Comparative Wood Anatomy of Southern South American Cupressaceae

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Wood Anatomy of Southern South American Cupressaceae IAWA Bulletin n.s., Vol. 13 (2),1992: 151-162 COMPARATIVE WOOD ANATOMY OF SOUTHERN SOUTH AMERICAN CUPRESSACEAE by Fidel A. Roig Laboratorio de Dendrocronolog{a, Centro Regional de lnvestigaciones Cientfficas y Tecnicas, CONICET C. C. 330, 5500 Mendoza, Argentina 1 Summary The wood anatomy is described for the ronments in a cold-temperate heavy rainfall Cupressaceae indigenous to southem South climate (1500-3000 mm/year), whileA. chi­ America: Austrocedrus chilensis, Pilgeroden­ lensis occurs on dry (500 mm/year rainfall) dron uviferum and Fitzroya cupressoides. rocky sites. They grow slowly, are long­ The abundance and distributional pattern of lived, and have been used in dendrochrono­ axial parenchyma within each annual ring, logical studies. Fitzroya cupressoides attains height, and the presence or absence of nod­ ages of more than 1500 years (Boninsegna ules in the end walls of ray parenchyma & Holmes 1985), Pilgerodendron uviferum are all useful anatomie al features for distin­ 500-600 years and Austrocedrus chilensis guishing between the three species. Physical about 1000 years (LaMarche et al. 1979). characteristics such as odour and heartwood The wood anatomy of these species has colour also can be used to separate these been studied in varying detail (peirce 1937; species. Axial parenchyma cell length and Phillips 1948; Greguss 1955; Tortorelli tracheid length show considerable interspeci­ 1956; Diaz-Vaz 1983, 1985a, 1985b). The fic variation. Tracheid lengths of Pilgeroden­ purpose of this paper is to provide for these dron, but not of Austrocedrus and Fitzroya, important southern South American species decrease with increasing latitude. more detailed wood anatomical descriptions Key words: Wood anatomy, Cupressaceae, than now available in the literature, and give Austrocedrus, Pilgerodendron, Fitzroya, features useful in distinguishing between Argentina, Chile. them. Introduction Materials and Methods The Cupressaceae are represented in south­ Fresh heartwood sampies were collected ern South America by three monospecific from the sterns of trees more than 200 years genera: Austrocedrus Florin et Boutleje, Pil­ old and growing in Argentina and Chile (see gerodendron Florin and Fitzroya Hooker. listing at beginning of each wood anatomical Figure 1 shows their geographie distribu­ description). Two specimens are from her­ tion. They andAraucaria araucana (Molina) barium collections. Collection codes are as K. Koch (Araucariaceae) are the most eco­ folIows: FR, personal collection of the nomically valuable native conifers in the author; MERL, Herbario Ruiz Leal-IADIZA south of Chile and Argentina. Prlncipally (lnstituto Argentino de Investigaciones de las because of their decay resistance, these Cu­ Zonas Aridas, Mendoza, Argentina); DLM, pressaceae woods are used in building. These increment core of Dendrochronology Lab­ species occur in different ecological con­ CRICYT, Mendoza, Argentina. Wood sam­ ditions. Fitzroya cupressoides and Pilgero­ pIes were boiled in water and then sectioned dendron uviferum occur in peat bog envi- (20 Jlm thick) on a sliding microtome. Sec- 1) Current Address: Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, CH- 8903 Birmensdorf, Switzerland. Downloaded from Brill.com10/05/2021 05:02:39PM via free access 152 IAWA Bulletin n.s., Vol. 13 (2),1992 , 24· .... , / - 32" 44· 48" 52' ~ r rra Fuegc I 1,.. __ ,,_, I . , .......B?' ____ 7.!.o· ____ 7_2' ___ sa- __ J 64· PIJgerodendron uviferum Downloaded from Brill.com10/05/2021 05:02:39PM via free access Roig - Wood anatomy of Cupressaceae 153 tions were stained with safranin and mounted wood tracheids. Occasionally in cross section in Canada balsam. Macerations were made triangular or quadrangular intercellular spaces according to Boodle's method (D'Ambrogio occur between tracheids and between trache­ de Argueso 1986) and mounted in glycerin ids and ray parenchyma (Fig. 2E, G). False