<<

The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

PROSPECTUS

Contents • Welcome to • Location, access and environmental statement • Regional geology • Mineral system • Exploration activities • Geophysical surveys • Geochemical survey • Indications of Ni-Cu-PGE • Recommendations • GTK services for exploration and mining industry • References • Appendix

GTK Open File Work Report 62/2018 1 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Welcome to Finland Finland, in the center of the GTK provides confidential Fennoscandian Shield, has tailor-made services, which similar geology and metal- include broad geoscientific logeny to other Precambri- and technical know-how. GTK an shields around the globe. also offers geological data- The distinct pro-mining atti- bases and other data resourc- tude, political and econom- es and a wide range of expert ic stability, and clear mining advisory services. For these and environmental legislation reasons, Finland is ranked in Finland create favorable as one of the most attractive conditions for the explora- countries for mining and tion and mining industry. The exploration in the annual country also has highly de- surveys conducted by the veloped infrastructure, with Canadian Fraser Institute good port facilities, an exten- (Stedman & Green, 2017). sive high-voltage power grid, Recent discoveries in Finland, and a comprehensive road such as Sakatti Cu-Ni-PGE and airport network. (Anglo American Finland), The Geological Survey of Rompas Au (Mawson Re- Finland (GTK) is a national sources Ltd.), and Aamurusko geological organization op- Au (Aurion Resources Ltd.), erating under the Ministry of highlight the ore potential Employment and the Econo- and unexplored nature of my (http://en.gtk.fi/). One of the country. For more infor- the main duties of GTK as a mation on these opportuni- national geoscientific infor- ties, see the Mining Finland mation center is to promote website (http://www.mining and support mineral explo- finland.com/opportunities). ration and mining in Finland by providing high-quality data. GTK also actively iden- tifies and evaluates areas with mineral potential, in order to encourage follow-up exploration and exploitation by the private sector.

1 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Location, access, and environmental statement 28 o 30´ 65 o 37´ The Kellojärvi ultramafic 4460 4500 complex is located about 25 km northwest of the town of Kuhmo, in the province of , northern Finland VAARA - KAUNIINLAMPI (Figs. 1 and 2). Access to the 7250

area is good, via public and maintained road networks. LUOMA The northern and western SAARIKYLÄ parts of Kellojärvi ultramafic FINLAND complex lie in the Kellojärvi GB KIANNANNIEMI HIETAHARJU - PEURA-AHO lake area. Some lake and 7220 shoreline areas in the Kellojärvi region belong to the Natura 2000 network, or some other conservation and N special area networks (Fig. 2). Exploration and mining is SUOMUSSALMI not prohibited in these are- 7190 Tipasjärvi, Kuhmo and Suomussalmi as, but it requires a rigorous Greenstone Belts RUOKOJÄRVI systematic special desiguated Archean rocks SIKA-AHO permit application process. Granitoids, ortho- and para- An important groundwater MOISOVAARA gneisses of the granite gneiss complex reservoir and some valu- Felsic volcanic and sedimentary TULINIEMI rocks able nature areas are also 7160 located within the Kello- Mafic volcanic rocks järvi area, which must be AROLA Ultramafic - mafic sills taken into consideration Komatiites and komatiitic basalts (Fig. 2). Major ultramafic cumulates Volcaniclastic rocks

KUHMO GB Sedimentary rocks 7130 Proterozoic rocks SIIVIKKOVAARA Potassium granite Pyroxenitic and gabbroic dikes

Kellojärvi - Study area Ni-Cu-PGE deposit

KUHMO

7100

TAIVALJÄRVI TIPASJÄRVI Figure 1. The Kellojärvi area in the Kuhmo Greenstone Belt (GB), which is the central part of the Tipasjärvi-

Kuhmo-Suomussalmi Greenstone GB TIPASJÄRVI 10 km Belt Complex in eastern Finland. 7070 4460 4500 63o 43´ Modified after Korsman et al. (1997). o 28 35´

2 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

The specific locations and more information about the Natura 2000 network areas and other types of nature conservation area that are protected by law can be found in following sources, while land ownership and special areas are also indicated in Fig. 2:

• General information on state-owned protected areas in Finland: http://www.metsa.fi/web/en/protected-areas • Online map services for state-owned protected areas in Finland: http://www.metsa.fi/karttapalvelu • GTK online map service for the exploration and mining industry, including nature conserva- tion areas, mineral deposit database, mining registry and geophysical maps, etc. http://gtkdata.gtk.fi/MDaE/

592000 596000 600000 604000 608000 7136000 ± 7136000 7132000 7132000 7128000 7128000

0 21

7124000 km 7124000

592000 596000 600000 604000 608000

Natura 2000 Areas and Pohjakartat © MML 2018 The Other Conservation Areas of Programmes Kiinteistörajat © MML 2018

Ground Water Areas Luonnonsuojelualueet © SYKE, Metsähallitus, ELY-keskukset 2018 Luonnonsuojeluohjelmat © SYKE 2018 In Terms of Nature Conservation Valuable Areas Natura 2000 © SYKE 2018 Arvokkaat kallioalueet © SYKE 2018 State Owned Forest Arvokkaat moreenimuodostumat © SYKE 2018 Administration by Metsähallitus Arvokkaat tuuli- ja rantakerrostumat © SYKE 2018

Figure 2. Topographical map of the Kellojärvi area, indicating Natura 2000 areas, conservation and special areas, and state-owned land.

