The Role of Fir Species in the Silviculture of British Forests
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Japanese Journal by RICHARD E
Japanese Journal by RICHARD E. WEAVER, JR. ’ The aim of the Arnold Arboretum’s collecting trip to Japan and Korea in the fall of 1977 has already been explained briefly in the January- February issue of Arnoldia. The present article will describe in more detail our experiences in Japan; another in the next issue of Arnoldia will cover the Korean portion of the trip. Space allows for the de- scription of only the most memorable days, but a detailed itinerary with a list of the plants collected each day appears at the end of the article. Steve Spongberg and I left Logan International Airport 10 : 00 a.m. on September 1, and after changing planes in Chicago, headed for Tokyo. Our route took us across Canada’s Prairie Provinces, the southern Yukon Territory, and Alaska’s Coast Ranges to Anchorage. The views of the ice-clad peaks and glacier-filled valleys were spec- tacular and we had an enticing glimpse of Mt. McKinley on the horizon. After a frustrating hour at the Anchorage airport, we took off on the long last leg of our trip, arriving at our hotel approximately 15 hours after leaving Boston. The next morning was spent in the Ginza, the main shopping district, where everything was fascinating, particularly the flower and pro- duce shops. The former featured many standard items, but we found several surprises: One of the most common potted plants was a dwarf form of Gentiana scabra, a native Japanese gentian. Other gentians, particularly G. triflora var. japonica, a bottle-type, were sold as cut flowers. -
For More Than Forty Years, Japan Hes Been Cooperating with Partner Countries for Sustainable Forest Management
1. 2/3 OF APAN IS OVERED WITH ORESTS FOREST J C F RESOURCES CREATING A LAND OF GREENERY. ■ JAPAN 44° Japan is located at the eastern edge of the Eurasia, between longitudes of 123 and 149 degrees and latitudes 40° of 24 and 46 degrees. It is an archipelago extending over approximately 3,000 km from the Northeast to the 36° Southwest and land area of about 380,000 square kilometers. In general, the topography is very steep. Mountains ranging from 2,000-3,000 meters high form a 32° rugged backbone through the center of the country. 132° 136° 140° 1. Varietry of Forests Range from Sub-tropical forests to Alpine Forests. Japan has a wet monsoon climate and experiences distinct seasonal changes between the four seasons of spring, summer, autumn and winter. Also, meteorological conditions vary because of the latitudinal difference, dividing the forests into six types. Moreover, since high mountains range through the center of the country, it is possible to find vertical variation in forest types even in areas at the same latitude. Thus the forests are extremely rich in variation. ■ The Distribution of Japan’s Forests Atpine zone Sub-frigid forest Cool temperate coniferous forest mixed with broad-leaved trees Cool temperate forest Warm temperate forest Sub-tropical forest Sub-frigid forest ■ Effects of Altitude on Vegetation The example of Norikuradake mountain(3,026m) 3000m Pinus pumila Betula Ermanii Abies Mariesii Abies Veitchii 2000m Abies homolepis Fagus crenata Abies firma 1000m Cyclobalanopsis spp.(ever green oak). Sub-tropical forest 2 2/3 OF JAPAN IS COVERED WITH FORESTS Japanese cedar, REATING A AND OF REENERY. -
Potential Impact of Climate Change
Adhikari et al. Journal of Ecology and Environment (2018) 42:36 Journal of Ecology https://doi.org/10.1186/s41610-018-0095-y and Environment RESEARCH Open Access Potential impact of climate change on the species richness of subalpine plant species in the mountain national parks of South Korea Pradeep Adhikari, Man-Seok Shin, Ja-Young Jeon, Hyun Woo Kim, Seungbum Hong and Changwan Seo* Abstract Background: Subalpine ecosystems at high altitudes and latitudes are particularly sensitive to climate change. In South Korea, the prediction of the species richness of subalpine plant species under future climate change is not well studied. Thus, this study aims to assess the