jelly. Quantitative data, including the number growth rings not observed. Earlywood tra­ of pits per earlywood and latewood cross cheids 37 (30-49) J.I.ffi in tangential diameter field, are based on 25 or more measurements and 2365 (1702-3086) J.I.ffi in length (mea­ per sampie. The numerical values given in sured in maceration). Tracheids with a warty the descriptions are the mean value for each layer lining the inner surface of the second­ species; the values in brackets represent the ary wall and in the pit chambers (Fig. 2F, J). total range of individual measurements. Data Tracheid cross-sectional outlines are usually on ray frequency are based on at least five rounded, sometimes angular (Fig. 2E). Inter­ counts in areas of one square millimetre. For tracheary bordered pits 16 (13-18) Ilm in SEM analysis, unstained sections and split diameter, almost exclusive1y uniseriate or oc­ specimens from a few heartwood sampies casionally irregularly aligned in the wider ear- were mounted on specimen stubs using elec­ 1ywood tracheids (Fig. 2D). Pit membranes tric conductive paste, coated with gold and with a central1y thickened torus with a more examined at 20 kV in a Siemens Autoscan or less Slnooth edge (Fig. 2H). Pit aperture JSM-U3. Wood anatomical terms are accord­ rounded in earlywood, lenticu1ar in 1atewood ing to the Multilingual Glossary of the Com­ with axial or radial orientation. Trabeculae mittee on Nomenclature (lAWA Committee occasionally present 1964) and special growth ring terminology Axial parenchyma scarce and diffuse, 10- from Glock et al. (1960). cated mainly from the middle to the end sec­ tion of each growth ring (Fig. 21). Cells have Descriptions isodiametric cross-sectional outline or are Austrocedrus chilensis (D. Don) Florin et radially flattened with thin walls and rounded Boutelje (Fig. 2). simple pits. End walls ofaxial parenchyma Material studied (12 sampies). Argentina: smooth, thick, and often oblique. Individual RIO Negro, FR 222, 223; DLM s.n.; Neu­ axial parenchyma cells 179 (120-254) Ilm quen, FR 235, 236, 237, 238, 239, 240, 249. long, 27 (21-34) Ilm in tangential diameter. Chile: Bellavista FR 245; EI Manzano, FR Dark deposits fill axial parenchyma. 246. Rays uniseriate, rarely biseriate, 6 (2-16) Non-anatormcaIJeatures: Specific gravity cells high; 36 (31-38) rays per sq.mm (in based on air-dry volume 0.49 g/cm3 (Torto­ tangential section). Rays with body cells ap­ relli 1956); heartwood colour varies from proximately isodiametric in tangential view yellow to shades of brown. Heartwood and (Fig. 2B). End walls of ray parenchyma cells sapwood have similar coloration. Wood with­ thin, without indentures, and only occasion­ out distinctive odour. Heartwood fluores­ ally with small and isolated nodules. Cross­ cence yellowish-green. field pits cupressoid (Fig. 2C), with 2 (1-4) AnatomicalJeatures: Growth rings distinct pits in the earlywood (Fig. 2C), and 2 (1-3) (Fig. 2A). Gradual transition from early­ pits in the latewood. Some ray cells filled with wood to latewood; narrow latewood marked dark-coloured deposits. Rays lack ray tra­ by radial flattening of the last formed late cheids. No crystals observed. Fig. 1. Natural range of the studied Cupressaceae. Close oblique shading corresponds to Aus­ trocedrus chilensis, triangles to Fitzroya cupressoides and open oblique shading to Pilgeroden­ dron uviferum. Between 39° and 43° SL the natural ranges of the three species are superimposed. Areas with x represent the ice-caps. Sources: Florin 1930; Covas 1938; Bernath 1953; Quinta­ nilla 1977; Martinez Miranda 1981; Pisano 1983; Rodriguez et al. 1983; Moore 1983; Roig et al. 1985. Downloaded from Brill.com10/05/2021 05:02:39PM via free access 154 IAWA Bulletin n.s., Vol. 13 (2), 1992 Pilgerodendron uviferum ( D. Don.) Florin from earlywood to latewood (Fig. 3A). Some (Fig. 3). wide rings show density fluctuations (bands Material studied (14 sampies). Argentina: of varying cell wall thickness and ceIl size) Rio Negro, FR 114, 224; Chubut, FR 230; within both the earlywood and latewood. Ab­ Santa Cruz, FR 228. Chile: Osorno, FR 241; rupt reductions in ring width (Schweingruber Continental Chiloe, FR 214, 212, 242, 243, 1986) persisting for a variable number of 244; Insular Chilo€, FR 227, 198; Isla Piazzi, years occur, especially in older trees. These Caleta Ocasi6n, MERL 44163; Ultima Espe­ periods with very narrow rings of 1-2 rows ranza, MERL 44178. of thin walled tracheids. False growth rings Non-anatomical features: Specific gravity present. Earlywood tracheids 31 (20-43) lJlD based on air-dry volume 0.50 g/cm3 (Torto­ in tangential diameter and 1439 (909-2034) relli 1956); heartwood colour reddish-brown, lJlD in length. Inner walls of tracheids and pit sapwood yeIlowish. Thick bands of denser chamber with a fine warty layer. Tracheid and darker compression wood often present. cross-sectional outlines rounded to angular. Wood with strong resinous odour. Heart­ Bordered pits 13 (9-15) lJlD in diameter, uni­ wood fluorescence yeIlowish-green. seriate and nearly exclusively on the radial Anatomical features: Annual growth rings walls (Fig. 3D). Pit membranes with weIl distinct. Gradual to semi-gradual transition developed torus with a relatively smooth edge (text continued on page 158) Legends of Figures 2-4: Fig. 2. A-J. Austrocedrus chilensis. - A: TS, annual growth rings. - B: TLS, axial parenchyma cell (arrow) containing amorphous substance. - C: RLS, cupressoid cross-field pits. - D: Uni­ seriate intertracheid bordered pits. - E: TS showing interceIlular axial spaces (arrows). - F: RLS, SEM, middle lamella and primary wall, secondary wall and a warty layer lining two contiguous tracheids. - G: TLS, SEM, ray parenchyma cell with contents. The arrows show intercellular radial spaces. - H: SEM, an aspirated pit membrane showing a thick torus and margo with thick and radially aligned microfibrils. - I: TS, fluorescent light, scattered axial parenchyma cells (ar­ rows). - J: SEM, lower part of a tracheid, showing pit membranes in aspirated condition, and pits in an alternate pattern. A warty layer covers the lumen side of the tracheid. Fig. 3. A-K: Pilgerodendron uviferum. - A: TS, annual growth rings with diffuse axial paren­ chyma tissue (black points). - B: TLS, axial parenchyma ceIl (arrow).
Recommended publications
  • Austrocedrus Forests of South America Are Pivotal Ecosystems at Risk Due to the Emergence of an Exotic Tree Disease
    GSDR 2015 Brief Austrocedrus forests of South America are pivotal ecosystems at risk due to the emergence of an exotic tree disease: can a joint effort of research and policy save them? By Alina Greslebin 1, Maria Laura Vélez 2 and Matteo Garbelotto 3. 1CONICET-Universidad Nacional de la Patagonia SJB, Argentina; 2CONICET-Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Argentina; 3University of California Berkeley, USA Introduction A. chilensis covers today a total estimated area of Human expansion, global movement, and climate 185,000 ha in South America. As a dominant forest change have led to a number of emerging and re- species, its role in supporting biodiversity, generating emerging diseases. The decline of biodiversity due to shelter for wildlife, as well as preventing soil erosion emerging plants pathogens may cause habitat and and preserving water quality is well understood. Along wildlife loss and declines in ecosystem services. This, in with Araucaria araucana, it is the tree species that turn, often results in lower human well-being. Reports grows furthest into the ecotone zone within the of emerging plant diseases are constantly on the rise, Patagonia steppe, where it plays a key role preventing and often they appear to be linked to the commercial desertification. There are however additional functions trade of plants and plant products. While there are this tree provides, including the production of valuable several examples of decimation or extinction of plant timber and the generation of an environment ideal for hosts affected by invasive forest diseases, there are no cattle grazing, recreational and touristic activities and known cases of invasive forest diseases successfully for human settlement.