3 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

In 2014, the Finnish Ministry the margins and the young- are clearly younger than the of Employment and the est in directions pointing to Kellojärvi ultramafic com- Economy published a guide the center of the Greenstone plex, because they contain book for exploration in pro- Belt Complex (Papunen et al., clasts of high-Cr basalts and tected areas, the Sámi home- 2009 and references therein). komatiitic basalt (Nieminen, land, and reindeer manage- The Kellojärvi ultramafic 1998; Tulenheimo, 1999; ment areas. This publication cumulate complex covers an Papunen et al., 2009 and is available in digital form area of 24 km2 within the references therein). Others on the website of the Finnish Kuhmo Greenstone Belt, in are the same age as the mining authority, TUKES: the central part of the Tipas- Kellojärvi ultramafic complex, (http://en.gtk.fi/information järvi-Kuhmo-Suomussalmi occurring as intermediate services/exploration/useful_ Greenstone Belt Complex interlayers in the Kellojärvi handbooks_and_guides. (Figs. 1 and 3). Based on in- cumulate sequence (Halko- html). Most exploration terpretations of magnetic sur- aho & Niskanen, 2012; Västi activities must be performed veys, the Kellojärvi ultramaf- et al., 2012; Lehtonen et al., under a valid reservation or ic complex is 3-5 km thick, 2016). About 500 m south exploration permit granted layered, folded and faulted. from the southern contact by TUKES (https://tukes.fi/ Moreover, the magnetic im- of the Kellojärvi ultramafic en/industry/mining-ore- age conveys an impression complex, in the Mäkisensuo prospecting-and-gold- of tectonic imbrication of area, there is a small base panning). It is also highly several bodies with different metal sulphide-bearing Zn-Pb recommended that guidance orientations in a low-strain deposit in the felsic to be sought from this authority area. The maximum dimen- intermediate volcanic rock when planning exploration sion in the E-W direction is sequence. The eastern and activities. In areas belonging up to 4 km and the western western sides of the Kello- to private land owners and branch extends about 13.5 järvi ultramafic complex some forest companies, km northwards. The Kellojärvi contain base metal sulfide- exploration activities such ultramafic complex is current- bearing felsic to intermedi- as diamond drilling can be ly composed of serpentinites ate volcanic rock sequences performed under one-to-one and talc-magnesite rocks. (see Halkoaho et al., 2016). agreements. The rocks were originally In addition, the upper con- ultramafic cumulates such tact of the tholeiitic basalt of as olivine adcumulates and Pahakangas Formation is Regional geology mesocumulates, with mi- locally covered with a thin Archean komatiitic rocks are nor olivine orthocumulate, layer of sulfide-bearing chert voluminous in the 220 km olivine-clinopyroxene adcu- or banded iron formation long and up to 10 km wide mulates, and clinopyroxene (Papunen et al., 2009). Accord- Tipasjärvi-Kuhmo-Suomus- adcumulates. A heteroge- ing to age determinations by salmi Greenstone Belt Com- neous sequence composed Lehtonen et al., (2016), these plex in eastern Finland. of gabbro, pyroxenite, and volcanic and sedimentary They include metamorphosed anorthosite with peridotite rocks are older than Kellojär- komatiitic to komatiitic basalt interlayers occurs at Niitty- vi ultramafic rocks and are a lava flows and their olivine joki, in the central part of the potential source of external (±pyroxene) cumulate bod- complex. In the vicinity of S for komatiitic Ni deposits ies (Fig. 1). The Tipasjärvi- the complex there are also (Fig. 3). Kuhmo-Suomussalmi Green- intermediate to felsic volcan- stone Belt Complex comprises iclastic rocks ranging from a symmetrical wide synclino- fine-grained tuffs to con- rium with the oldest units at glomerates. Some of these

4 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body 605000 595000 7135000 7135000

305o Legend – Kellojärvi area Gabbro wehrlite dyke

o Quartzite 285 Intermediate volcanic rock Pyroclastic intermediate volcanic and sedimentary rocks

o Cr and high-Cr basalt 235 Komatiitic basalt Thin komatiite flows Olivine and ad-orthocumulate (Kellojärvi ultramafic complex) Tholeiitic basalt Granodiorite Quartz diorite Tonalitic migmatite Migmatitic tonalite Diamond drill hole (GTK) Diamond drill hole (Outokumpu Oy) Mäkisensuo Zn-Pb deposit

595000 Soapstone deposit 7125000 Ni-rich serpentinite boulder Ice movement direction Detail weathered bedrock sampling (Outokumpu Oy) Detail weathered bedrock sampling (Pyyliönniemi, GTK)

Figure 3. Geological map of the Kellojärvi ultramafic complex and other useful information related to exploration in the area (modified after Bedrock of Finland – DigiKP).

