The Red List of Trees of Guatemala
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abacca Mosaic Virus
Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana, -
Pouteria Sapota
Pouteria sapota Pouteria sapota, mamey sapote, is a species of tree na- propagated by grafting, which ensures the new plant has tive to Central America, naturally ranging from southern the same characteristics as the parent, especially its fruit. Mexico to southern Costa Rica. Today, the tree is cul- It is also considerably faster than growing trees by seed. tivated not only in Mexico, but also in Central America, The leaves are pointed at both ends, 4 to 12 inches in the Caribbean, and South Florida for its fruit, which is length and grow in clusters at the ends of branches. commonly eaten in many Latin American countries. It has different names depending on the country: mamey The fruit is about 10 to 25 cm (4 to 10 inches) long and (Cuba), zapote colorado (Costa Rica), níspero and zapote 8 to 12 cm (3 to 5 inches) wide and has flesh ranging in rojo (South America), among others. color from pink to orange to red. The brown skin has a texture somewhat between sandpaper and the fuzz on a peach. The fruit’s texture is creamy and soft. A mamey 1 Description sapote is ripe when the flesh is pink when a fleck of the skin is removed. The flesh should give slightly, as with a ripe kiwifruit. The mamey sapote is related to other sapotes such as sapodilla (Manilkara zapota), abiu (P. caimito) and canistel (P. campechiana), but unrelated to the black sapote (Diospyros digyna) and white sapote (Casimiroa edulis).[2] It should not be confused with the mammee ap- ple (Mammea americana). -
The Geranium Family, Geraniaceae, and the Mallow Family, Malvaceae
THE GERANIUM FAMILY, GERANIACEAE, AND THE MALLOW FAMILY, MALVACEAE TWO SOMETIMES CONFUSED FAMILIES PROMINENT IN SOME MEDITERRANEAN CLIMATE AREAS The Geraniaceae is a family of herbaceous plants or small shrubs, sometimes with succulent stems • The family is noted for its often palmately veined and lobed leaves, although some also have pinnately divided leaves • The leaves all have pairs of stipules at their base • The flowers may be regular and symmetrical or somewhat irregular • The floral plan is 5 separate sepals and petals, 5 or 10 stamens, and a superior ovary • The most distinctive feature is the beak of fused styles on top of the ovary Here you see a typical geranium flower This nonnative weedy geranium shows the styles forming a beak The geranium family is also noted for its seed dispersal • The styles either actively eject the seeds from each compartment of the ovary or… • They twist and embed themselves in clothing and fur to hitch a ride • The Geraniaceae is prominent in the Mediterranean Basin and the Cape Province of South Africa • It is also found in California but few species here are drought tolerant • California does have several introduced weedy members Here you see a geranium flinging the seeds from sections of the ovary when the styles curl up Three genera typify the Geraniaceae: Erodium, Geranium, and Pelargonium • Erodiums (common name filaree or clocks) typically have pinnately veined, sometimes dissected leaves; many species are weeds in California • Geraniums (that is, the true geraniums) typically have palmately veined leaves and perfectly symmetrical flowers. Most are herbaceous annuals or perennials • Pelargoniums (the so-called garden geraniums or storksbills) have asymmetrical flowers and range from perennials to succulents to shrubs The weedy filaree, Erodium cicutarium, produces small pink-purple flowers in California’s spring grasslands Here are the beaked unripe fruits of filaree Many of the perennial erodiums from the Mediterranean make well-behaved ground covers for California gardens Here are the flowers of the charming E. -
EVOLUTIONARY HISTORY of Cedrela (MELIACEAE) in CENTRAL BRAZIL
ALEXANDER HUAMÁN-MERA EVOLUTIONARY HISTORY OF Cedrela (MELIACEAE) IN CENTRAL BRAZIL Thesis submitted to the Botany Graduate Program of the Universidade Federal de Viçosa, as part of the requirements to obtain the title of Doctor Scientiae. VIÇOSA MINAS GERAIS – BRAZIL 2018 i To my parents, Mardóneo and Yolanda and my family in my country, Peru, to my own family, Yuriko and Akira, And to Scientia amabilis ii ACKNOWLEDGMENTS To my wife Yuriko and my little son Alexander Akira, for their support, patient and constantly love. To the Programa de Pós-graduação em Botânica and its professors of the Universidade Federal de Viçosa (UFV) for the new aknowlegments I acquired during my stage as doctoral