Optimisation Du Métabolisme Énergétique Du Soufre Chez La Bactérie Hyperthermophile Aquifex Aeolicus

Total Page:16

File Type:pdf, Size:1020Kb

Optimisation Du Métabolisme Énergétique Du Soufre Chez La Bactérie Hyperthermophile Aquifex Aeolicus Aix-Marseille Université Ecole Doctorale des Sciences de la Vie et de la Santé Thèse de Doctorat d’Université Mention Microbiologie Clément AUSSIGNARGUES Optimisation du métabolisme énergétique du soufre chez la bactérie hyperthermophile Aquifex aeolicus Soutenue le 17 Décembre 2012 devant le jury: Pr. Frédéric BARRAS Dr. Laurent COURNAC Dr. Bruno FRANZETTI Dr. Marie-Thérèse GIUDICI-ORTICONI Dr. Anne GODFROY Dr. Marianne ILBERT Laboratoire de Bioénergétique et Ingénierie des Protéines Centre National de la Recherche Scientifique Aix-Marseille Université Ecole Doctorale des Sciences de la Vie et de la Santé Thèse de Doctorat d’Université Mention Microbiologie Clément AUSSIGNARGUES Optimisation du métabolisme énergétique du soufre chez la bactérie hyperthermophile Aquifex aeolicus Soutenue le 17 Décembre 2012 devant le jury: Pr. Frédéric BARRAS Dr. Laurent COURNAC Dr. Bruno FRANZETTI Dr. Marie-Thérèse GIUDICI-ORTICONI Dr. Anne GODFROY Dr. Marianne ILBERT Laboratoire de Bioénergétique et Ingénierie des Protéines Centre National de la Recherche Scientifique Sommaire Sommaire Introduction 2 Chapitre I- Métabolismes énergétiques du soufre 4 I) Le soufre, un élément essentiel aux multiples facettes 6 II) Le soufre utilisé comme composé énergétique 9 A) Oxydation des composés du soufre 10 1. Oxydation du sulfure d’hydrogène H2S 10 a) La Sulfure Quinone Oxydoréductase (SQR) 10 b) La flavocytochrome c sulfure déshydrogénase (FCSD) 13 2- 2. Oxydation du thiosulfate (S2O3 ) 14 a) Thiosulfate : accepteur oxydoréductase (TAOR) 14 b) Le système Sox 16 2- 3. Oxydation du sulfite (SO3 ) 20 a) Sulfite : accepteur oxydoréductase (SAOR) 21 b) Voie de l’APS 23 4. Oxydation du soufre stocké dans les globules 26 B) La réduction du soufre : soufre/polysulfure réductase 29 C) Un cas particulier : la dismutation du soufre (SOR) 33 1. Réactions catalysées 34 2. Structure et architecture 34 a) Le monomère 34 Sommaire b) La protéine entière 36 3. Vue générale du fonctionnement de la SOR 38 III) Complexité des métabolismes énergétiques du soufre : quelques exemples 39 A) Les archées thermoacidophiles : Acidianus ambivalens 39 B) Les bactéries sulfureuses phototrophes 41 C) Les bactéries acidophiles et mésophiles du genre Acidithiobacillus 43 IV) Réflexions sur les modèles des métabolismes énergétique du soufre 46 Chapitre II- Les rhodanèses 48 I) Caractéristiques des rhodanèses 51 A) Organisation en domaines 51 B) Séquence protéique 55 C) Site actif 56 D) Structure tridimensionnelle 57 E) Catalyse et mécanisme catalytique 60 II) Fonction des rhodanèses 62 A) Les protéines à domaine rhodanèse associé 62 Sommaire B) Rhodanèses à un ou plusieurs domaines 65 1. Chez les eucaryotes 66 2. Chez les procaryotes 67 III) Vue d’ensemble de la superfamille des rhodanèses 69 Chapitre III- Aquifex aeolicus 72 I) Les Aquificales 74 II) Présentation de notre modèle d’étude : Aquifex aeolicus 78 A) Morphologie, motilité et adhérence 79 B) Génome 80 C) Physiologie 81 III) Métabolisme énergétique du soufre chez Aquifex aeolicus 83 A) Voie H2S/O2 83 B) Voie H2/S° 86 C) La SOR 88 D) Les rhodanèses 89 E) NADH déshydrogénase (complexe I) 90 Sommaire F) Vision globale du métabolisme énergétique du soufre chez Aquifex aeolicus 92 Chapitre IV- Objectifs