    [Show full text]
  • Biggest Trees of the World Pub 13-2
    Dendrology Series WSFNR13-2 January 2013 Tallest, Biggest, & Oldest Trees by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Trees have a long relationship with people. They are both utility and amenity. Trees can evoke awe, mysticism, and reverence. Trees represent great public and private values. Trees most noticed and celebrated by people and communities are the one-tenth of one-percent of trees which approach the limits of their maximum size, reach, extent, and age. These singular, historical, culturally significant, and massive trees become symbols and icons of life on Earth, and our role in environmental stewardship and sustainability. What Is A Tree? Figure 1 is a conglomeration of definitions and concepts about trees from legal and word defini- tions in North America. For example, 20 percent of all definitions specifically state a tree is a plant. Concentrated in 63% of all descriptors for trees are four terms: plant, woody, single stem, and tall. If broad stem diameter, branching, and perennial growth habit concepts are added, 87% of all the descrip- tors are represented. At its most basic level, defining a tree is not species based, but is a structural definition. A tree is represented by a type of plant architecture recognizable by non-technical people. The most basic con- cepts for defining a tree are -- a large, tall, woody, perennial plant with a single, unbranched, erect, self- supporting stem holding an elevated and distinct crown of branches greater than 10 feet in height and greater than 3 inches in diameter.
    [Show full text]
  • Chile: a Journey to the End of the World in Search of Temperate Rainforest Giants
    Eliot Barden Kew Diploma Course 53 July 2017 Chile: A Journey to the end of the world in search of Temperate Rainforest Giants Valdivian Rainforest at Alerce Andino Author May 2017 1 Eliot Barden Kew Diploma Course 53 July 2017 Table of Contents 1. Title Page 2. Contents 3. Table of Figures/Introduction 4. Introduction Continued 5. Introduction Continued 6. Aims 7. Aims Continued / Itinerary 8. Itinerary Continued / Objective / the Santiago Metropolitan Park 9. The Santiago Metropolitan Park Continued 10. The Santiago Metropolitan Park Continued 11. Jardín Botánico Chagual / Jardin Botanico Nacional, Viña del Mar 12. Jardin Botanico Nacional Viña del Mar Continued 13. Jardin Botanico Nacional Viña del Mar Continued 14. Jardin Botanico Nacional Viña del Mar Continued / La Campana National Park 15. La Campana National Park Continued / Huilo Huilo Biological Reserve Valdivian Temperate Rainforest 16. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 17. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 18. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued / Volcano Osorno 19. Volcano Osorno Continued / Vicente Perez Rosales National Park 20. Vicente Perez Rosales National Park Continued / Alerce Andino National Park 21. Alerce Andino National Park Continued 22. Francisco Coloane Marine Park 23. Francisco Coloane Marine Park Continued 24. Francisco Coloane Marine Park Continued / Outcomes 25. Expenditure / Thank you 2 Eliot Barden Kew Diploma Course 53 July 2017 Table of Figures Figure 1.) Valdivian Temperate Rainforest Alerce Andino [Photograph; Author] May (2017) Figure 2. Map of National parks of Chile Figure 3. Map of Chile Figure 4. Santiago Metropolitan Park [Photograph; Author] May (2017) Figure 5.
