Reproductive Cycle of the Pacific Bonito, Sarda Chilensis (Scombridae), from Northern Chilel

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Cycle of the Pacific Bonito, Sarda Chilensis (Scombridae), from Northern Chilel Pacific Science (1984), vol. 38, no. 3 © 1984 by the University of Hawaii Press. All rights reserved Reproductive Cycle of the Pacific Bonito, Sarda chilensis (Scombridae), from Northern Chilel STEPHEN R. GOLDBERG 2 AND DONALDa MUSSIETT C.3 ABSTRACT: The Pacific bonito, Sarda chilensis, spawns from spring to late summer off northern Chile. The smallest female in spawning condition was 410mm standard length (SL); the smallest spermiogenic male, 390mm SL. Females spawn more than one batch of eggs per season. THE PACIFIC BONITO, Sarda chilensis, occurs in Ovaries were histologically classified into the Pacific from Chile to the Gulf of Alaska four stages (sizes are mean diameters) (Table (Miller and Lea 1976). Previous studies have 1): regressed or regressing (contain primary given the spawning time for S. chilensis oocytes [56 !lm] or mature oocytes undergoing in Chile (Barrett 1971, Serra et al. 1980) atresia); previtellogenic (contain enlarging and Peru (Chirinos de Vildoso 1966) as [161 !lm] oocytes with a ring of vacuoles October-November and ending before April. around the inner periphery); vitellogenic (en­ However, as these observations were based on larging oocytes [315 !lm] in the process of gonosomatic indices or microscopic examina­ accumulating yolk); spawning (mature, yolk­ tions of unstained gonads, it was felt that a filled oocytes [545 !lm] and/or hydrated eggs histological analysis of monthly samples (as [798 !lm]). presented herein) would give a more precise Testes (Table 2) were histologically classi­ description of the reproductive cycle of this fied into four stages: spermiogenesis (lumina species. occluded with sperm, germinal cysts line lumina); late spermiogenesis (lumina oc­ cluded with sperm, reduced quantities of ger­ MATERIALS AND METHODS minal cysts); regression (germinal cysts ex­ hausted); and recrudescence (proliferation of A total of 129 females and 169 males were obtained from local fishermen at Iquique germinal cysts). (20°18' S, 70°08' W), region I, Chile from November 1981 to December 1982. Fish were collected with nets. Gonads were preserved in RESULTS 10 percent formalin. Histological sections of Gonosomatic indices increased (Figure I) 85 females and 102 males were cut at 8 !lm and stained with Harris' hematoxylin followed by during spring (September in southern hemi­ sphere) and reached a maximum in early sum­ eosin counterstain. Fresh fish and gonads mer (December). The smallest female in were weighed to the nearest gram using a tor­ sion balance. Seasonal gonosomatic indices spawning condition measured 410mm stan­ (GSI) (gonad wt/fish wt x 100) were cal­ dard length (SL). The earliest postovulatory follicles were observed in September 1982. culated. Fish weight in these calculations in­ cluded the gonads. These structures are remnants of the granu- losa layer of the spawned eggs which hyper­ trophy. In Sarda chilensis they are highly con­ 1 Manuscript accepted II April 1984. voluted structures consisting of a layer of 2 Whittier College, Department of Biology, Whittier, columnar epithelium and an underlying sup­ California 90608. portive connective tissue theca. From spawn­ 3 Instituto Profesional de Iquique, Casilla 121, Serrano 579, Iquique, Chile. Current Address (DMC) Casilla 379, ing the northern anchovy, Engraulis mordax, in Copiapo, Chile. captivity (Leong 1971) and from subsequent 228 Reproductive Cycle of Pacific Bonito-GoLDBERG AND MUSSIETI C. 229 TABLE 1 MONTHLY DISTRIBUTION OF BODY SIZES (SL) AND STAGES IN Sarda chilensis SPAWNING CYCLE, NOVEMBER 1981-DECEMBER 1982 REGRESSED RANGE OR