Mineral system Komatiitic cumulate bodies and GTK exploration activi- of Ni, Cu, and PGE in known are potential sites for Ni-Cu- ties (Konnunaho, 2016, and deposits are as follows: 0.4- PGE sulfide deposits. Several references therein). Most of 0.9 wt% Ni, 0.01-0.4 wt% Cu, mainly disseminated komati- the known deposits consist and 0.2-1.7 ppm PGE (Pd+Pt) ite-hosted Ni-Cu-PGE deposits of disseminated sulfides, (Makkonen et al. 2017). have been found within the with some also containing Archean Tipasjärvi-Kuhmo- massive sulfides and/or post- Suomussalmi Greenstone Belt magmatically modified and Complex during recent dec- re-concentrated sulfides. Typ- ades by Outokumpu Oy ical average concentrations

5 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Exploration activities In the 1970-1980s, the Univer- These exploration activities During these exploration sity of Oulu carried out geo- are summarized in reports by activities, 23 diamond drill logical mapping (Piirainen et Halkoaho & Niskanen (2004, holes totaling around 3398 m al., 1985) and the University 2012), Västi et al.,(2012), and were drilled in the Kellojärvi of Rennes, France, conduct- Halkoaho et al., (2015), which area and its vicinity (Appen- ed petrological studies in the are available from the GTK dix 1 and Fig. 3) (Halkoaho Kellojärvi area. The results HAKKU online report data- et al., 1996; Barnes et al., of these activities have been base (https://hakku.gtk.fi/en/ 1996; Nieminen, 1998; Vihreä- published in several interna- reports). puu, 1998; Tulenheimo, 1999; tional journals (Piquet, 1982; In the period 1993-2002 Papunen et al., 2009). In ad- Martin et al., 1984; Blais, 1989; (including a 1993-1995 col- dition, Aatos (2013) has made Blais & Auvray, 1990). laboration with University of a 2D-3D-model from the During 1983-2015, several Turku), Outokumpu Oy also Kellojärvi ultramafic complex. GTK projects evaluated participated in exploration the komatiite-hosted nickel and research activities in the sulfide potential in the Kello- Kellojärvi ultramafic complex järvi ultramafic complex and area. Outokumpu Oy carried its vicinity. Project activities out geological mapping, geo- included bedrock mapping, physical and geochemical sur- geophysical and geochemical veys, and diamond drilling. surveys, and diamond drilling. Altogether, GTK has drilled 106 diamond drill holes, totaling about 12 km, in this area (Fig. 3), among which are 44 shallow drill holes (<55 m) targeted at soapstone exploration (Appendix 1).

6 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Geophysical surveys urements performed by GTK, Niskanen, 2004, 2012). The while the green lines are seis- measured parameters have In 1994, the Kellojärvi ultra- mic profiles measured dur- generally been susceptibility mafic complex was measured ing the HIRE (High Resolu- and Wenner resistivity (meas- in a high-resolution, low al- tion Seismic) project by GTK, ured by GTK). Downhole log- titude airborne geophysical the Institute of Seismology gings in Kellojärvi “deep drill survey within GTK’s nation- of the University of Helsinki, hole” (Q542/2011/R1) have al airborne geophysical pro- and Vniigeofizika. Detailed been conducted by Ageos Oy, gram. The flight altitude was information from this project with the measured petrophys- between 30 and 40 meters, can be found in a report by ical parameters being density, and line spacing was 100 Kukkonen et al., (2011). In susceptibility, Wenner resis- meters in the E-W direction Fig. 4C, the red surrounding tivity, IP, natural gamma ra- (Fig. 4A). The survey included area is covered by systemat- diation (potassium, thorium, magnetic, electromagnetic, ic gravimetric measurements uranium), and seismic P and and radiometric components carried out by Outokumpu Oy, S wave velocities (see Västi and covered around 200 km2 while the dark blue polygons et al., 2012). Petrophysical in total. The high density indicate areas covered by parameters have also been measurement area main- slingram horizontal coil meas- measured in the laborato- ly covered map sheet Q542 urements (GTK and Outo- ry (susceptibility, remanent (UTM coordinate system). kumpu Oy). Coil separation magnetization, density and Airborne geophysical images varied mainly from 60 to 100 resistivity). The density of are available for scrutiny in meters, with point separation serpentinites is on average the GTK Mineral Deposits and 20 meters and line spacing 2720 kg/m3. The serpentinites Exploration online service 50 meters. The black poly- in the Kellojärvi area are quite (http://gtkdata.gtk.fi/MDaE/). gons represent areas covered resistive (several thousand As part of exploration by magnetic ground measure- Ohmm) compared with those activities in the Kellojärvi area, ments (GTK and Outokumpu at many other sites, e.g., multiple ground geophysi- Oy), for which line separation serpentinites in Suomussalmi cal studies have been car- was mainly 50 meters and Greenstone Belt, schist ried out in recent decades by point separation 10 meters. belts, and the Näränkävaara GTK and Outokumpu Oy. The In Fig. 4C, dark brown points area (tens to a few hundred main profile measurements represent survey points Ohmm). All above-mentioned are represented in Fig. 4B (GTK and LoopandLine Oy) data are archived in GTK and systematic measure- for frequency-domain deep- databases and are easily ments in Fig. 4C. These sur- sounding electromagnetic extracted from these. veys included use of ground (FrEM) measurements (Niska- Some other ground meas- gravimetric, slingram hori- nen et al. 2016). Some SAMPO urements performed are not zontal coil, magnetic, and (also known as Gefinex 400S) included in Fig. 4B (e.g., elec- seismic methods. The sur- deep-sounding frequency tromagnetic SAMPO meas- veys and their results are domain EM method lines are urements made by Outokum- described in GTK reports marked with light brown in pu and GTK since the 1980s), (Halkoaho & Niskanen, 2012; Fig. 4B. The coil separation in but these data are also availa- Halkoaho et al., 2015; Niska- these SAMPO measurements ble in GTK databases. nen et al., 2016), which are was mainly 400 meters, but available in GTK’s HAKKU on- varied between 200 and 1000 line report service (https:// meters (Västi et al., 2012). hakku.gtk.fi/en/reports). Borehole measurements In Fig. 4B, the red profiles have been carried out in the indicate gravimetric meas- Kellojärvi area (Halkoaho &