potential impact of climate change on species richness of subalpine plant species (14 species) in the 17 mountain national parks (MNPs) of South Korea under climate change scenarios’ representative concentration pathways (RCP) 4.5 and RCP 8.5 using maximum entropy (MaxEnt) and Migclim for the years 2050 and 2070. Results: Altogether, 723 species occurrence points of 14 species and six selected variables were used in modeling. The models developed for all species showed excellent performance (AUC > 0.89 and TSS > 0.70). The results predicted a significant loss of species richness in all MNPs. Under RCP 4.5, the range of reduction was predicted to be 15.38–94.02% by 2050 and 21.42–96.64% by 2070. Similarly, under RCP 8.5, it will decline 15.38–97.9% by 2050 and 23.07–100% by 2070. The reduction was relatively high in the MNPs located in the central regions (Songnisan and Gyeryongsan), eastern region (Juwangsan), and southern regions (Mudeungsan, Wolchulsan, Hallasan, and Jirisan) compared to the northern and northeastern regions (Odaesan, Seoraksan, Chiaksan, and Taebaeksan). -
Lepidoptera, Tortricidae) from Mt
Accepted Manuscript Tortricinae (Lepidoptera, Tortricidae) from Mt. Changbai-shan, China Kyu-Tek Park, Bong-Woo Lee, Yang-Seop Bae, Hui-Lin Han, Bong-Kyu Byun PII: S2287-884X(14)00025-9 DOI: 10.1016/j.japb.2014.04.007 Reference: JAPB 19 To appear in: Journal of Asia-Pacific Biodiversity Received Date: 28 February 2014 Revised Date: 13 March 2014 Accepted Date: 4 April 2014 Please cite this article as: Park K-T, Lee B-W, Bae Y-S, Han H-L, Byun B-K, Tortricinae (Lepidoptera, Tortricidae) from Mt. Changbai-shan, China, Journal of Asia-Pacific Biodiversity (2014), doi: 10.1016/ j.japb.2014.04.007. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT J. of Asia-Pacific Biodiversity Tortricinae (Lepidoptera, Tortricidae) from Mt. Changbai-shan, China Kyu-Tek Park a, Bong-Woo Lee b, Yang-Seop Bae c, Hui-Lin Han d, Bong-Kyu Byun e* a The Korean Academy of Science and Technology, Seongnam, 463-808, Korea b Division of Forest Biodiversity, Korea National Arboretum, Sumokwokgil, Pocheon, 487-821, Korea c Division of Life Sciences, University of Incheon, 12-1 Songdo-dong, Yeonsu-gu, Incheon, 406-772, Korea dSchool of Forestry, Northeast Forestry University, Harbin, 150040, P.R. -
Bunzo Hayata and His Contributions to the Flora of Taiwan
TAIWANIA, 54(1): 1-27, 2009 INVITED PAPER Bunzo Hayata and His Contributions to the Flora of Taiwan Hiroyoshi Ohashi Botanical Garden, Tohoku University, Sendai 980-0962, Japan. Email: [email protected] (Manuscript received 10 September 2008; accepted 24 October 2008) ABSTRACT: Bunzo Hayata was the founding father of the study of the flora of Taiwan. From 1900 to 1921 Taiwan’s flora was the focus of his attention. During that time he named about 1600 new taxa of vascular plants from Taiwan. Three topics are presented in this paper: a biography of Bunzo Hayata; Hayata’s contributions to the flora of Taiwan; and the current status of Hayata’s new taxa. The second item includes five subitems: i) floristic studies of Taiwan before Hayata, ii) the first 10 years of Hayata’s study of the flora of Taiwan, iii) Taiwania, iv) the second 10 years, and v) Hayata’s works after the flora of Taiwan. The third item is the first step of the evaluation of Hayata’s contribution to the flora of Taiwan. New taxa in Icones Plantarum Formosanarum vol. 10 and the gymnosperms described by Hayata from Taiwan are exampled in this paper. KEY WORDS: biography, Cupressaceae, flora of Taiwan, gymnosperms, Hayata Bunzo, Icones Plantarum Formosanarum, Taiwania, Taxodiaceae. 1944). Wu (1997) wrote a biography of Hayata in INTRODUCTION Chinese as a botanist who worked in Taiwan during the period of Japanese occupation based biographies and Bunzo Hayata (早田文藏) [1874-1934] (Fig. 1) was memoirs written in Japanese. Although there are many a Japanese botanist who described numerous new taxa in articles on the works of Hayata in Japanese, many of nearly every family of vascular plants of Taiwan. -
The Vulnerable Red Panda Ailurus Fulgens in Bhutan: Distribution, Conservation Status and Management Recommendations