REGRESSING PREVITELLOGENIC VITELLOGENIC SPAWNING MONTH N (mm) (%) (%) (%) (%) November 2 430-480 0 0 0 100 December 5 410-510 0 0 0 100 January 5 410-430 20 0 0 80 February 4 410-480 0 25 0 75 March 11 425-550 55 9 0 36 April 7 425-550 100 0 0 0 May 5 415-460 100 0 0 0 June 9 420-455 100 0 0 0 July 7 425-530 100 0 0 0 August 6 420-450 100 0 0 0 September 6 420-570 33 0 0 67 October 10 425-580 0 20 20 60 November 6 415-490 0 0 0 100 December 2 460-480 0 0 0 100 TABLE 2 MONTHLY DISTRIBUTION OF BODY SIZES (SL) AND STAGES IN Sarda chilensis TESTICULAR CYCLE, NOVEMBER 1981-DECEMBER 1982 LATE RANGE REGRESSION RECRUDESCENCE SPERMIOGENESIS SPERMIOGENESIS MONTH N (mm) (%) (%) (%) (%) November 8 385-455 0 0 100 0 December 6 415-495 0 0 83 17 January 15 390-460 0 0 80 20 February 12 400-465 0 0 67 33 March 10 425-455 30 0 70 0 April 7 425-550 100 0 0 0 May 4 425-560 100 0 0 0 June 6 425-445 100 0 0 0 July 7 420-445 100 0 0 0 August 4 430-480 25 50 25 0 September 7 440-525 0 14 86 0 October 8 420-515 0 0 100 0 November 5 410-465 0 0 100 0 December 3 485-600 0 0 100 0 histological analysis of material obtained in a subsequent spawning indicated S. chilensis this manner (Hunter and Goldberg 1980), it spawns more than once during a reproductive was determined that the postovulatory follicle season. In some cases hydrated eggs were also has a brief existence and is indistinguishable noted. Hydration occurs just prior to spawn­ from atretic follicles after 48 hrs. They were ing when the mature oocyte grows to as much noted in 61 percent of1981-1982 females that as four times its original volume (Wallace and were classified as being in spawning condition. Selman 1981). The presence ofpostovulatory follicles from a At the end of summer (1981-1982) gono­ recent spawning alongside mature follicles for somatic indices decreased (Figure 1). During 230 PACIFIC SCIENCE, Volume 38, July 1984 (9) (II) (5) (25) f­ 5 (8) r) >- o (2) J o 60 m f-" 5 4.0 o ~ <I: 620 <.9 O'------,---,----,------,.--+-----"'''-,------'=,--=,-----'''''-,--=--,----,-----,----,--r--- MONTH FIGURE L Seasonal gonosomatic indices for Sarda chi/ensis. Vertical line = range; horizontal line = mean; rectan­ gle = 95 percent confidence interval; white rectangle female, black rectangle male; sample size in parentheses. March, females undergoing atresia comprised abundant. It differs from the prolonged 27 percent of our sample. This is commonly spawning cycles typical of tropical and sub­ seen toward the end of the spawning cycle tropical species (Nikolsky 1963) in which when follicles that initiated but did not com­ there is no clear seasonal abundance in the plete yolk deposition degenerate. All ovaries plankton on which larvae feed. from April-August were regressed (Table 1). Previous work in Chile (Barrett 1971, Serra The data for September-December 1982 were et al. 1980) based on analyses ofgonosomatic similar to those from 1981. In 1982, the ab­ indices indicated that spawning begins in Sep­ sence ofprevitellogenic and vitellogenic stages tember and ends before April. Our work his­ (which normally precede spawning) can prob­ tologically confirms their observations. Bar­ ably be explained by our small August sample rett (1971) found that female Sarda chilensis size. of approximately 51 em (fork length) were The gonosomatic indice data for males mature. Our smallest mature female (41Omm (Figure 1) was similar to that for females as SL) had a total length of 485 mm, making it was the seasonal pattern oftestes stages (Table somewhat smaller than Barrett's (1971) 2). Testes sizes were largest during late estimate. spring-early summer, followed by a size de­ Klawe (1961) summarized the dates of crease through summer. Testes began to en­ Sarda chilensis spawning observations from large in late winter (August). The smallest other