7 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Some interesting anomalies (Fig. 5) in the study area are still awaiting testing, such as conductivity anomalies in the western part of the cumulate body (Niskanen et al., 2016). In addition, only a limited number of deep-penetrating geophysical surveys, using e.g., FrEM and audio magne- totellurics (AMT), have been carried out in the Kellojärvi area.

Figure 4A. Map of airborne mag- netic measurements of the Kello- järvi ultramafic complex. The scale for total magnetic intensity data is measured data minus 50 000 nT. The FrEM survey area is indicat- ed by a light blue circle (see Fig. 5). The same area of land is covered in Figs. 4B and 4C.

Figure 4B. Ground survey profiles: Gravimetric (red), Figure 4C. Systematic ground survey areas: Gravimet- SAMPO (orange), and seismic (green). The small yellow ric (red), magnetic (black), FrEM (brown), and slingram triangle shows the location of sulfide-rich ultramafic (blue). The small yellow triangle shows the location of boulder (see Chapter 6). Area as shown in Fig. 4A. sulfide-rich ultramafic boulders (see Chapter 6). Area as shown in Fig. 4A.

8 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Figure 5. Frequency-domain deep-sounding electromagnetic (FrEM) survey area on Kellojärvi lake. Conductivity and magnetic anomalies are indicated by black circles. For survey area location, see Fig. 4A (light blue circle).

9 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Geochemical survey

In 1980-1990’s, GTK collected Outokumpu Oy has carried till samples for the Geochemi- out one small detailed survey cal Atlas of Finland, with a uni- at prospect scale (50x50 m form grid covering the whole net) in the area of Mäkisen- of Finland. The average sam- kangas and also several till pling density was one sample sample lines tied to Au-Zn-Ni per 300 km2 (Koljonen et al., exploration in the Siivikko- 1992). It appears that perhaps vaara area, south and south- only one sample from this set east of the Kellojärvi ultra- falls within the area of the Kel- mafic complex Vihreäpuu, lojärvi ultramafic complex. 1998) (Fig. 3). In addition, GTK has collect- In addition, at the begin- ed regional till geochemistry ning of the 2010s, Mineral samples throughout Finland Exploration Network (Suomi) and seven of these fall with- Oy collected samples from in the area of the Kellojärvi the Kellojärvi cumulate com- ultramafic complex (see plex area for multi-element http://gtkdata.gtk.fi/MDaE/). fine fraction analysis (MEFFA). GTK carried out local-scale In the Kellojärvi area, three geochemical base metal and different ice movement di- gold exploration in the area rections have been identi- of Tipasjärvi-Kuhmo-Suomus- fied by GTK. The oldest and salmi Greenstone Belt Com- the strongest is from the NW plex during the 1990s (Luuk- (305º), the second is from konen et al., 2014). In these lo- the W (285º), and the last and cal-scale surveys (16 samples the weakest is from the SW per km2), samples were col- (235º) (Niskanen et al., 2016). lected from as great a depth as practicable (i.e., bottom of till). In addition, weathered bedrock and rock chips were also collected wherever pos- sible. Bottom of till samples for more detailed surveys at prospect scale (10-20 m sam- ple spacing) were also taken, but in the area of the Kello- järvi ultramafic complex only from the small Pyyliönniemi target (see Fig. 3). Those sam- ples were also taken as deep as possible (Luukkonen et al., 2014) and included one short till sample line in the Pärsämänsuo area (Halkoaho and Niskanen, 2012).

10 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Indications of Ni-Cu-PGE There are no known economic parental magma in which MgO or sub-economic komatiitic content was around 23.3 wt.% Ni-Cu-PGE deposits within the (for method of calculation, Kellojärvi ultramafic complex, see Makkonen et al., 2017). but there are certain features Thus they are similar that indicate the occurrence in composition to some of komatiitic Ni-deposits other PGE-enriched within the complex area. In Ni-Cu sulfide deposits 2003, glacier-transported in the Tipasjärvi- semi-massive Ni-PGE sulfide Kuhmo-Suomussalmi boulders were found around area (see Fig. 1). 600 m south of the Kellojärvi ultramafic complex (Figs. 3 and 6). In addition, the Kellojärvi olivine cumulates show distinct Ni depletion, while highly Ni prospective Cr-poor olivine cumulates (Konnunaho et al., 2015; Konnunaho, 2016) occur in the Kellojärvi area (Fig. 7). Figure 6. Sulfide-rich serpentinite boulder from the Kellojärvi Based on whole-rock geo- area (TAH$-2003-83.1: 9.9 wt% Ni, 0.03 wt% Cu, 0.66 ppm Pd, chemistry, Kellojärvi olivine 0.3 ppm Pt). Photo J. Ranua. cumulates were formed from

5000 7000 A 6000 4000 B 5000

3000 4000 pp m) pp m Cr Cr Ni ( Ni 3000 2000 2000 1000 1000

0 0 15 20 25 30 35 40 45 50 15 20 25 30 35 40 45 50 MgO (Wt %) MgO (Wt %) Kellojärvi ultrama c rocks

Figure 7. A) Ni concentration and B) Cr concentration as a function of MgO concentration in rocks in the Kellojärvi ultramafic complex (MgO >18 wt%, n = 558). The Ni-undepleted model line in (A) has the equation 1.55 Nippm=8.36xMgO (wt%) (Makkonen et al., 2017). The area within the dashed lines in (B) contains Cr-poor cumulates.