student. To Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the grants and scholarship fundings. To my Professor Luiz Orlando de Oliviera for the guidance, dedication and especially by stimulated my interest in the Evolutionary Biology. To Juan Manuel Díaz-Soto who unceasingly supported in fieldwork and lab work of the present study, as well as for his friendship and scientific support. To my friends and colleagues in the Laboratory of Biologia Molecular e Filogeografia: Jefferson, Rafaela, Thaís, Thamyres, and Tiago; and to my friends who are no more in the laboratory: Érica, Hugo, Khalid, Leandro, and Thiago, for their companionship and friendship. To my professors of the Departamento Académico de Botánica of the Universidad Nacional Pedro Ruiz Gallo: Guillermo Delgado Paredes, Consuelo Rojas Idrogo, Leopoldo Vásquez Nuñes, and Josefa Escurra Puicón for their support and teachings during my undergraduate course. -
The Role of Fir Species in the Silviculture of British Forests
Kastamonu Üni., Orman Fakültesi Dergisi, 2012, Özel Sayı: 15-26 Kastamonu Univ., Journal of Forestry Faculty, 2012, Special Issue The Role of True Fir Species in the Silviculture of British Forests: past, present and future W.L. MASON Forest Research, Northern Research Station, Roslin, Midlothian, Scotland EH25 9SY, U.K. E.mail:[email protected] Abstract There are no true fir species (Abies spp.) native to the British Isles: the first to be introduced was Abies alba in the 1600s which was planted on some scale until the late 1800s when it proved vulnerable to an insect pest. Thereafter interest switched to North American species, particularly grand (Abies grandis) and noble (Abies procera) firs. Provenance tests were established for A. alba, A. amabilis, A. grandis, and A. procera. Other silver fir species were trialled in forest plots with varying success. Although species such as grand fir have proved highly productive on favourable sites, their initial slow growth on new planting sites and limited tolerance of the moist nutrient-poor soils characteristic of upland Britain restricted their use in the afforestation programmes of the last century. As a consequence, in 2010, there were about 8000 ha of Abies species in Britain, comprising less than one per cent of the forest area. Recent species trials have confirmed that best growth is on mineral soils and that, in open ground conditions, establishment takes longer than for other conifers. However, changes in forest policies increasingly favour the use of Continuous Cover Forestry and the shade tolerant nature of many fir species makes them candidates for use with selection or shelterwood silvicultural systems. -
Native Trees of Mexico: Diversity, Distribution, Uses and Conservation
Native trees of Mexico: diversity, distribution, uses and conservation Oswaldo Tellez1,*, Efisio Mattana2,*, Mauricio Diazgranados2, Nicola Kühn2, Elena Castillo-Lorenzo2, Rafael Lira1, Leobardo Montes-Leyva1, Isela Rodriguez1, Cesar Mateo Flores Ortiz1, Michael Way2, Patricia Dávila1 and Tiziana Ulian2 1 Facultad de Estudios Superiores Iztacala, Av. De los Barrios 1, Los Reyes Iztacala Tlalnepantla, Universidad Nacional Autónoma de México, Estado de México, Mexico 2 Wellcome Trust Millennium Building, RH17 6TN, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom * These authors contributed equally to this work. ABSTRACT Background. Mexico is one of the most floristically rich countries in the world. Despite significant contributions made on the understanding of its unique flora, the knowledge on its diversity, geographic distribution and human uses, is still largely fragmented. Unfortunately, deforestation is heavily impacting this country and native tree species are under threat. The loss of trees has a direct impact on vital ecosystem services, affecting the natural capital of Mexico and people's livelihoods. Given the importance of trees in Mexico for many aspects of human well-being, it is critical to have a more complete understanding of their diversity, distribution, traditional uses and conservation status. We aimed to produce the most comprehensive database and catalogue on native trees of Mexico by filling those gaps, to support their in situ and ex situ conservation, promote their sustainable use, and inform reforestation and livelihoods programmes. Methods. A database with all the tree species reported for Mexico was prepared by compiling information from herbaria and reviewing the available floras. Species names were reconciled and various specialised sources were used to extract additional species information, i.e. -
Herbal Education Catalog Inside!