areas ofthe world. In all cases, spawning reproductively active male (spermiogenesis in occurred during summer. The only exception progress) measured 390 mm SL. came from Dakar, Senegal, where spawning was recorded during February-March. DISCUSSION In northern Chile, Sarda chilensis under­ goes a seasonal reproductive cycle typical of ACKNOWLEDGMENTS temperate zone fishes, as spawning occurs We thank Marie C. Pizzorno for assistance during half of the year with no reproductive in histology and data analysis. This study was activity in the other half. This type of cycle is aided by a Whittier College Faculty Research timed so that larvae appear when food is Grant. Reproductive Cycle ofPacific Bonito-GoLDBERG AND MUSSIETT C. 231 LITERATURE CITED LEONG, R. 1971. Induced spawning of the northern anchovy, Engraulis mordax Gir­ BARRETT, I. 1971. Preliminary observations ard. Fish. Bull. (U.S.) 69: 357-360. on the biology and fishery dynamics of the MILLER, D. J., and R. N. LEA. 1976. Guide to bonito (Sarda chilensis) in Chilean waters. the coastal marine fishes of California. Bol. Cient. Inst. Fom. Pesq., Santiago, Calif. Dep. Fish Game, Fish. Bull. 157.249 Chile 15:1-55. pp. (Rev. publ. by Div. Agric. Sci., Univ. CHIRINOS DE VILDOSO, A. 1966. Estudios Calif. Richmond). sobre la reproduccion del "bonito" Sarda NIKOLSKY, G. V. 1963. The ecology of fishes. chilensis (c. y V.) en aguas adyacentes a la Academic Press, New York, 352 pp. costa peruana. Min. de Agric. (Peru), Servo SERRA B., J., O. ROJAS J., F. INOSTROZA C., Div. Cient. 14 (2a. Ed.) 75 pp. y J. CANON C. 1980. Sinopsis biologica HUNTER, J. R., and S. R. GOLDBERG. 1980. del bonito fecundit~ (Sarda sarda chilensis) Spawning incidence and batch in (Teleostomi, Perciformes, Scombridae). northern anchovy, Engraulis mordax. Fish. Rev. Com. Perm. Pacifico Sur II :423-434. Bull. (U.S.) 77:641-652. WALLACE, R. A., and K. SELMAN. 1981. Cel­ KLAWE, W. L. 1961. Notes on larvae, juveniles lular and dynamic aspects ofoocyte growth and spawning of bonito (Sarda) from the in teleosts. Amer. Zool. 21: 325-343. eastern Pacific Ocean. Pac. Sci. 15 : 487-493..
Recommended publications
  • Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
    Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis
    [Show full text]
  • Fisheries of the Northeast
    FISHERIES OF THE NORTHEAST AMERICAN BLUE LOBSTER BILLFISHES ATLANTIC COD MUSSEL (Blue marlin, Sailfish, BLACK SEA BASS Swordfish, White marlin) CLAMS DRUMS BUTTERFISH (Arc blood clam, Arctic surf clam, COBIA Atlantic razor clam, Atlantic surf clam, (Atlantic croaker, Black drum, BLUEFISH (Gulf butterfish, Northern Northern kingfish, Red drum, Northern quahog, Ocean quahog, harvestfish) CRABS Silver sea trout, Southern kingfish, Soft-shelled clam, Stout razor clam) (Atlantic rock crab, Blue crab, Spot, Spotted seatrout, Weakfish) Deep-sea red crab, Green crab, Horseshoe crab, Jonah crab, Lady crab, Northern stone crab) GREEN SEA FLATFISH URCHIN EELS (Atlantic halibut, American plaice, GRAY TRIGGERFISH HADDOCK (American eel, Fourspot flounder, Greenland halibut, Conger eel) Hogchoker, Southern flounder, Summer GROUPERS flounder, Winter flounder, Witch flounder, (Black grouper, Yellowtail flounder) Snowy grouper) MACKERELS (Atlantic chub mackerel, MONKFISH HAKES JACKS Atlantic mackerel, Bullet mackerel, King mackerel, (Offshore hake, Red hake, (Almaco jack, Amberjack, Bar Silver hake, Spotted hake, HERRINGS jack, Blue runner, Crevalle jack, Spanish mackerel) White hake) (Alewife, Atlantic menhaden, Atlantic Florida pompano) MAHI MAHI herring, Atlantic thread herring, Blueback herring, Gizzard shad, Hickory shad, Round herring) MULLETS PORGIES SCALLOPS (Striped mullet, White mullet) POLLOCK (Jolthead porgy, Red porgy, (Atlantic sea Scup, Sheepshead porgy) REDFISH scallop, Bay (Acadian redfish, scallop) Blackbelly rosefish) OPAH SEAWEEDS (Bladder