11 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Recommendations General: • Tipasjärvi-Kuhmo-Suomussalmi Greenstone Belt Complex contains several komatiite-hosted Ni-Cu-PGE deposits, which is clear evidence of areal mineral potential • Kellojärvi ultramafic complex is one of the largest komatiitic cumulate bodies in the Fennoscandian Shield • With number of untested geophysical anomalies

Kellojärvi area: • Extensive geophysical surveys (e.g., airborne geophysical surveys by GTK) and ground surveys have been carried out in the Kellojärvi ultramafic complex area, but most of the methods employed have not been deep ground- penetrating (≤ 100 m). In addition, the northern part of the cumulate body is only covered by an airborne geo- physical survey. We recommend deep-penetrating electromagnetic methods such as AMT and FrEM for exploration. • Semi-massive Ni-PGE boulders indicate outcropped occurrences elsewhere in the study area. GTK has identi- fied three ice movement directions: The oldest and strongest is from the NW (305º), the second is from the W (285º), and the last and weakest is from the SW (235º). The last, although the weakest, may actually have been the main carrier of the Ni-PGE-rich boulders. We recom- mended concentrating the focus of explorations to the south-west area of the Kellojärvi ultramafic complex.

12 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

GTK services for exploration and mining industry

GTK is a national geoscientific information in achieving their specific goals. GTK staff are center that actively participates in the devel- highly qualified in various aspects of geology, opment of the exploration and mining sector including geochemistry, mineralogy, geophys- in Finland. GTK produces and disseminates ics, satellite imagery interpretation, GIS-aided geological information for industry and soci- data processing and 3D modelling, and many ety, to promote systematic and sustainable others. Some GTK experts hold Qualified use of mineral resources, and is the national Person status in different geo-sectors. For geological endowment. It offers a wide spec- the exploration and mining industry, the trum of transferable technical knowledge and services available include: expert services in order to support partners

Ore potential evaluation • Regional evaluation of potential ore o Mineral prospectivity maps o Maps and interpretation of aerogeophysical data o Maps and interpretation of bedrock and soil geochemical data o Ore geological modelling o Survey planning • Location-specific ore potential evaluation o Ground geophysical surveys and interpretation o Geochemical surveys and interpretation o Ore geological modelling o Mineralogical surveys o Survey planning Ore deposit modelling and mineral resource evaluation • Compilation of research data into digital format • 3D modelling (solids, surfaces, block modelling) • Mineral resources evaluations according to standards • Software, such as: Gemcom Surpac, Gemcom GEMS and ArcGIS • Qualified-person level research and reporting Geophysical services • Ground geophysical surveys • Borehole surveys and logging • Special surveys • Geophysical laboratory measurements • Exploration geophysics of natural resources

More information on the services GTK can provide to the exploration and mining sector is available at:

http://en.gtk.fi/expert_services/

13 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

References

Aatos, S. 2013. Kellojärven Ni-esiintymän digitaalisten aineistojen integroitu 2D-3D -mallinnus ja -visualisointi vuosina 2011-2012. Geological Survey of Finland, archive report, 9/2013. 37 p. (in Finnish) Barnes, S., Halkoaho, T., Papunen, H. & Perring, C. 1996. Chromite in Komatiites: A Comparative Study of Chro- mite in Komatiites from the Forrestania Greenstone Belt, Western Australia, and the Pulju and Kuhmo Greenstone Belts, Finland. Exploration and mining report 273R. CSIRO Division of Exploration and Mining, Perth, Australia, 72 p. Bedrock of Finland – DigiKP. Digital map database [Electronic resource]. Espoo: Geological Survey of Finland [referred 10.09.2018]. Version 2.0. Blais, S. 1989. Les ceintures de roches vertes archèennes de Finlande Orientale: Gèologie, pètrologie, gèochimie et èvolution gèodynamique. Mèmoires et Documents du Centle Armoricain d´Ètude Structurale des Socles, Rennes, 22. Universitè de Rennes, 256 p Blais, S. & Auvray, B. 1990. Serpentinization in the Archean komatiitic rocks of the Kuhmo greenstone belt, eastern Finland. Can. Mineral. 28: 55-66. Halkoaho, T., Hokka, J. & Niskanen, M. 2015. Tutkimustyöselostus Kuhmon kaupungissa Kellojärven ja Kuivajärven alueilla suoritetuista malmitutkimuksista vuonna 2013. Geological Survey of Finland, archive report, 36/2015. 43 p. (in Finnish) Halkoaho, T., Hokka, J. & Niskanen, M. 2016. Tutkimustyöselostus Kuhmon kaupungissa malminetsintälupa- alueella Mertaperä 1 (lupatunnus ML2013:0053) vuonna 2015 suoritetuista malminetsintätutkimuksista. Geological Survey of Finland, archive report, 86/2016. 19 p. (in Finnish) Halkoaho, T., Liimatainen, J., Papunen, H. & Välimaa, J. 1996. Komatiittiprojektin loppuraportti 1a, University of Turku, archive report, 99 p. (in Finnish) Halkoaho, T. & Niskanen, M. 2004. Tutkimustyöselostus Kuhmon kaupungissa valtausalueilla Haverisensuo 1 ja 2 (kaivosrekisterinumerot 7426/1 ja 7628/1) suoritetuista nikkelimalmitutkimuksista vuosina 2002-2004. Geological Survey of Finland, archive report, M 06/4411/2004/1/10. 16 p. (in Finnish) Halkoaho, T. & Niskanen, M. 2012. Tutkimustyöselostus Kuhmon kaupungin Kellojärven Pärsämänsuo 1 valtausalueella (kaivosrekisterinumero 8344/1) suoritetuista nikkelimalmitutkimuksista vuosina 2007-2011. Geological Survey of Finland, archive report, 64/2012. 18 p. (in Finnish) Koljonen, T. (ed.) 1992. The Geochemical Atlas of Finland, Part 2: Till. Espoo: Geological Survey of Finland. 218 p., 11 app. maps. Korsman, K., Koistinen, T., Kohonen, J., Wennerström, M., Ekdahl, E., Honkamo, M., Idman, H. & Pekkala, Y. (eds) 1997. Bedrock map of Finland 1:1 000 000. Geological Survey of Finland. Konnunaho, J., Halkoaho, T., Hanski, E. & Törmänen, T. 2015. Komatiite-hosted Ni-Cu-PGE deposits of the Finland. In: Maier, W., O’Brian, H. & Lahtinen, R. (eds) Mineral Deposits of Finland. Amsterdam: Elsevier, 93-128. Konnunaho, J. 2016. Komatiite-hosted Ni-Cu-PGE deposits in Finland: their characterization, PGE content, and petrogenesis. Geological Survey of Finland, Special publications 92. 38 p.

Kukkonen, I.T., Heikkinen, P., Heinonen, S. & Laitinen, J. 2011. Reflection seismics in exploration for mineral deposits: initial results from the HIRE project. In: Geo-science for society: 125th anniversary volume. Geological Survey of Finland, Special Paper 49: 49-58. Lehtonen, E., Heilimo, E., Halkoaho, T., Käpyaho, A. & Hölttä, P. 2016. U-Pb geochronology of Archaean volcan- ic-sedimentary sequences in the Kuhmo greenstone belt, Province - Multiphase volcanism from Meso- to Neoarchaean and a Neoarchaean depositional basin, Precambrian Research 275, 48-69. Lehtonen, E., Heilimo, E., Halkoaho, T., Käpyaho, A. & Hölttä, P. 2016. U-Pb geochronology of Archaean volcanic-sedimentary sequences in the Kuhmo greenstone belt, Karelia Province – Multiphase volcanism from Meso- to Neoarchaean and a Neoarchaean depositional basin? Precambrian Research 275, 48-69. Luukkonen, E., Halkoaho, T., Hartikainen, A., Heino, T., Niskanen, M., Pietikäinen, K., & Tenhola, M. 2014. The activities of the Archean Terrains in Eastern Finland Project (12201 and 210 5000) in Suomussalmi, , Kuhmo, , Rautavaara, Valtimo, , Ilomantsi, Kiihtelysvaara, Eno, Kontiolahti, Tohmajärvi and Tuupovaara areas during years 1992 - 2001. Geological Survey of Finland, archive report, M 19/4513/2002/2. 265 p.

14 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Makkonen, H.V., Halkoaho, T., Konnunaho, J., Rasilainen, K., Kontinen, A. & Eilu, P. 2017. Ni-(Cu-PGE) depos- its in Finland – geology and exploration potential. Ore Geology Reviews 90: 667-696. Martin, H., Auvray, B., Blais, S., Capdevila, R., Hameurt, J., Jahn, B.M., Piquet, D., Quérré, G. & Vidal, P. 1984. Origin and geodynamic evolution of the archaean crust of eastern Finland. Bull. Geol. Soc. Fin. 56: 135-160. Nieminen, J. 1998. Kuhmon Kellojärven polymiktinen vulkaaninen konglomeraatti. Pro gradu -tutkielma. Turun yliopisto. 106 p. (in Finnish) Niskanen, M., Jokinen, J., Halkoaho, T. & Makkonen, H. 2016. Kuhmon Kellojärven geofysikaaliset GTK-FrEM -mittaukset 2016. Geological Survey of Finland, archive report 32/2016, 29 p. (in Finnish) Papunen, H., Halkoaho, T. & Luukkonen, E. 2009. Archaean evolution of the Tipasjärvi-Kuhmo-Suomussalmi Greenstone Complex, Finland. Geological Survey of Finland, Bulletin 403, Espoo, 68 p. + 1 CD-ROM. Piquet, D. 1982. Mécanismes de recrystallisation métamorphiques dans les ultrabasites: exemple des roches vertes archéennes de Finlande orientale (Ceintures de Suomussalmi - Kuhmo) Thèse 3ème cycle, Universitè de Rennes, 246 p. Piirainen, T. (ed.) 1985. Arkeeisten alueiden malmiprojektin loppuraportti. Arkeeisten alueiden malmiprojekti rap. 28. Oulun yliopisto. Oulu. 183 p. (in Finnish) Stedman, A. & Green K.P. 2017. Survey of Mining Companies 2016. Fraser institute. 70 p. (https://www.fraserinstitute.org/studies/annual-survey-of-mining-companies-2017). Tulenheimo, T. 1999. Kuhmon Kellojärven kerroksellinen ultramafinen muodostuma. Pro gradu -tutkielma. Turun yliopisto. 199 p. (in Finnish) Västi, K., Niskanen, M. & Halkoaho, T. 2012. “Deep drill holes” of Lammu in Liperi and Kellojärvi in Kuhmo. Geological Survey of Finland, archive report 80/2012. 28 p. (in Finnish) Vihreäpuu, U. 1998. Kaivoslain 19 §:n mukainen tutkimustyöselostus Kuhmo / Mäkisenkangas, Mäkisenkangas 2, ja Matonevansuo Kaiv. rek n:ot 6063/2, 6397/1 ja 6063/1. (in Finnish)