Review The Vulnerable red panda Ailurus fulgens in Bhutan: distribution, conservation status and management recommendations S ANGAY D ORJI,RAJANATHAN R AJARATNAM and K ARL V ERNES Abstract The red panda Ailurus fulgens is categorized Introduction as Vulnerable on the IUCN Red List. Pressurized by an expanding human population, it is mainly threatened he red panda Ailurus fulgens is a threatened mammal by habitat destruction, with , 10,000 mature individuals Trestricted to temperate and sub-tropical forests of remaining. The red panda has been studied in India, China, the eastern Himalayas, with the exception of a tropical 2001 Nepal and, to a lesser extent, Myanmar, but no research has forest population in Meghalaya, India (Choudhury, ). 82 been published on this species in Bhutan. Here, we report on Its distribution ranges from western Nepal ( °E) into India, the current distribution and conservation status of the red Bhutan and northern Myanmar through to the Minshan panda in Bhutan using information gathered from field Mountains and upper Min Valley of Sichuan Province in 104 1999 surveys, interviews and unpublished reports. Red pandas are south-central China ( °E) (Wei et al., c; Choudhury, 2001 1 most common at 2,400–3,700 m altitude in fir Abies densa ; Fig. ). The red panda occurs as two subspecies forests with an undergrowth of bamboo. They occur in most that are biogeographically separated by the Salween 2001 national parks and associated biological corridors within (Nu Jiang) River in China (Choudhury, ; Wang et al., 2008 Bhutan’s protected area network, overlapping with a rural ). A. f. fulgens occurs in the west in Bhutan, Nepal, human population that is undergoing increased socio- India, northern Myanmar and China (southern Tibet and economic development. -
Universidad Autónoma De Nuevo León Facultad De Ciencias Forestales
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FORESTALES EVALUACIÓN DEL ESTADO ACTUAL DE LAS POBLACIONES DE Abies vejarii Martínez EN EL NORESTE DE MÉXICO POR RIGOBERTO GONZÁLEZ CUBAS COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS CON ORIENTACIÓN EN MANEJO DE RECURSOS NATURALES OCTUBRE, 2019 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FORESTALES SUBDIRECCIÓN DE POSGRADO EVALUACIÓN DEL ESTADO ACTUAL DE LAS POBLACIONES DE Abies vejarii Martínez EN EL NORESTE DE MÉXICO POR RIGOBERTO GONZÁLEZ CUBAS COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS CON ORIENTACIÓN EN MANEJO DE RECURSOS NATURALES LINARES, NUEVO LEÓN, MÉXICO OCTUBRE, 2019 AGRADECIMIENTOS Al Consejo Nacional de Ciencia y Tecnología (CONACYT). A la Facultad de Ciencias Forestales de la Universidad Autónoma de Nuevo León. A los ejidos de “La Encantada”, Nuevo León; “Valle Hermoso”, Tamaulipas; “Los Lirios”, Coahuila, Méx. A los integrantes de mi Comité de Tesis, Dr. Eduardo Javier Treviño Garza, Dr. Marco Aurelio González Tagle, Dr. Oscar Alberto Aguirre Calderón, Dr. Eduardo Alanís Rodríguez y Dr. Rahim Foroughbakchk Pournavab. A mis colegas que me apoyaron en campo Humberto, Israel, Mónica, Prudencia, Yessica, Gyorgy. Al laboratorio de Geomática. A mis compañeros de generación Perla, Dora, Ricardo, Ulises y Marco. DEDICATORIA A mi esposa: Angelina Bautista Cruz A mis hijos: Anthony Emir Santiago Elkin. A mis papas: Martina Cubas Nuñez Juan González Vásquez A mis hermanos: Manuela González Cubas Simón González Cubas Rosalía González Cubas Jaime González Cubas Juana González Cubas Esperanza González Cubas Contenido PRESENTACIÓN ........................................................................................................................ 1 CAPÍTULO I. RESEÑA DEL ESTUDIOS DE LA DISTRIBUCIÓN Y DINÁMICA DE ÁRBOLES FORESTALES EN POBLACIONES RELICTO ............................. -
Altitudinal Variation in Lifetime Growth Trajectory and Reproductive Schedule of a Sub-Alpine Conifer, Abies Mariesii