Herbal Education Catalog inside! 7 25274 81379 7 New Items in ABC's Herbal Education Catalog All items on page 2-5 ore nowavaila ble throug hou r 32-page catalog, wh ichis available followi ng page 82 of this issue of Herba/Gram. THE HEALING HERBS COOKBOOK by Pot Crocker. 1999. Information on preserving and cooking with herbs, plus o comprehensive reference on their medicinal properties. 115 vegetarian recipes incorporating whole, natural ingredients with o wide variety f of healing herbs. lists herbal organizations, moihnder sources, glossary, and herb-specific recipe index. t Softcover, 192 pp. $17.95 . #8400 r r HERBAL MEDICINE INTO THE NEW MILLENNIUM 1999 international conference on the science, regulation production and clinical application of medicinal plants ot Southern Cross University, New South Wales, Austrolio. View and hear from your computer the complete 18 hours of presentations from 27 of the world's most eminent medicinal plont experts from 9 countries together for the first time. CD ROM $150. SOUTHERN HERB GROWING #C009 by Modolene Hill and Gwen Barclay. 1987. Comprehensive guide to growing more than 130 herbs in the conditions peculiar to the American South. Propogotion, cultivation, harvesting, design ideas, usage, and history. 300 color photographs and 10 0 recipes. Softcover, 196 pp. $24.95. #B399 HEALING PLANTS 2000 16-MONTH CALENDAR by Steven Foster. Storts with September 1999. Includes traditional ond modern medicinal uses in addition to beautiful full color photographs. $11.99. #G016 AN ANCIENT EGYPTIAN HERBAL by Use Monniche. 1989. 94 species of plants ond trees used from before the pharaohs to the Coptic period. -
Biodiversity and Conservation of Sierra Chinaja: a Rapid Assessment of Biophysical Socioeconomic and Management Factors in Alta Verapaz Guatemala
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2006 Biodiversity and conservation of Sierra Chinaja: A rapid assessment of biophysical socioeconomic and management factors in Alta Verapaz Guatemala Curan A. Bonham The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bonham, Curan A., "Biodiversity and conservation of Sierra Chinaja: A rapid assessment of biophysical socioeconomic and management factors in Alta Verapaz Guatemala" (2006). Graduate Student Theses, Dissertations, & Professional Papers. 4760. https://scholarworks.umt.edu/etd/4760 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY The University of M ontana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. **Please check "Yes" or "No" and provide signature Yes, I grant permission No, I do not grant permission Author's Signature:i _ ________ Date: Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Biodiversity and Conservation of Sierra Chinaja: A r a p id ASSESSMENT OF BIOPHYSICAL, SOCIOECONOMIC, AND MANAGEMENT f a c t o r s in A l t a V e r a p a z , G u a t e m a l a by Curan A. -
Computer Vision Cracks the Leaf Code
Computer vision cracks the leaf code Peter Wilfa,1, Shengping Zhangb,c,1, Sharat Chikkerurd, Stefan A. Littlea,e, Scott L. Wingf, and Thomas Serreb,1 aDepartment of Geosciences, Pennsylvania State University, University Park, PA 16802; bDepartment of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, RI 02912; cSchool of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, Shandong, People’s Republic of China; dAzure Machine Learning, Microsoft, Cambridge, MA 02142; eLaboratoire Ecologie, Systématique et Evolution, Université Paris-Sud, 91405 Orsay Cedex, France; and fDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013 Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved February 1, 2016 (received for review December 14, 2015) Understanding the extremely variable, complex shape and venation species (15–19), and there is community interest in approaching this characters of angiosperm leaves is one of the most challenging problem through crowd-sourcing of images and machine-identifi- problems in botany. Machine learning offers opportunities to analyze cation contests (see www.imageclef.org). Nevertheless, very few large numbers of specimens, to discover novel leaf features of studies have made use of leaf venation (20, 21), and none has angiosperm clades that may have phylogenetic significance, and to attempted automated learning and classification above the species use those characters to classify unknowns. Previous computer vision level that may reveal characters with evolutionary significance. approaches have primarily focused on leaf identification at the species There is a developing literature on extraction and quantitative level. It remains an open question whether learning and classification analyses of whole-leaf venation networks (22–25). -
Origins of Plant Diversity in the California Floristic Province