    [Show full text]
  • Downloaded from Brill.Com10/02/2021 07:21:54PM Via Free Access 126 IAWA Journal, Vol
    IAWA Journal, Vol. 28 (2), 2007: 125-137 WOOD ULTRASTRUCTURE OF ANCIENT BURIED LOGS OF FITZROYA CUPRESSOlDES Maria A. Castro1 and Fidel A. Roig2 SUMMARY The anatomy and ultrastructure of subfossil wood of Fitzroya cup res­ soides from the late Pleistocene (>50,000 14C years before present) were compared with those of extant F. cupressoides trees from southern Chile, using light microscopy (polarized light and ftuorescence), scanning elec­ tron microscopy coupled with an energy dispersive X-ray spectroscopy system, and transmission electron microscopy. The ancient wood showed an unchanged gross wood structure, loss of cell wall birefringence, loss of lignin autoftuorescence, and a loss of the original microfibrillar pat­ tern. The energy dispersive X-ray spectroscopy analysis indicated higher than normal contents of S, Cl, and Na in subfossil wood. Ultrastructural modifications in the cell wall of the subfossil wood could have important implications for further studies involving isotopic and wood anatomical measurements of ancient wood. Key words: Fitzroya cupressoides, Pleistocene subfossil wood, cell wall ultrastructure, TEM, SEM-EDXA analysis, wood anatomy. INTRODUCTION The temperate rain forest of South America has a very rich tree species assemblage with a high level of endemism (Arroyo et al. 1993). One of the natural endemies is Fitzroya cupressoides (Molina) I.M.lohnston (alerce, Cupressaceae), a tree species that grows under a relatively low annual mean temperature and high precipitation in areas ofthe southernAndes ofChile and southwesternArgentina. Tree-ring analysis revealed that Fitzroya is a slow-growing tree and is one of the longest-lived tree species in the world, known to reach up to around 3,500 years of age (Lara & Villalba 1993).
    [Show full text]
  • Bovedas Encamonadas: Origen, Evolucion, Geometria Y Construccion Entre Los Siglos Xvii Y Xviii En El Virreinato De Peru
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TECNICA SUPERIOR DE ARQUITECTURA DEPARTAMENTO DE ESTRUCTURAS DE EDIFICACION PROGRAMA: MECANICA DE LAS ESTRUCTURAS ANTIGUAS Tesis Doctoral: BOVEDAS ENCAMONADAS: ORIGEN, EVOLUCION, GEOMETRIA Y CONSTRUCCION ENTRE LOS SIGLOS XVII Y XVIII EN EL VIRREINATO DE PERU Doctorando: Arq. PEDRO AUGUSTO HURTADO VALDEZ Directores: Dr. Arq. ENRIQUE NUERE MATAUCO Dr. Arq. JOSE LUIS FERNANDEZ CABO MADRID – 2011 Tribunal nombrado por el Mgfco. y Excmo. Sr. Rector de la Universidad Politécnica de Madrid, el día _____ de _______________ de 20_____ . Presidente D. _____________________________________________________ Vocal D. _____________________________________________________ Vocal D. _____________________________________________________ Vocal D. _____________________________________________________ Secretario D. _____________________________________________________ Realizado el acto de defensa y lectura de la Tesis el día _____ de _______________ de 20_____ . En ________________________ . Calificación: _________________________ EL PRESIDENTE LOS VOCALES EL SECRETARIO II RESUMEN Desde la creación del Virreinato del Perú, en el siglo XVI, los arcos, bóvedas y cúpulas se acostumbraban a levantar con piedra y fábrica. Sin embargo estas tierras eran sacudidas periodicamente por terremotos, produciendo el colapso de la mayoría de estas edificaciones. Para el siglo XVII los alarifes ya habían experimentado diversas maneras de levantar bóvedas, sin haberse encontrado una respuesta razonable en términos de tiempo, economía
    [Show full text]
  • Actualización De La Clasificación De Tipos Forestales Y Cobertura Del Suelo De La Región Bosque Andino Patagónico
    ACTUALIZACIÓN DE LA CLASIFICACIÓN DE TIPOS FORESTALES Y COBERTURA DEL SUELO DE LA REGIÓN BOSQUE ANDINO PATAGÓNICO INFORME FINAL Julio 2016 CARTOGRAFÍA PARA EL INVENTARIO FORESTAL NACIONAL DE BOSQUES NATIVOS Mapa base para un sistema de monitoreo continuo de la región Información de base 2013 - 2014 Cita recomendada de esta versión del trabajo: CIEFAP, MAyDS, 2016. Actualización de la Clasificación de Tipos Forestales y Cobertura del Suelo de la Región Bosque Andino Patagónico. Informe Final. CIEFAP. https://drive.google.com/open?id=0BxfNQUtfxxeaUHNCQm9lYmk5RnM 2 Presidente de la Nación Ing. Mauricio Macri Ministro de Ambiente y Desarrollo Sustentable de la Nación Rabino Sergio Alejandro Bergman Secretario de Política Ambiental, Cambio Climático y Desarrollo Sustentable Lic. Diego Moreno Sub Secretaria de Planificación y Ordenamiento del Territorio Dra. Dolores Duverges Directora Nacional de Bosques, Ordenamiento Territorial y Suelos Dra. María Esperanza Alonso Director de Bosques Ing. Rubén Manfredi 3 Dirección General de Recursos Forestales de la Provincia de Neuquén Téc. Ftal. Uriel Mele Subsecretaría de Recursos Forestales de la Provincia de Río Negro Ing. Marcelo Perdomo Subsecretaría de Bosques de la Provincia del Chubut Sr. Leonardo Aquilanti Dirección de Bosques de la Provincia de Santa Cruz Ing. Julia Chazarreta Dirección General de Bosques Secretaría de Ambiente, Desarrollo Sustentable y Cambio Climático Provincia de Tierra del Fuego, Antártida e Islas del Atlántico Sur Ing. Gustavo Cortés Administración Parques Nacionales Sr. Eugenio Breard 4 Este trabajo fue realizado por el Nodo Regional Bosque Andino Patagónico (BAP) con la participación de las jurisdicciones regionales. El Nodo BAP tiene sede en el Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP) Durante la ejecución de este proyecto, lamentablemente nos dejó de manera trágica nuestro amigo y compañero de trabajo, Ing.