Evolutionary Ecology Research, 2003, 5: 671–689 Altitudinal variation in lifetime growth trajectory and reproductive schedule of a sub-alpine conifer, Abies mariesii A. Sakai,1* K. Matsui,2‡ D. Kabeya1§ and S. Sakai1 1Department of Ecology and Evolutionary Biology and 2Mount Hakkoda Botanical Laboratory, Graduate School of Science, Tohoku University, Aoba, Sendai, Japan ABSTRACT To determine whether forest trees are differentiated in terms of reproductive schedules among populations under different environmental conditions within a species, we studied three popul- ations of Japanese subalpine snow-fir, Abies mariesii, located at different altitudes (1000, 1250 and 1400 m) on Mt. Hakkoda in northern Japan. We examined life-history schedules, including lifetime growth trajectories, reproductive maturation timing and size-dependent resource allocation to reproduction. With increasing altitude, the asymptotic maximum size of trees decreased and trees approached their maximum size at younger ages: a substantial reduction in tree growth occurred earlier and life span tended to become shorter with increasing altitude. We found that trees advance their reproductive schedules at higher sites in relation to both maturation timing (size, age and whole-tree growth rate at typical reproductive onset) and resource allocation (reproductive biomass and reproductive effort), coinciding with a general prediction of life-history theory. The rate of growth in height, which was increasing, tended to decrease at around the height at which most trees produced cones, and this height was much less with increased altitude. We propose a new hypothesis that life historical adaptation – that is, earlier resource allocation to reproduction at higher sites – is one of the reasons why trees are smaller at higher altitudes. -
A Comparative Study of the Primary Vascular System Of
ArneI'. J. Bot. 5.5(4): 447-457. 1968. A COMPARATIVE STUDY OF THE PRIMARY VASCULAR SYSTElVI OF CONIFERS. 1. GENERA WITH HELICAL PHYLLOTAXISl KADAMBARI K. N AMBOODIRI2 AND CHARLES B. BECK Department of Botany, University of Michigan, Ann Arbor ABSTRACT The primary vascular system of 23 species belonging to 18 genera of conifers with helical phyllotaxis has been investigated with the intent of determining the architecture .f the system. Special attention has been given to nodal and subnodal relations of the vascular bundles. The vascular system seems to be composed solely of relatively discrete sympodia, that is, axial vascu lar bundles from which leaf traces branch unilaterally. Although the discreteness of the syrn podia is not immediately apparent because of their undulation and lateral contacts with neigh boring ones, close examination, including a statistical analysis of the tangential contacts, seems to reveal that each sympodium maintains its identity throughout. Although two traces may be apparent at nodal levels, the trace supply to a leaf originates, in all species, as a single bundle. An analysis is made of the relationship between the vasculature and the phyllotaxis. It is ob served that the direction of trace divergence can be accurately predicted when the direction of the ontogenetic spiral, the angle of divergence of leaf traces, and the number of syrnpodia are known. THE ORIGIN and evolution of gymnosperms that of the ferns by reduction (Jeffrey, 1902, are significant problems that deserve increased 1917). Consequently, he considered the leaf gap attention. There have been few modern compara of seed plants to be homologous with that of tive studies of extant gymnosperms, and most the ferns. -
ZSL National Red List of Nepal's Birds Volume 5
The Status of Nepal's Birds: The National Red List Series Volume 5 Published by: The Zoological Society of London, Regent’s Park, London, NW1 4RY, UK Copyright: ©Zoological Society of London and Contributors 2016. All Rights reserved. The use and reproduction of any part of this publication is welcomed for non-commercial purposes only, provided that the source is acknowledged. ISBN: 978-0-900881-75-6 Citation: Inskipp C., Baral H. S., Phuyal S., Bhatt T. R., Khatiwada M., Inskipp, T, Khatiwada A., Gurung S., Singh P. B., Murray L., Poudyal L. and Amin R. (2016) The status of Nepal's Birds: The national red list series. Zoological Society of London, UK. Keywords: Nepal, biodiversity, threatened