    [Show full text]
  • © Iccat, 2007
    A5 By-catch Species APPENDIX 5: BY-CATCH SPECIES A.5 By-catch species By-catch is the unintentional/incidental capture of non-target species during fishing operations. Different types of fisheries have different types and levels of by-catch, depending on the gear used, the time, area and depth fished, etc. Article IV of the Convention states: "the Commission shall be responsible for the study of the population of tuna and tuna-like fishes (the Scombriformes with the exception of Trichiuridae and Gempylidae and the genus Scomber) and such other species of fishes exploited in tuna fishing in the Convention area as are not under investigation by another international fishery organization". The following is a list of by-catch species recorded as being ever caught by any major tuna fishery in the Atlantic/Mediterranean. Note that the lists are qualitative and are not indicative of quantity or mortality. Thus, the presence of a species in the lists does not imply that it is caught in significant quantities, or that individuals that are caught necessarily die. Skates and rays Scientific names Common name Code LL GILL PS BB HARP TRAP OTHER Dasyatis centroura Roughtail stingray RDC X Dasyatis violacea Pelagic stingray PLS X X X X Manta birostris Manta ray RMB X X X Mobula hypostoma RMH X Mobula lucasana X Mobula mobular Devil ray RMM X X X X X Myliobatis aquila Common eagle ray MYL X X Pteuromylaeus bovinus Bull ray MPO X X Raja fullonica Shagreen ray RJF X Raja straeleni Spotted skate RFL X Rhinoptera spp Cownose ray X Torpedo nobiliana Torpedo
    [Show full text]
  • Executive Summary
    CALIFORNIA’S WETFISH INDUSTRY: ITS IMPORTANCE – PAST, PRESENT & FUTURE Executive Summary In major measure, California’s fishing industry was founded on “wetfish.” So called traditionally because these fish were conveyed from ocean to can with minimal preprocessing, “wet from the sea”, sardines, mackerels, squids and anchovies, as well as coastal tunas, have represented the lion’s share of commercial fishery landings in the Golden State since before the turn of the 20th Century. Today sardines, jack and Pacific mackerel, anchovy and market squid are called, for management purposes, Coastal Pelagic Species (CPS). Another link among these species: all are harvested primarily with round-haul nets (lampara and purse seine). The complex of fisheries that comprises the wetfish industry has shaped the character of California’s culture in addition to the infrastructure of California’s fishing industry. The immigrant fishermen of Asian, Italian, Slavic and other nationalities introduced new fishing gear and helped to build the fishing ports of San Pedro and Monterey, as well as San Diego and San Francisco. Although changed in many ways, the wetfish industry today remains an essential, critically important part of California’s fishing industry as a whole. In the year 2000, the wetfish fishery complex produced about 455.5 million pounds (227,734 short tons) of fish, 83.6 percent of total commercial fishery landings in California, valued at $38.9 million ex-vessel, or 29.3 percent of total value of all fisheries in California. This report is subdivided
    [Show full text]
  • Use of Productivity and Susceptibility Indices to Determine the Vulnerability of a Stock: with Example Applications to Six U.S