du travail 94 Matériel et méthodes 98 I) Culture bactérienne 100 A) Aquifex aeolicus 100 B) Escherichia coli 101 II) Obtention du matériel biologique 102 A) Aquifex aeolicus 102 1. Fractionnement cellulaire 102 2. Solubilisation des protéines membranaires 103 3. Globules de soufre 104 B) Escherichia coli 104 III) Méthodes de purification des protéines 105 A) Chromatographie d’adsorption 105 Sommaire B) Chromatographies d’échange d’ions 105 1. Chromatographie à basse pression 105 2. Chromatographie à haute pression 105 C) Chromatographie d’exclusion 106 D) Protocoles de purification 106 1. La SQR 106 2. Supercomplexe hydrogénase/soufre réductase 106 3. La SOR et Aq-477 107 IV) Techniques d’analyses biochimiques 111 A) Dosage protéique 111 B) Electrophorèse sur gel d’acrylamide 111 1. Condition dénaturante : Tris-glycine SDS-PAGE 111 2. Condition native : Tris-glycine PAGE 111 3. Gel Bleu Natif 112 4. Gels Bleu Natif à pores larges (BNPL) 113 5. Transfert sur membrane 113 C) Techniques de révélation après électrophorèse 114 1. Colorations 114 Sommaire 2. Immunodétection 115 3. Détection d’activités enzymatiques 116 a) Activité Sulfure Quinone Réductase 116 b) Activité hydrogénase 116 c) Activité cytochrome c oxydase 117 d) Activité NADH-déshydrogénase (complexe I) 118 e) Activité thiosulfate : cyanure soufre transférase (rhodanèse) 118 V) Mesures d’activités enzymatiques au spectrophotomètre 119 A) Transfert d’électrons de l’hydrogénase à la soufre réductase 119 B) Activité Soufre Oxygénase Réductase (SOR) 121 C) Activité thiosulfate : cyanure soufre transférase (rhodanèse) 121 VI) Etude d’intéractions protéine-protéine 122 A) La résonance plasmonique de surface (BIAcore) 122 1. Principe de fonctionnement 122 2. Interface utilisée 123 3. Fixation du ligand et mesure de l’interaction 123 B) Pontage covalent in vitro 124 C) Gel retard 124 VII) Analyses protéomiques 125 Sommaire A. Identification des protéines par séquençage N-terminal 125 B. Identification des protéines par spectrométrie de masse 125 1) Maldi-TOF 126 2) Trappe à ions 126 3) Orbitrap 126 C. Analyse de protéines entières par spectrométrie de masse 127 VIII) Microscopies 127 A) Microscopie optique 127 B) Microscopie électronique 127 IX) Analyses in silico 128 A) Recherches de protéines homologues et alignements multiples de séquences 128 B) Prédiction de localisation et de structure secondaire 128 C) Modélisations 129 Résultats et discussion 130 Chapitre I- Métabolisme énergétique du soufre chez Aquifex aeolicus 132 Sommaire I) Une rhodanèse au cœur du trafic 134 II) Une source potentielle de substrat: les globules de soufre 138 A) Influence des conditions de culture 138 B) Tentative d’isolation des globules de soufre 141 III) Métabolisme énergétique du soufre chez Aquifex aeolicus : un nouveau Modèle 143 A) Identification de systèmes potentiellement impliqués dans le métabolisme énergétique du soufre chez Aquifex aeolicus 144 1. Oxydation du thiosulfate 144 2. Oxydation de l’H2S 146 3. Oxydation du soufre 149 4. Oxydation du sulfite 150 a) Voie de l’APS 150 b) Aq_979 150 B) Construction d’un modèle du métabolisme énergétique du soufre chez Aquifex aeolicus 153 Chapitre II- Recherche d’un niveau d’organisation supérieure dans l’architecture des voies respiratoires chez Aquifex aeolicus 155 I) Introduction : Organisation des complexes protéiques membranaires 157 Sommaire II) Développement et optimisation de gels natifs pour la visualisation de mégacomplexes 163 III) Préparation et