15 Start your exploration and visit: http://miningfinland.com/ (general information on mining and exploration in Finland) http://gtkdata.gtk.fi/mdae/index.html (GTK online map service) https://hakku.gtk.fi/en/reports (GTK online report service) https://hakku.gtk.fi/en/locations/search (GTK spatial data products and data extraction) https://tukes.fi/en/industry/mining-ore-prospecting-and-gold-panning (TUKES, mining authority in Finland)

Compiled by Tapio Halkoaho (QP, European Federation of Geologists, license number 1014) Jukka Konnunaho (QP, European Federation of Geologists, license number 764) Matti Niskanen (Geophysicist) The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Appendix 1. Diamond drill holes in the area of the Kellojärvi ultramafic complex and its vicinity drilled by Geological Survey of Finland and Outokumpu Mining Exploration.

Drill holes of the GTK in the area of the Kellojärvi ultramafic complex Ni-exploration Hole-id (Euref) (Euref) Elev () Direction Inclination Soil (m) Length (m) M52-4411-94-R307 7127444 601251 186.0 360 90 8.00 324.40 M52-4411-94-R308 7127439 601136 185.0 90 70 8.50 324.30 M52-4412-02-R404 7128569 601168 195.0 180 40 2.10 102.50 M52-4412-02-R405 7128519 601170 191.0 180 40 5.80 92.10 M52-4412-02-R406 7128399 601176 176.0 360 60 26.80 39.70 M52-4412-02-R407 7129227 601127 189.0 335 40 3.50 59.80 M52-4412-02-R408 7129269 601150 188.5 360 40 20.30 45.10 M52-4411-02-R309 7127882 601000 185.0 360 40 9.10 34.90 M52-4411-02-R310 7127964 600996 177.0 360 90 10.00 28.00 M52-4411-02-R311 7127964 600996 177.0 360 45 22.40 116.20 4411-2003-R0315 7127850 601002 182.0 360 42 7.00 416.95 4411-2003-R0316 7127610 601013 185.0 360 45 6.60 287.35 4411-2003-R0317 7126921 602086 183.0 180 45 6.40 539.20 4411-2003-R0318 7127348 601376 188.0 180 45 0.30 370.60 4411-2003-R0319 7127321 601027 194.0 360 45 1.00 350.15 4411-2003-R0320 7127598 601814 180.0 360 45 2.20 249.50 4411-2003-R0321 7126625 602170 180.0 180 45 9.20 126.50 4411-2003-R0322 7126669 602258 185.0 90 45 10.00 82.50 4411-2004-R0327 7127710 600658 183.0 360 40 5.40 153.35 4411-2004-R0328 7127610 600662 179.0 360 40 10.00 136.10 4411-2004-R0329 7127438 599920 172.0 180 40 5.50 17.30 4411-2004-R0330 7127418 599921 172.5 180 40 1.60 150.05 4411-2004-R0331 7127250 599929 175.0 180 40 3.90 114.90 4411-2004-R0332 7127813 600653 179.5 360 45 11.90 126.80 4411-2004-R0336 7127636 600461 182.5 360 40 18.00 214.65 4411-2004-R0334 7127167 600829 182.5 180 45 6.00 123.50 4411-2004-R0335 7127267 600829 184.0 180 45 3.00 105.20 4411-2004-R0337 7126744 601199 185.0 350 45 3.60 157.80 4411-2004-R0338 7126623 601195 180.0 350 45 12.70 135.40 4411-2004-R0339 7126742 601199 184.0 170 45 5.60 41.00 4411-2004-R0340 7127101 600802 181.5 180 45 20.60 223.00 4411-2004-R0341 7127140 600585 181.0 180 45 16.00 101.20 4411-2004-R0342 7127092 600682 181.0 180 45 19.00 122.50 4411-2004-R0343 7127145 600680 181.0 180 45 18.70 85.10 4411-2004-R0344 7127088 600587 181.0 180 45 22.00 152.00 4411-2004-R0345 7127034 600685 181.0 180 45 34.80 155.50 4411-2004-R0346 7127148 600354 180.0 180 45 11.40 144.20 4411-2004-R0347 7127218 600676 181.0 180 45 18.00 119.40 4411-2004-R0348 7127178 600953 183.0 180 45 23.80 317.40 4411-2004-R0349 7127133 600860 181.0 180 45 11.50 134.50 4411-2004-R0350 7127228 600951 184.0 180 45 3.60 34.40 4411-2004-R0351 7127180 600262 178.0 180 45 7.50 166.00 Q542/2011/R1 7127236 600527 181.0 167 60 18.35 701.65 Q542/2011/R2 7127018 600961 185.5 180 45 30.70 371.50 Q542/2013/R3 7127977 599123 162.5 270 45 2.80 166.80 Q542/2013/R5 7128315 598438 161.5 90 45 33.00 160.10 Q542/2013/R6 7128315 598538 161.5 90 45 23.00 170.00 Q542/2013/R8 7128465 599238 162.0 360 45 2.30 152.50 8543.55 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Appendix 1. Continued.