species, conservation, birds, Red List. Front Cover Back Cover Otus bakkamoena Aceros nipalensis A pair of Collared Scops Owls; owls are A pair of Rufous-necked Hornbills; species highly threatened especially by persecution Hodgson first described for science Raj Man Singh / Brian Hodgson and sadly now extinct in Nepal. Raj Man Singh / Brian Hodgson The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of participating organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of any participating organizations. Notes on front and back cover design: The watercolours reproduced on the covers and within this book are taken from the notebooks of Brian Houghton Hodgson (1800-1894). -
Abiotic Factors and Yushania Influences on Abies Forest Composition in Taiwan
Taiwania, 59(3): 247‒261, 2014 DOI: 10.6165/tai.2014.59.247 RESEARCH ARTICLE Abiotic Factors and Yushania Influences on Abies Forest Composition in Taiwan Cheng-Tao Lin(1), Tzu-Ying Chen(2), Chang-Fu Hsieh(3) and Chyi-Rong Chiou(1*) 1. School of Forestry and Resource Conservation, National Taiwan University, No. 1, Sect. 4, Roosevelt Rd., Taipei, 10617, Taiwan. 2. Department of Forestry and Natural Resources, National Ilan University, Sect. 1, Shen-Lung Rd., Ilan, 26047, Taiwan. 3. Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sect. 4, Roosevelt Rd., Taipei, 10617, Taiwan. * Corresponding author. Tel.: +886-2-3366-4640; Fax: +886-2-2365-4520; Email: [email protected] (Manuscript received 20 March 2014; accepted 26 May 2014) ABSTRACT: Abies kawakamii forests are generally distributed above 3,000 m in Taiwanese high mountains. The community data used in our analysis were derived from the database of the National Vegetation Diversity Inventory and Mapping Project of Taiwan (NVDIMP), and environmental data were obtained from the WorldClim and NVDIMP databases. We used non-metric multidimensional scaling (NMDS) to identify vegetation composition of Abies communities and the structural equation models (SEMs) were used to examine the complex relationships between environmental factors and vegetation composition. The results of ordination showed the most important factors determining species composition of Abies forests involved habitat rockiness, heat load index, warmth index and summer and winter. SEM results approved the warmth index and winter precipitation were the main drivers determining the latent variable—climate, which significantly affect the overstory composition of Abies communities. -
FAO Forestry Paper 120. Decline and Dieback of Trees and Forests
FAO Decline and diebackdieback FORESTRY of tretreess and forestsforests PAPER 120 A globalgIoia overviewoverview by William M. CieslaCiesla FADFAO Forest Resources DivisionDivision and Edwin DonaubauerDonaubauer Federal Forest Research CentreCentre Vienna, Austria Food and Agriculture Organization of the United Nations Rome, 19941994 The designations employedemployed and the presentation of material inin thisthis publication do not imply the expression of any opinion whatsoever onon the part ofof thethe FoodFood andand AgricultureAgriculture OrganizationOrganization ofof thethe UnitedUnited Nations concerning the legallega! status ofof anyany country,country, territory,territory, citycity oror area or of itsits authorities,authorities, oror concerningconcerning thethe delimitationdelimitation ofof itsits frontiers or boundarboundaries.ies. M-34M-34 ISBN 92-5-103502-492-5-103502-4 All rights reserved. No part of this publicationpublication may be reproduced,reproduced, stored in aa retrieval system, or transmittedtransmitted inin any form or by any means, electronic, mechani-mechani cal, photocopying or otherwise, without the prior permission of the copyrightownecopyright owner.r. Applications for such permission, withwith aa statement of the purpose andand extentextent ofof the reproduction,reproduction, should bebe addressed toto thethe Director,Director, Publications Division,Division, FoodFood andand Agriculture Organization ofof the United Nations,Nations, VVialeiale delle Terme di Caracalla, 00100 Rome, Italy.Italy. 0© FAO FAO 19941994