optimisation des échantillons pour la détection de mégacomplexes 166 IV) Développement des gels natifs à larges pores pour la visualisation des mégacomplexes 169 V) Impact des conditions de culture sur la présence des superédifices 174 VI) Discussion 176 Chapitre III- Mise en évidence d’un nanocompartiment protéique et de sa ferritine atypique chez la bactérie hyperthermophile Aquifex aeolicus 178 Conclusions et perspectives 197 Références bibliographiques 203 Introduction 1 Introduction IINNTTRROODDUUCCTTIIOONN 2 Introduction 3 Introduction Chapitre I Métabolismes énergétiques du soufre 4 Introduction 5 Introduction Métabolismes énergétiques du soufre I) Le soufre, un élément essentiel aux multiples facettes Le soufre, élément connu depuis l‘Antiquité, a depuis toujours intéressé les hommes. Il était connu pour « éloigner la vermine » selon Homère, utilisé dans la préparation de la poudre à canons par les chinois au XIe siècle et toujours utilisé dans divers processus industriels (dont la vulcanisation du caoutchouc) de nos jours. Le soufre a également un impact environnemental très important, justifiant les nombreuses études qui lui sont consacrées : le dioxyde de soufre par exemple, rejeté dans l‘atmosphère par la combustion du pétrole et du charbon ou lors d‘éruptions volcaniques, se combine avec l‘eau dans les nuages pour donner de l‘acide sulfurique. Ce dernier est notamment responsable des tristement célèbres pluies acides, mais il a également un effet refroidissant sur la partie inférieure de l‘atmosphère terrestre en réfléchissant le rayonnement solaire. C‘est ainsi qu‘une diminution de la température de 0,5°C a été mesurée en 1992 après l‘éruption du Pinatubo en 1991. L‘injection de particules de soufre dans l‘atmosphère comme solution d‘urgence au réchauffement climatique a également été discutée dans la communauté scientifique, notamment par le prix Nobel de chimie Paul Crutzen (Crutzen, 2006). La chimie du soufre, tant organique que minérale, est très riche, puisqu‘on le retrouve à des degrés d‘oxydation variés selon les éléments avec lesquels il est combiné. Ainsi, le soufre du sulfure d‘hydrogène (H2S) est à son plus bas degré d‘oxydation (-2), alors que celui 2- du sulfate (SO4 ) est à +6 (Table 1 formes du soufre). Cette large gamme d‘états d‘oxydation place le soufre au centre d‘un éventail de réactions d‘oxydoréduction : la théorie du monde fer-soufre propose ainsi l‘implication de composés du type sulfure de fer (FeS, Fe2S) comme permettant la formation des premières molécules organiques à l‘origine de la Vie (Dörr et al., 2003; Wachtershauser, 2000). 6 Introduction Composés Formule Etat d’oxydation 2- Sulfate SO4 + 6 2- Sulfite SO3 + 4 Dioxyde de soufre SO2 + 4 2- + 2,5 (0 pour les soufres « internes », + 5 Tétrathionate S4O6 pour les deux soufres « externes ») 2- Thiosulfate S2O3 + 2 0 Soufre élémentaire S , S8 0 - - 0 pour les soufres « internes », - 1 pour Polysulfure S-S(n)-S les deux soufres « externes » Pyrite FeS2 - 1 Monosulfure de fer FeS - 2 Sulfure d‘hydrogène H2S - 2 Tableau 1. Degrés d’oxydation des composés soufrés. L‘état d‘oxydation de l‘atome est celui de l‘atome de soufre de la molécule. S8 représente le cyclo-octasoufre. L‘incorporation du soufre dans des biomolécules telles que les protéines, les vitamines, les cofacteurs… est connue depuis bien longtemps, ce qui en fait une brique fondamentale, l‘un des éléments essentiels de la Vie au même titre que le carbone, l‘oxygène, l‘azote ou l‘hydrogène.