    Use of productivity and susceptibility indices to determine the vulnerability of a stock: with example applications to six U.S. fisheries. Wesley S. Patrick1, Paul Spencer2, Olav Ormseth2, Jason Cope3, John Field4, Donald Kobayashi5, Todd Gedamke6, Enric Cortés7, Keith Bigelow5, William Overholtz8, Jason Link8, and Peter Lawson9. 1NOAA, National Marine Fisheries Service, Office of Sustainable Fisheries, 1315 East- West Highway, Silver Spring, MD 20910; 2 NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way, Seattle, WA 98115; 3NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112; 4NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center, 110 Shaffer Road, Santa Cruz, CA 95060; 5NOAA, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, 2570 Dole Street, Honolulu, HI 96822; 6NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, FL 33149; 7NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, 3500 Delwood Beach Road, Panama City, FL 32408; 8NOAA, National Marine Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543; 9NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, 2030 South Marine Science Drive, Newport, OR 97365. CORRESPONDING AUTHOR: Wesley S. Patrick, NOAA, National Marine Fisheries Service, Office of Sustainable Fisheries, 1315 East-West
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title A historical perspective of California recreational fisheries using a new database of "trophy" fish records (1966-2013), combined with fisheries analyses of three species in the genus Paralabrax Permalink https://escholarship.org/uc/item/1g40s1h0 Author Bellquist, Lyall F. Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO A historical perspective of California recreational fisheries using a new database of “trophy” fish records (1966-2013), combined with fisheries analyses of three species in the genus Paralabrax A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Marine Biology by Lyall F. Bellquist Committee in charge: Brice Semmens, Chair Richard Carson David Checkley Philip Hastings Ed Parnell 2015 Copyright Lyall F. Bellquist, 2015 All rights reserved. The Dissertation of Lyall F. Bellquist is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Chair University of California, San
    [Show full text]
  • Sarda Orientalis (Temminck and Schlegel) 1842-Adult Common Name ( If Available) : Oriental Bonito
    NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi For office use: MARINE BIORESOURCES FORMS DATA ENTRY: Form- 1(general ) Ref. No.: (please answer only relevant fields;add additional fields if you require) Fauna : √ Flora Microorganisms General Category : Vertebrata (Zooplankton), Fish larvae Scientific name &Authority : Sarda orientalis (Temminck and Schlegel) 1842-Adult Common Name ( if available) : Oriental bonito Synonyms: Author(s) Status Pelamis orientalis Temminck and Schlegel 1842 Pelamis orientalis Gunther 1860 Sarda chilensis Day 1889 Sarda velox Meek and Hildebrand 1923 Sarda orientalis serventyi Whitley 1945, 1962 Classification: Phylum: Vertebrata Super Class : Pisces Sub- Phylum Super Order: Teleostei Class : Osteichthyes Sub- Class: Actinopterygii Super Family: Order: Perciformes Sub Order : Scombroidei Genus : Sarda Family : Scombridae Sub-Family: Thunninae Species : orientalis Authority: Sarda orientalis (Temminck and Schlegel) 1842 Reference No. Temminck, C.J, and H. Schlegel, 1842-50. Sive descripto animaliu, quae in itinere per Japonian suspeto, annis 1823-30 collegit, notis observation bus et adumbrationibus illustravit P.F.Siebold. Fauna Japonica, Pt.2. Pisces 1-323; Pt.3, 73-112 pls. Lugduni, Batavorum. Gorbunova, N.N. 1974. A review of larvae of scombroid fishes (Scombridae, Pisces). Akad. Nauk SSSR, Inst. Okeanol. Trudy, 96, 23-76 (in Russian) Klawe, W.L. 1960. Notes on larvae, juveniles and spawning of Bonito (Sarda) from the Eastern Pacific Ocean. Pacific Science, 15 (4) : 100-115. Geographical Location: Indian, Pacific and Atlantic ocean. Latitude: Place: Longitude: State: Environment Fresh water: Yes/ No Habitat : Salinity : Brackish : Yes / No Migrations : Temperature : Salt water : Yes√ / No Depth range : Picture (scanned images or photographs of adult / larval stages) Figs.
