scomberomorus maculatese) and king mackerel (Scomberomorus cavalla); and, small tunas like black skipjack (Euthynnus alletteratus), frigate tuna (Auxis thazard), and Atlantic bonito (Sarda sarda). Southern bluefin tuna (Thunnus maccoyii) is also part of the Convention, although currently the primary responsibility for assessing and managing this species rests with the Commission for the Conservation of Southern Bluefin Tuna (CCSBT). -
UC San Diego UC San Diego Electronic Theses and Dissertations
UC San Diego UC San Diego Electronic Theses and Dissertations Title A historical perspective of California recreational fisheries using a new database of "trophy" fish records (1966-2013), combined with fisheries analyses of three species in the genus Paralabrax Permalink https://escholarship.org/uc/item/1g40s1h0 Author Bellquist, Lyall F. Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO A historical perspective of California recreational fisheries using a new database of “trophy” fish records (1966-2013), combined with fisheries analyses of three species in the genus Paralabrax A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Marine Biology by Lyall F. Bellquist Committee in charge: Brice Semmens, Chair Richard Carson David Checkley Philip Hastings Ed Parnell 2015 Copyright Lyall F. Bellquist, 2015 All rights reserved. The Dissertation of Lyall F. Bellquist is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Chair University of California, San -
Ecological Importance of Auxis Spp. As Prey for Dolphin and Wahoo
Ecological importance of Auxis spp. as prey for Dolphin and Wahoo DEPARTMENT OF ENVIRONMENTAL QUALITY Marine Fisheries SAFMC Dolphin/Wahoo Committee| Steve Poland | 12/3/2018 Overview Background • MAFMC request Pelagic Food Web in the SAB • Auxis spp. Important prey in Dolphin/Wahoo diets • Poland thesis – seasonal and size contribution • Rudershausen – annual contribution Questions? 2 MAFMC Unmanaged Forage Omnibus Amendment “To prohibit the development of new and expansion of existing directed commercial fisheries on unmanaged forage species … until the Council has had an adequate opportunity to assess the scientific information relating to any new or expanded directed fisheries and consider potential impacts to existing fisheries, fishing communities, and the marine ecosystem.” Major Actions • Designate taxa included in the amendment as EC species • Manage chub mackerel under discretionary authority • Require EFPs for new fisheries and require comm vessels to be permitted if landing EC species 3 Request to South Atlantic NMFS disapproved measures • Determined inclusion of Auxis spp as a EC species is inconsistent with NS2 • Did not demonstrate the Auxis spp are important forage for MAFMC managed species MAFMC felt that Auxis still warranted protection within its management region • Sent request to SAFMC to consider management of Auxis under its Dolphin/Wahoo FMP Dolphin/Wahoo management unit extends from FL Keys through NY 4 Prey Groups 1. Sargassum associated prey • Filefish, pufferfish, juvenile jacks, swimming crabs 2. Surface schooling prey • Flying fish 3. Schooling prey not assoc. with surface • Bullet tuna, round herring, jacks, cephalopods 4. Small aggregations of crustaceans • Amphipods, stomatopods, isopods Auxis spp. Two species occur in the Atlantic: • A.