Recommended publications
  • Nomenclature of Carboxylic Acids • Select the Longest Carbon Chain Containing the Carboxyl Group
    Chapter 5 Carboxylic Acids and Esters Carboxylic Acids • Carboxylic acids are weak organic acids which Chapter 5 contain the carboxyl group (RCO2H): Carboxylic Acids and Esters O C O H O RCOOH RCO2H Chapter Objectives: O condensed ways of • Learn to recognize the carboxylic acid, ester, and related functional groups. RCOH writing the carboxyl • Learn the IUPAC system for naming carboxylic acids and esters. group a carboxylic acid C H • Learn the important physical properties of the carboxylic acids and esters. • Learn the major chemical reaction of carboxylic acids and esters, and learn how to O predict the products of ester synthesis and hydrolysis reactions. the carboxyl group • Learn some of the important properties of condensation polymers, especially the polyesters. Mr. Kevin A. Boudreaux • The tart flavor of sour-tasting foods is often caused Angelo State University CHEM 2353 Fundamentals of Organic Chemistry by the presence of carboxylic acids. Organic and Biochemistry for Today (Seager & Slabaugh) www.angelo.edu/faculty/kboudrea 2 Nomenclature of Carboxylic Acids • Select the longest carbon chain containing the carboxyl group. The -e ending of the parent alkane name is replaced by the suffix -oic acid. • The carboxyl carbon is always numbered “1” but the number is not included in the name. • Name the substituents attached to the chain in the Nomenclature of usual way. • Aromatic carboxylic acids (i.e., with a CO2H Carboxylic Acids directly connected to a benzene ring) are named after the parent compound, benzoic acid. O C OH 3
    [Show full text]
  • And Intermolecular Addition of Carboxylic Acids to Alkynes in Aqueous Media: a Review
    catalysts Review Metal-Catalyzed Intra- and Intermolecular Addition of Carboxylic Acids to Alkynes in Aqueous Media: A Review Javier Francos and Victorio Cadierno * Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, IUQOEM, Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-985-103453 Received: 19 October 2017; Accepted: 2 November 2017; Published: 6 November 2017 Abstract: The metal-catalyzed addition of carboxylic acids to alkynes is a very effective tool for the synthesis of carboxylate-functionalized olefinic compounds in an atom-economical manner. Thus, a large variety of synthetically useful lactones and enol-esters can be accessed through the intra- or intermolecular versions of this process. In order to reduce the environmental impact of these reactions, considerable efforts have been devoted in recent years to the development of catalytic systems able to operate in aqueous media, which represent a real challenge taking into account the tendency of alkynes to undergo hydration in the presence of transition metals. Despite this, different Pd, Pt, Au, Cu and Ru catalysts capable of promoting the intra- and intermolecular addition of carboxylic acids to alkynes in a selective manner in aqueous environments have appeared in the literature. In this review article, an overview of this chemistry is provided. The synthesis of b-oxo esters by catalytic addition of carboxylic acids to terminal propargylic alcohols in water is also discussed. Keywords: aqueous catalysis; alkynes; carboxylic acids; alkynoic acids; hydrocarboxylation reactions; cycloisomerization reactions; enol esters; lactones; b-oxo esters 1.