    [Show full text]
  • Common Fishes of California
    COMMON FISHES OF CALIFORNIA Updated July 2016 Blue Rockfish - SMYS Sebastes mystinus 2-4 bands around front of head; blue to black body, dark fins; anal fin slanted Size: 8-18in; Depth: 0-200’+ Common from Baja north to Canada North of Conception mixes with mostly with Olive and Black R.F.; South with Blacksmith, Kelp Bass, Halfmoons and Olives. Black Rockfish - SMEL Sebastes melanops Blue to blue-back with black dots on their dorsal fins; anal fin rounded Size: 8-18 in; Depth: 8-1200’ Common north of Point Conception Smaller eyes and a bit more oval than Blues Olive/Yellowtail Rockfish – OYT Sebastes serranoides/ flavidus Several pale spots below dorsal fins; fins greenish brown to yellow fins Size: 10-20in; Depth: 10-400’+ Midwater fish common south of Point Conception to Baja; rare north of Conception Yellowtail R.F. is a similar species are rare south of Conception, while being common north Black & Yellow Rockfish - SCHR Sebastes chrysomelas Yellow blotches of black/olive brown body;Yellow membrane between third and fourth dorsal fin spines Size: 6-12in; Depth: 0-150’ Common central to southern California Inhabits rocky areas/crevices Gopher Rockfish - SCAR Sebastes carnatus Several small white blotches on back; Pale blotch extends from dorsal spine onto back Size: 6-12 in; Depth: 8-180’ Common central California Inhabits rocky areas/crevice. Territorial Copper Rockfish - SCAU Sebastes caurinus Wide, light stripe runs along rear half on lateral line Size:: 10-16in; Depth: 10-600’ Inhabits rocky reefs, kelpbeds,
    [Show full text]
  • Australian Bonito (2020)
    STATUS OF AUSTRALIAN FISH STOCKS REPORT Australian Bonito (2020) Australian Bonito (2020) Sarda australis John Stewart: Department of Primary Industries, New South Wales, Heather Patterson: Australian Bureau of Agricultural and Resource Economics and Sciences STOCK STATUS OVERVIEW Jurisdiction Stock Stock status Indicators Commonwealth, New Eastern Sustainable South Wales Australia Depletion estimates, Catch, Catch rates, Size composition, Harvest rates, Mortality STOCK STRUCTURE Australian Bonito Sarda australis occurs in the western Pacific Ocean where it is restricted to waters around south-eastern Australia, Norfolk Island and northern New Zealand (Collette and Nauen 1983). South-east Queensland is the northern extent of the species range. Little is known about stock structure within this range; however Australian Bonito are highly mobile and commercial landings exhibit consistent seasonal patterns in availability in terms of both abundance (peaking during summer and autumn) and sizes (Stewart et al., 2013). Due to the latitudinal distribution along eastern-Australia, and influence of the prevailing southerly flowing Eastern Australian Current in this area Australian Bonito are considered to be a single biological stock in this region. Here, assessment of stock status is presented at the biological stock level—Eastern Australia. STOCK STATUS Eastern The Eastern Australia biological stock has components in Commonwealth and Australia New South Wales waters off eastern Australia. The catch of Australian Bonito by Commonwealth fishers is extremely low, averaging less than 200 kg per year since 2010. These low levels constitute less than 1% of the total harvest during this time. Consequently the stock is assessed using data from New South Wales. Results of modified Catch-MSY analyses [Haddon et al.