    [Show full text]
  • The Pine Genome Initiative- Science Plan Review
    ProCoGen Training Workshop 2013 Umeå An Undiscovered Country: What Comparative Genomics Tells Us of Gymnosperm Genomes Ujwal R. Bagal, W. Walter Lorenz, Jeffrey F.D. Dean Warnell School of Forestry and Natural Resources & Institute of Bioinformatics University of Georgia Diverse Form and Life History JGI CSP - Conifer EST Project Transcriptome Assemblies Statistics Pinaceae Reads Contigs* • Pinus taeda 4,074,360 164,506 • Pinus palustris 542,503 44,975 • Pinus lambertiana 1,096,017 85,348 • Picea abies 623,144 36,867 • Cedrus atlantica 408,743 30,197 • Pseudotsuga menziesii 1,216,156 60,504 Other Conifer Families • Wollemia nobilis 471,719 35,814 • Cephalotaxus harringtonia 689,984 40,884 • Sequoia sempervirens 472,601 42,892 • Podocarpus macrophylla 584,579 36,624 • Sciadopitys verticillata 479,239 29,149 • Taxus baccata 398,037 33,142 *Assembled using MIRA http://ancangio.uga.edu/ng-genediscovery/conifer_dbMagic.jnlp Loblolly pine PAL amino acid sequence alignment Analysis Method Sequence Collection PlantTribe, PlantGDB, GenBank, Conifer DBMagic assemblies 25 taxa comprising of 71 sequences Phylogenetic analysis Maximum Likelihood: RAxML (Stamatakis et. al) Bayesian Method: MrBayes (Huelsenbeck, et al.) Tree reconciliation: NOTUNG 2.6 (Chen et al.) Phylogenetic Tree of Vascular Plant PALs Phylogenetic Analysis of Conifer PAL Gene Sequences Conifer-specific branch shown in green Amino Acids Under Relaxed Constraint Maximum Likelihood analysis Nested codon substitution models M0 : constant dN/dS ratio M2a : rate ratio ω1< 1, ω2=1 and ω3>1 M3 : (ω1< ω2< ω3) (M0, M2a, M3, M2a+S1, M2a+S2, M3+S1, M3+S2) Fitmodel version 0.5.3 ( Guindon et al. 2004) S1 : equal switching rates (alpha =beta) S2 : unequal switching rates (alpha ≠ beta) Variable gymnosperm PAL amino acid residues mapped onto a crystal structure for parsley PAL Ancestral polyploidy in seed plants and angiosperms Jiao et al.