    [Show full text]
  • Carboxylic Acid Addition to Terminal Alkynes Utilizing Ammonium Tagged
    Journal of Organometallic Chemistry 883 (2019) 11e16 Contents lists available at ScienceDirect Journal of Organometallic Chemistry journal homepage: www.elsevier.com/locate/jorganchem Carboxylic acid addition to terminal alkynes utilizing ammonium tagged Hoveyda-Grubbs catalyst supported on magnetically separable core/shell silica: A highly reusable and air compatible catalytic system € € * ** Bengi Ozgün Oztürk , Didar Gürcü, Solmaz Karabulut S¸ ehitoglu Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe, Ankara, Turkey article info abstract Article history: In this study, the performance of ammonium tagged Hoveyda-Grubbs catalyst supported on magnetically Received 24 October 2018 separable core/shell silica gel was tested on carboxylic acid addition reactions to terminal alkynes using a Received in revised form variety of carboxylic acid derivatives under air atmosphere. The catalytic system was found to be 13 December 2018 compatible with air atmosphere and can tolerate even non-degassed solvents. The reaction parameters Accepted 10 January 2019 such as temperature, substrate/catalyst ratio and the effect of carboxylic acid on the selectivity and yield Available online 14 January 2019 of the reaction were investigated in details. The reaction of arylacetylenes with acetic acid yielded the corresponding E-isomer with conversion values up to 99% with a catalytic loading of 1% Ru. The reus- Keywords: Carboxylic acid ability of the catalyst was tested using acetic acid/benzoic acid and phenylacetylene in toluene at 85 C Alkyne under air atmosphere. The catalyst was found to be highly reusable and maintained its activity up to 11th Ruthenium run, reaching a conversion value of 83% with minimum ruthenium leaching. Reusable catalyst © 2019 Elsevier B.V.
    [Show full text]
  • Carboxylic Acids and Reduction/Oxidation Carboxylic
    Carboxylic Acids and Reduction/Oxidation • Addition of H (or “H-”) Reduction 2 • Loss of O2 or O carboxylic aldehyde alcohol alkane acid (or ketone) • Loss of H 2 Oxidation • Addition of O2 or O + Neither oxidation nor reduction: Addition or loss of H , H2O, or HX Carboxylic acids are the most oxidized functional group of carbon. Carboxylic Acids via Oxidation Chromate oxidation of primary alcohols: unavoidably Na2Cr2O7 H2SO4 aldehyde carboxylic alcohol acid Oxidation of aldehydes with Tollens’ reagent: 1. Ag2O, NH3 2. H O+ 3 Selective for aldehydes; will not oxidize alcohols. aldehyde carboxylic acid Carboxylic Acids via Oxidation Oxidative cleavage of alkynes: 1. O3 2. H2O internal alkyne Oxidation of benzylic carbons: KMnO4 Purifying Carboxylic Acids by Acid-Base Extraction Acidic and basic organic molecules can be separated from other substances by manipulating their protonation state and solubility. Let’s say we run a reaction. Na2Cr2O7 + unreacted H2SO4 + Na+ 3+ We want this… + Cr(H2O)6 + organic + HSO - …but not these. side products 4 How do we isolate our desired product from the other materials, without using distillation or chromatography? Acid-Base Extraction Step 1: Remove inorganics from organics via differential solubility. a separatory (sept) funnel - Na+ HSO4 Cr(H O) 3+ H2O 2 6 CHCl3 + organic side densities: products (H2O) = 1 g/mL (CHCl3) = 1.48 g/mL A large density difference ensures the two liquids separate completely and quickly. (Much faster than, say, oil and water.) Step 2: Add basic water to deprotonate carboxylic acid, and transfer it to the aqueous phase. - Na+ HSO4 3+ discard Cr(H2O)6 H2O layer + organic + organic side side products products add discard NaOH/ H2O CHCl3 layer + organic side products Step 3: Re-acidify carboxylate to return it to organic solution.