    [Show full text]
  • The Italian Annotated Bibliography on Small Tunas
    SCRS/2020/061 Collect. Vol. Sci. Pap. ICCAT, 77(9): 34-84 (2020) THE ITALIAN ANNOTATED BIBLIOGRAPHY ON SMALL TUNAS C. Piccinetti1, P. Addis2, A. Di Natale3, F. Garibaldi4, F. Tinti5 SUMMARY The Italian scientists have a long tradition of studies and research on many large pelagic species including, among others, the small tunas. The various small tuna species are important for the Italian fishery since many centuries, mostly from a socio-economical point of view. Some non- indigenous species are now present in the ICCAT Convention area. This is the first attempt to list together the many papers published so far by Italian scientists, concerning the biology of these species, the fisheries and many other scientific and cultural issues. The aim of this paper is to provide an annotated bibliography, with specific key words, even if it is surely incomplete, because of the many papers published over the years. This bibliography, which includes 309 annotated citations, was set together to serve the scientists and to help them in finding some rare references that might be useful for their work. RÉSUMÉ Les scientifiques italiens ont une longue tradition d'études et de recherches sur de nombreuses de espèces de grands pélagiques y compris, entre autres, les espèces de thonidés mineurs. Les différentes espèces de thonidés mineurs sont importantes pour la pêche italienne depuis de nombreux siècles, principalement d'un point de vue socio-économique. Certaines espèces non autochtones sont maintenant présentes dans la zone de la Convention de l’ICCAT. Il s'agit de la première tentative de répertorier les nombreux articles publiés à ce jour par des scientifiques italiens concernant la biologie de ces espèces, les pêcheries et de nombreuses autres questions scientifiques et culturelles.
    [Show full text]
  • Spanish Mackerel, Japan
    Seasonal Fish Agemakigai (Razor Clam, Boston) Aji (Spanish Mackerel, Japan) Akamutsu (Seared Gnomefish, Japan) Ankimo (Steamed Monkfish Liver, Boston) Ankimo (Steamed Monkfish Liver, Japan) Aodai (Blue Snapper, Japan) Aoyagi (Orange Surf Clam, Boston) Aoyagi (Orange Surf Clam, Washington) Asajime Hamachi (Tender Yellowtail, Japan) Big Eye Chu-Toro (Semi-Fatty Tuna, Ecuador) Big Eye Chu-Toro Aburi Misoyaki (Semi-Fatty Tuna, Ecuador) Big Eye Chu-Toro with Uni (Semi-Fatty Tuna, Ecuador) Big Eye Chu-Toro Zuke (Semi-Fatty Tuna, Ecuador) Bincho (Wild Albacire Tuna, Oregon) Black Bass (Boston) Bluefin Akami (Lean Tuna, Croatia) Bluefin Akami (Lean Tuna, Japan) Bluefin Akami (Lean Tuna, Mexico) Bluefin Akami (Lean Tuna, Spain) Bluefin Akami Zuke (Lean Tuna, Spain) Bluefin Chu-Toro (Semi-Fatty Tuna, Ecuador) Bluefin Chu-Toro (Semi-Fatty Tuna, Japan) Bluefin Chu-Toro (Semi-Fatty Tuna, Mexico) Bluefin Chu-Toro (Semi-Fatty Tuna, Spain) Bluefin Chu-Toro (Tahichi) Bluefin Chu-Toro (Wild Semi-Fatty Tuna, Boston) Bluefin Chu-Toro with Uni (Mexico) Bluefin Chu-Toro with Uni (Semi-Fatty Tuna, Spain) Bluefin Chu-Toro with Uni (Spain) Bluefin Chu-Toro Zuke (Semi-Fatty Tuna, Japan) Bluefin Chu-Toro Zuke (Semi-Fatty Tuna, Spain) Bluefin O-Toro (Extra Fatty Tuna, Japan) (1pc) Bluefin O-Toro (Extra Fatty Tuna, Mexico) Bluefin O-Toro (Extra Fatty Tuna, Spain) Bluefin Toro (Fatty Tuna, Japan) Bluefin Toro (Fatty Tuna, Mexico) Bluefin Toro (Fatty Tuna, Spain) Bluefin Toro With Uni (Fatty Tuna, Japan) Bluefin Toro Zuke (Fatty Tuna, Spain) Buri (Wild Yellowtail,
    [Show full text]