    [Show full text]
  • Ecorregión Bosque Patagónico
    BAP 27/04/06 4:53 PM Page 279 EcorregiónEEcorregicorregión BosqueBosque PatagónicoPatagPatagóniconico Áreas prioritarias para la conservación ecorregional 12 (Visión de Biodiversidad para 1 la ecorregión de los Bosques Valdivianos) 13 14 15 5 ARGENTINA 16 6 CHILE 17 22 18,19,20 y 21 7 8 23 24 25 26 9 10 27 2 Bosque Patagónico Áreas de Biodiversidad Sobresaliente (Situación Ambiental Argentina 2000) Áreas protegidas (Administración de Parques Nacionales. Sistema de Información de Biodiversidad) 11 3 28 Nacionales 4 Provinciales V er referencias al dorso Km BAP 27/04/06 4:53 PM Page 280 Ecorregión Bosque Patagónico Referencias Bosque Patagónico Áreas de Biodiversidad Sobresaliente (Situación Provinciales Ambiental Argentina 2000) 12. Res. Prov. Lagunas del Epulafquen 1. Relictos de bosques de Nothofagus y 13. Pque. Prov. Copahue – Caviahue Austrocedrus 14. Res. Ftal. Batea Mauhida 2. Bosques de Guindo y Península Magallanes 15. Res. Ftal. Chañy 3. Pque. Nac. Tierra del Fuego y alrededores 16. Pque. Municipal Llao Llao 4. Península Mitre e Isla de los Estados 17. Res. Ftal. Los Repollos 18. Res. Ftal. Loma del Medio Áreas protegidas (Administración de 19. Res. Ftal. Cerro Currumahuida Parques Nacionales, Sistema de Información de 20. Res. Ftal. Cuartel Lago Epuyen Biodiversidad) 21. Pque. Prov. Cerro Pirque 22. Pque. Prov. y Res. Ftal. Río Turbio Nacionales 23. Res. Ftal. Trevelín 5. Pque. Nac. y Res. Nat. Lanín 24. Área Nat. Prot. Lago Baggilt 6. Pque. Nac. y Res. Nat. Nahuel Huapí 25. Res. Ftal. Lago Guacho 7. Pque. Nac. y Res. Nat. Lago Puelo 26. Estancia Rincón Ira Hiti 8. Pque.
    [Show full text]
  • Supporting Information
    Supporting Information Mao et al. 10.1073/pnas.1114319109 SI Text BEAST Analyses. In addition to a BEAST analysis that used uniform Selection of Fossil Taxa and Their Phylogenetic Positions. The in- prior distributions for all calibrations (run 1; 144-taxon dataset, tegration of fossil calibrations is the most critical step in molecular calibrations as in Table S4), we performed eight additional dating (1, 2). We only used the fossil taxa with ovulate cones that analyses to explore factors affecting estimates of divergence could be assigned unambiguously to the extant groups (Table S4). time (Fig. S3). The exact phylogenetic position of fossils used to calibrate the First, to test the effect of calibration point P, which is close to molecular clocks was determined using the total-evidence analy- the root node and is the only functional hard maximum constraint ses (following refs. 3−5). Cordaixylon iowensis was not included in in BEAST runs using uniform priors, we carried out three runs the analyses because its assignment to the crown Acrogymno- with calibrations A through O (Table S4), and calibration P set to spermae already is supported by previous cladistic analyses (also [306.2, 351.7] (run 2), [306.2, 336.5] (run 3), and [306.2, 321.4] using the total-evidence approach) (6). Two data matrices were (run 4). The age estimates obtained in runs 2, 3, and 4 largely compiled. Matrix A comprised Ginkgo biloba, 12 living repre- overlapped with those from run 1 (Fig. S3). Second, we carried out two runs with different subsets of sentatives from each conifer family, and three fossils taxa related fi to Pinaceae and Araucariaceae (16 taxa in total; Fig.