    [Show full text]
  • Chapter 20: Carboxylic Acids and Nitriles
    CHAPTER 20 CARBOXYLIC ACIDS Based on McMurry’s Organic Chemistry, 6th edition Dr.Mohanad Al-Hachamii The Importance of Carboxylic Acids (RCO2H) Starting materials for acyl derivatives (esters, amides, and acid chlorides) Abundant in nature from oxidation of aldehydes and alcohols in metabolism Acetic acid, CH3CO2H, - vinegar Butanoic acid, CH3CH2CH2CO2H (rancid butter) Long-chain aliphatic acids from the breakdown of fats Based on McMurry, Organic Chemistry, Chapter 20, 6th edition, (c) 2003 Dr.Mohanad Al-Hachamii 2 20.1 Naming Carboxylic Acids •Carboxylic Acids, RCO2H •If derived from open-chain alkanes, replace the terminal -e of the alkane name with -oic acid •The carboxyl carbon atom is C1 Based on McMurry, Organic Chemistry, Chapter 20, 6th Dr.Mohanad Al-Hachamii edition, (c) 2003 3 Alternative Names Compounds with CO2H bonded to a ring are named using the suffix -carboxylic acid The CO2H carbon is not itself numbered in this system Use common names for formic acid (HCOOH) and acetic acid (CH3COOH) – see Table 20.1 Based on McMurry, Organic Chemistry, Chapter 20, 6th edition, (c) 2003 Dr.Mohanad Al-Hachamii 4 5 • Greek letters are used to designate the location of substituents in common names. • The carbon adjacent to the COOH is called the carbon, followed by the carbon, followed by the carbon, the carbon and so forth down the chain. • The last carbon in the chain is sometimes called the carbon. • The carbon in the common system is numbered C2 in the IUPAC system. 6 • Compounds containing two carboxy groups are called diacids. Diacids are named using the suffix –dioic acid.
    [Show full text]
  • Amidation of Carboxylic Acids with Amines by Nb2o5 As a Reusable Lewis Acid Catalyst
    Title Amidation of Carboxylic Acids with Amines by Nb2O5 as a Reusable Lewis Acid Catalyst Author(s) Ali, Md. A.; Siddiki, S. M. A. H.; Onodera, Wataru; Kon, Kenichi; Shimizu, Ken-ichi ChemCatChem, 7(21), 3555-3561 Citation https://doi.org/10.1002/cctc.201500672 Issue Date 2015-11-02 Doc URL http://hdl.handle.net/2115/63409 This is the accepted version of the following article: ChemCatChem. 7, 3555-3561(2015), which has been published in Rights final form at http://onlinelibrary.wiley.com/doi/10.1002/cctc.201500672. Type article (author version) File Information amide-wi.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Amidation of Carboxylic Acids with Amines by Nb2O5 as Reusable Lewis Acid Catalyst Md. A. Ali,[a] S. M. A. H. Siddiki,[b] Wataru Onodera,[a] Kenichi Kon,[a] Ken-ichi Shimizu*[a,b] [a] Catalysis Research Center, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan [b] Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan *Corresponding author Ken-ichi Shimizu Catalysis Research Center, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan E-mail: [email protected] Abstract: Among 28 types of heterogeneous and homogenous catalysts tested, Nb2O5 shows the highest yield for direct amidation of n-dodecanoic acid with a less reactive amine (aniline). The catalytic amidation by Nb2O5 is applicable to a wide range of carboxylic acids and amines with various functional groups, and the catalyst is reusable. Comparison of the results of the catalytic study and infrared (IR) study of the acetic acid adsorbed on the catalyst suggests that activation of carbonyl group of the carboxylic acid by Lewis acid sites on Nb2O5 is responsible for the high activity of Nb2O5.