ES45CH16-Baldwin ARI 27 October 2014 11:34 Origins of Plant Diversity in the California Floristic Province Bruce G. Baldwin Jepson Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720-2465; email: [email protected] Annu. Rev. Ecol. Evol. Syst. 2014. 45:347–69 Keywords The Annual Review of Ecology, Evolution, and California flora, endemism, plant evolution, phytogeography, speciation Systematics is online at ecolsys.annualreviews.org This article’s doi: Abstract 10.1146/annurev-ecolsys-110512-135847 Recent biogeographic and evolutionary studies have led to improved under- Copyright c 2014 by Annual Reviews. standing of the origins of exceptionally high plant diversity in the California All rights reserved Floristic Province (CA-FP). Spatial analyses of Californian plant diversity and endemism reinforce the importance of geographically isolated areas of high topographic and edaphic complexity as floristic hot spots, in which the Annu. Rev. Ecol. Evol. Syst. 2014.45:347-369. Downloaded from www.annualreviews.org relative influence of factors promoting evolutionary divergence and buffer- Access provided by University of California - Berkeley on 12/03/14. For personal use only. ing of lineages against extinction has gained increased attention. Molecular phylogenetic studies spanning the flora indicate that immediate sources of CA-FP lineages bearing endemic species diversity have been mostly within North America—especially within the west and southwest—even for groups of north temperate affinity, and that most diversification of extant lineages in the CA-FP has occurred since the mid-Miocene, with the transition toward summer-drying. Process-focused studies continue to implicate environmen- tal heterogeneity at local or broad geographic scales in evolutionary diver- gence within the CA-FP, often associated with reproductive or life-history shifts or sometimes hybridization. -
Tree and Tree-Like Species of Mexico: Asteraceae, Leguminosae, and Rubiaceae
Revista Mexicana de Biodiversidad 84: 439-470, 2013 Revista Mexicana de Biodiversidad 84: 439-470, 2013 DOI: 10.7550/rmb.32013 DOI: 10.7550/rmb.32013439 Tree and tree-like species of Mexico: Asteraceae, Leguminosae, and Rubiaceae Especies arbóreas y arborescentes de México: Asteraceae, Leguminosae y Rubiaceae Martin Ricker , Héctor M. Hernández, Mario Sousa and Helga Ochoterena Herbario Nacional de México, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70- 233, 04510 México D. F., Mexico. [email protected] Abstract. Trees or tree-like plants are defined here broadly as perennial, self-supporting plants with a total height of at least 5 m (without ascending leaves or inflorescences), and with one or several erect stems with a diameter of at least 10 cm. We continue our compilation of an updated list of all native Mexican tree species with the dicotyledonous families Asteraceae (36 species, 39% endemic), Leguminosae with its 3 subfamilies (449 species, 41% endemic), and Rubiaceae (134 species, 24% endemic). The tallest tree species reach 20 m in the Asteraceae, 70 m in the Leguminosae, and also 70 m in the Rubiaceae. The species-richest genus is Lonchocarpus with 67 tree species in Mexico. Three legume genera are endemic to Mexico (Conzattia, Hesperothamnus, and Heteroflorum). The appendix lists all species, including their original publication, references of taxonomic revisions, existence of subspecies or varieties, maximum height in Mexico, and endemism status. Key words: biodiversity, flora, tree definition. Resumen. Las plantas arbóreas o arborescentes se definen aquí en un sentido amplio como plantas perennes que se pueden sostener por sí solas, con una altura total de al menos 5 m (sin considerar hojas o inflorescencias ascendentes) y con uno o varios tallos erectos de un diámetro de al menos 10 cm. -
International Cooperation Among Botanic Gardens
INTERNATIONAL COOPERATION AMONG BOTANIC GARDENS: THE CONCEPT OF ESTABLISHING AGREEMENTS By Erich S. Rudyj A thesis submitted to the Faculty of the University of elaware in partial fulfillment of the requirements for the degree Master of Science in Public Horticulture Administration May 1988 © 1988 Erich S. Rudyj INTERNATIONAL COOPERATION~ AMONG BOTANIC GARDENS: THE CONCEPT OF EsrtBllSHING AGREEMENTS 8y Erich S. Rudyj Approved: _ James E. Swasey, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: _ James E. Swasey, Ph.D. Coordinator of the Longwood Graduate Program Approved: _ Richard 8. MLfrray, Ph.D. Associate Provost for Graduate Studies No man is an /land, intire of it selfe; every man is a peece of the Continent, a part of the maine; if a Clod bee washed away by the Sea, Europe is the lesse, as well as if a Promontorie '-"Jere, as well as if a Mannor of thy friends or of thine owne were; any mans death diminishes me, because I am involved in Mankinde; And therefore never send to know for whom the bell tolls; It tolls for thee. - JOHN DONNE - In the Seventeenth Meditation of the Devotions Upon Emergent Occasions (1624) iii ACKNOWLEDGEMENTS I wish to express my sincerest thanks to Donald Crossan, James Oliver and James Swasey, who, as members of my thesis committee, provided me with the kind of encouragement and guidance needed to merge both the fields of Public Horticulture and International Affairs. Special thanks are extended to the organizers and participants of the Tenth General Meeting and Conference of the International Association of Botanical Gardens (IABG) for their warmth, advice and indefatigable spirit of international cooperation.