    [Show full text]
  • Methods for Measuring Frost Tolerance of Conifers: a Systematic Map
    Review Methods for Measuring Frost Tolerance of Conifers: A Systematic Map Anastasia-Ainhoa Atucha Zamkova *, Katherine A. Steele and Andrew R. Smith School of Natural Sciences, Bangor University, Bangor LL57 2UW, Gwynedd, UK; [email protected] (K.A.S.); [email protected] (A.R.S.) * Correspondence: [email protected] Abstract: Frost tolerance is the ability of plants to withstand freezing temperatures without unrecov- erable damage. Measuring frost tolerance involves various steps, each of which will vary depending on the objectives of the study. This systematic map takes an overall view of the literature that uses frost tolerance measuring techniques in gymnosperms, focusing mainly on conifers. Many different techniques have been used for testing, and there has been little change in methodology since 2000. The gold standard remains the field observation study, which, due to its cost, is frequently substituted by other techniques. Closed enclosure freezing tests (all non-field freezing tests) are done using various types of equipment for inducing artificial freezing. An examination of the literature indicates that several factors have to be controlled in order to measure frost tolerance in a manner similar to observation in a field study. Equipment that allows controlling the freezing rate, frost exposure time and thawing rate would obtain results closer to field studies. Other important factors in study design are the number of test temperatures used, the range of temperatures selected and the decrements between the temperatures, which should be selected based on expected frost tolerance of the tissue and species. Citation: Atucha Zamkova, A.-A.; Steele, K.A.; Smith, A.R.
    [Show full text]
  • Taxodium Distichum
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School June 2018 Assessing Bald Cypress (Taxodium distichum) Tree Dynamic Change in USF Forest Preserve Area Using Mixture-Tuned Matched Filtering and Multitemporal Satellite Imagery Yujia Wang University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Geology Commons Scholar Commons Citation Wang, Yujia, "Assessing Bald Cypress (Taxodium distichum) Tree Dynamic Change in USF Forest Preserve Area Using Mixture- Tuned Matched Filtering and Multitemporal Satellite Imagery" (2018). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7375 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Assessing Bald Cypress (Taxodium distichum) Tree Dynamic Change in USF Forest Preserve Area Using Mixture-Tuned Matched Filtering and Multitemporal Satellite Imagery by Yujia Wang A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science School of Geosciences College of Art and Science University of South Florida Co-Major Professor: Ping Wang, Ph.D. Co-Major Professor: Ruiliang Pu, Ph.D. Joni Downs, Ph.D. Date of Approval: June 26, 2018 Keywords: Remote Sensing, bald cypress tree, Linear Spectral Unmixing, abundance
    [Show full text]
  • Tetraclinis Articulata
    Bois et Forêts des Tropiques – ISSN : L-0006-579X Volume 345 – 3e trimestre – octobre 2020 – p. 13-23 DIVERSITÉ GÉNÉTIQUE DE TETRACLINIS ARTICULATA AU MAROC / LE POINT SUR… 13 Genetic diversity of ten Moroccan populations of Tetraclinis articulata as revealed by Inter Simple Sequence Repeat (ISSR) markers Meryem Makkaoui1, 2 Younes Abbas3 Salwa El Antry-Tazi1 Leila Medraoui2 Mohammed Alami2 Selouka Rabani2 Abdelkarim Filali-Maltouf2 1 Forest Research Center Silviculture Department Molecular Biology Laboratory PO Box 763, Rabat Morocco 2 Mohamed V University Faculty of Sciences. Microbiology and Molecular Biology Laboratory PO Box 1014, Rabat Morocco 3 Sultan Moulay Slimane University Polydisciplinary Faculty Polyvalent Laboratory R&D – Mghila PO Box 592, Beni Mellal Morocco Auteur correspondant / Corresponding author: Photo 1. Abdelkarim FILALI-MALTOUF Tetraclinis articulata a thuja in the region of Oulmès at an altitude of 640 m. Photo M. Makkaoui. – [email protected] Doi : 10.19182/bft2020.345.a31927 – Droit d’auteur © 2020, Bois et Forêts des Tropiques – © Cirad – Date de soumission : 15 mars 2019 ; date d’acceptation : 13 mai 2020 ; date de publication : 1er novembre 2020. Citer l’article / To cite the article Makkaoui M., Abbas Y., El Antry-Tazi S., Medraoui L., Alami M., Rabani S., Filali-Maltouf A., 2020. Genetic diversity of ten Moroccan populations of Licence Creative Commons : Tetraclinis articulata as revealed by Inter Simple Sequence Repeat (ISSR) Attribution - 4.0 International. markers. Bois et Forêts des Tropiques, 345 : 13-23. Doi : https://doi. Attribution-4.0 International (CC BY 4.0) org/10.19182/bft2020.345.a31927 Bois et Forêts des Tropiques – ISSN: L-0006-579X Volume 345 – 3rd quarter - October 2020 - p.
    [Show full text]