    [Show full text]
  • Chemical Synthesis of Peptides and Peptide Thioesters Indrajeet Sharma Wayne State University
    Wayne State University Wayne State University Dissertations 1-1-2011 Chemical Synthesis Of Peptides And Peptide Thioesters Indrajeet Sharma Wayne State University Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Part of the Organic Chemistry Commons Recommended Citation Sharma, Indrajeet, "Chemical Synthesis Of Peptides And Peptide Thioesters" (2011). Wayne State University Dissertations. Paper 205. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. CHEMICAL SYNTHESIS OF PEPTIDES AND PEPTIDE THIOESTERS by INDRAJEET SHARMA DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2011 MAJOR: CHEMISTRY (Organic) Approved by: Advisor Date DEDICATION This dissertation is dedicated to my family for their endless love and support. ii ACKNOWLEDGEMENTS First and foremost, I would like to express my deepest gratitude to my graduate advisor Professor David Crich for his advice and mentoring through all the years of my research work in his laboratories at the University of Illinois at Chicago and at Wayne State University. This work would not have reached its zenith without his unwavering guidance. He has been really supportive of my work not only with his remarkable knowledge and painstaking guidance, but also with his valuable suggestions and constant encouragement. I wish to thank my committee members Professor Zhongwu Guo, Professor Ashok S. Bhagwat, and Professor Steven J. Sucheck for their valuable time and suggestions to this dissertation and defense.
    [Show full text]
  • Synthesis of New Linear Polymers Containing Thiocarbonyl Groups: Polyaddition of Dicarbothioic Acid to Diolefins
    Polymer Journal, Vol. 26, No. 1, pp 49-59 (1994) Synthesis of New Linear Polymers Containing Thiocarbonyl Groups: Polyaddition of Dicarbothioic Acid to Diolefins Eiichi KOBAYASHI,* Kazuyoshi TENDO, Masato KATO, and Sadahito AoSHIMA Department of Industrial Chemistry, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba 278, Japan (Received May 24, 1993) ABSTRACT: The polyaddition of 1,4-benzenedicarbothioic acid to 1,4-divinylbenzene or 1,4-diisopropenylbenzene was carried out at 70°C in toluene under a nitrogen atmosphere by radical mode such as by addition of AIBN or UV irradiation. Both diolefin compounds gave polymers in a 90% yield. The polymer obtained from I ,4-diisopropenylbenzene was soluble in chloroform, and the molecular weight of the polymer (Mw) was 40000. On the other hand, the polymer obtained from 1,4-divinylbenzene was partly soluble in conventional organic solvents, possibly due to a cross linkage formation by a pendant vinyl group. The model addition reaction of thiobenzoic acid to styrene gave a by-product ca. 8% being the I : 2 adduct with respect to thiobenzoic acid and styrene. Alkali hydrolysis of both polymers was investigated to confirm the cross linkage structures in the polymers. KEY WORDS Polyaddition / Polythioester / Addition Reaction/ Hydrolysis / 1,4-Benzenedicarbothioic Acid / 1,4-Divinylbenzene / 1,4-Diisoprope­ nylbenzene / Thiobenzoic Acid/ Styrene/ oc-Methylstyrene / Addition reactions of carbothioic acids to (nb8 = 1.81) and exhibited the reversible phase olefins occur easily and are used to prepare transition by heat mode. various thioesters or polythioesters. For CH2=CH-<Q)--CH=CH2 + HS-<Q)--SH R or UV example, Ipatieff et al.
    [Show full text]
  • REVIEW ARTICLE View Journal | View Issue
    Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Developments and recent advancements in the field of endogenous amino acid selective bond Cite this: Chem. Soc. Rev., 2015, 44,5495 forming reactions for bioconjugation Oleksandr Konievab and Alain Wagner*a Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond Received 19th January 2015 forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino DOI: 10.1039/c5cs00048c acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have www.rsc.org/chemsocrev been discussed. Creative Commons Attribution 3.0 Unported Licence. Contents 1.5 Histidine 1.5.1 Epoxides Introduction 1.5.2 Complexes with transition metals 1 In-chain conjugation 1.5.3 Michael addition 1.1 Lysine 1.5.4 Miscellaneous histidine-selective reagents 1.1.1 Isocyanates and isothiocyanates 1.6 Tyrosine This article is licensed under a 1.1.2 Activated esters 1.6.1 O-Derivatisation 1.1.3 Reductive amination of aldehydes 1.6.2 O-Oxidatiove coupling 1.1.4 Sulfonyl halides and sulfonates 1.6.3 Diazonium reagents Open Access Article. Published on 22 May 2015. Downloaded 10/8/2021 1:59:09 PM.
    [Show full text]
  • Experiment 7 – Aldehydes, Ketones, and Carboxylic Acids
    Experiment 7 – Aldehydes, Ketones, and Carboxylic Acids Aldehydes and ketones are molecules that contain a carbonyl group, which is an oxygen atom with a double bond to a carbon atom. In an aldehyde, the carbonyl group is on the end of the molecule. In a ketone, the carbonyl group is somewhere in the middle of the molecule. Example structures of aldehydes and ketones are given below. O O O O H 2 C C CH C C C 3 H C C H H3C CH3 H3C C H3C H 3 H H2 2 An aldehyde An aldehyde A ketone A ketone Carboxylic acids contain the carboxyl functional group, shown below. O O O C C C CH3 OH H3C OH HO C H2 A carboxyl group A carboxylic acid A carboxylic acid Physical Properties Aldehydes and ketones are polar because they contain a carbonyl group (oxygen is very electronegative compared to carbon). Aldehydes and ketones can form hydrogen bonds with water, so small aldehydes and ketones are water-soluble. However, they cannot form hydrogen bonds to each other, so their boiling points are not very high. (Their boiling points are higher than the corresponding alkanes, but lower than the corresponding alcohols.) Carboxylic acids are polar and can form hydrogen bonds with water. Small carboxylic acids are therefore water-soluble. They can also form hydrogen bonds with each other, so they have relatively high boiling points. As a comparison, the following molecules have very similar molar masses, but different boiling points. The differences in the boiling points are thus due to differences in polarity and hydrogen-bonding ability.
    [Show full text]
  • New Catalytic Transformations of Carboxylic Acids*
    Pure Appl. Chem., Vol. 80, No. 8, pp. 1725–1733, 2008. doi:10.1351/pac200880081725 © 2008 IUPAC New catalytic transformations of carboxylic acids* Lukas J. Gooßen‡, Käthe Gooßen, Nuria Rodríguez, Mathieu Blanchot, Christophe Linder, and Bettina Zimmermann FB Chemie – Department of Organic Chemistry, Technical University Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany Abstract: A series of metal-catalyzed processes are presented, in which carboxylic acids act as sources of either carbon nucleophiles or electrophiles, depending on the catalyst em- ployed, the mode of activation, and the reaction conditions. A first reaction mode is the ad- dition of carboxylic acids or amides over C–C multiple bonds, giving rise to enol esters or enamides, respectively. The challenge here is to control both the regio- and stereoselectivity of these reactions by the choice of the catalyst system. Alternatively, carboxylic acids can ef- ficiently be decarboxylated using new Cu catalysts to give aryl-metal intermediates. Under protic conditions, these carbon nucleophiles give the corresponding arenes. If carboxylate salts are employed instead of the free acids, the aryl-metal species resulting from the catalytic decarboxylation can be utilized for the synthesis of biaryls in a novel cross-coupling reaction with aryl halides, thus replacing stoichiometric organometallic reagents. An activation with coupling reagents or simple conversion to esters allows the oxidative addition of carboxylic acids to transition-metal catalysts under formation of acyl-metal species, which can either be reduced to aldehydes, or coupled with nucleophiles. At elevated temperatures, such acyl- metal species decarbonylate, so that carboxylic acids become synthetic equivalents for aryl or alkyl halides, e.g., in Heck reactions.
    [Show full text]
  • 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14
    (7-9/94)(10/96)(06,9-11/04) Neuman Chapter 13 Chapter 13 Carbonyl Compounds: Ketones, Aldehydes, Carboxylic Acids from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids **************************************************************************************
    [Show full text]