Soapstone exploration Hole-id (Euref) (Euref) Elev () Direction Inclination Soil (m) Length (m) Matoneva-R1 7129305 602190 181.0 45 45 5.70 52.35 Matoneva-R2 7129321 602213 179.0 45 45 2.30 52.45 Matoneva-R3 7129340 602237 178.0 45 45 3.30 26.50 Matoneva-R4 7129290 602168 182.5 45 45 5.25 52.05 Matoneva-R5 7129343 602166 181.0 45 45 1.00 50.80 Matoneva-R6 7129269 602225 181.0 45 45 2.80 41.60 Matoneva-R7 7129369 602150 181.0 45 45 4.30 49.65 M441100R640 7126293 598538 172.0 255 45 6.40 24.90 M441100R641 7126272 598556 172.0 75 45 2.00 28.70 M441100R643 7126236 598529 174.0 255 45 2.10 25.20 M441100R644 7126233 598584 172.0 255 45 0.90 23.40 M441100R645 7126188 598581 173.0 255 45 2.00 30.80 M441100R646 7126199 598615 170.0 255 45 0.80 30.20 M441100R647 7126209 598640 168.0 75 45 5.10 20.40 M441100R648 7126245 598620 168.0 75 45 8.00 25.40 M441100R650 7126283 598632 169.0 75 45 5.10 16.70 M441100R651 7126272 598609 168.0 255 45 4.90 20.30 M441199R613 7126901 600094 170-175 180 45 4.60 35.00 M441199R614 7126874 600095 170-175 180 45 4.00 34.50 M441199R615 7126849 600098 170-175 180 45 7.00 23.00 M441199R616 7126924 600093 170-175 180 45 2.00 35.50 M441199R617 7126947 600093 170-175 180 45 6.50 35.00 M441199R618 7126972 600091 170-175 180 45 5.00 34.20 M441199R619 7126998 600091 170-175 180 45 3.00 22.00 M441199R620 7126980 599990 170-175 180 45 6.00 29.70 M441199R621 7126975 599889 170-175 180 45 2.00 30.20 M441199R622 7126871 599895 170-175 180 45 6.00 20.00 M441199R623 7126884 599995 170-175 180 45 3.00 29.70 M441199R624 7126930 600172 175.0 180 45 2.00 30.00 M441199R625 7126866 600175 174.0 180 45 4.00 30.00 M441199R626 7126726 600473 178.0 180 45 4.00 8.00 M441199R627 7126702 600475 177.0 180 45 3.00 16.50 M441199R628 7126676 600476 175.0 180 45 3.00 14.10 M441199R629 7126631 600564 177.5 180 45 10.00 35.30 M441199R630 7126606 600565 176.0 180 45 16.00 20.30 M441199R631 7126578 600661 181.0 180 45 14.60 51.40 M441199R632 7126876 600045 170-175 180 45 1.50 35.00 M441199R633 7126934 600043 170-175 180 45 2.40 35.00 M441199R634 7126967 600039 170-175 180 45 8.00 35.00 M441100R635 7126997 599939 170-175 180 45 5.50 35.00 M441100R636 7126951 599941 170-175 180 45 5.30 35.00 M441100R637 7126900 599943 170-175 180 45 4.00 35.00 M441100R638 7126929 599993 170-175 180 45 3.80 40.00 M441100R639 7126862 600135 173.0 180 45 7.00 35.00 1390.80 The Ni-(Cu-PGE) potential of Kellojärvi komatiitic cumulate body

Appendix 1. Continued.

Drill holes of the GTK in vicinity of the Kellojärvi ultramafic complex Hole-id (Euref) (Euref) Elev () Direction Inclination Soil (m) Length (m) 4411-2004-R0333 7126351 602105 178.0 360 40 6.10 77.50 Q542/2013/R4 7128315 598338 161.5 90 45 16.20 170.50 Q542/2013/R7 7128065 598038 161.5 90 45 39.50 46.00 Q542/2013/R12 7128065 598038 161.5 90 90 28.80 34.00 Q542/2013/R9 7135942 600117 177.5 90 45 30.75 331.30 Q542/2013/R10 7135962 600467 169.0 90 45 33.50 500.15 Q542/2013/R11 7135962 600467 169.0 270 45 33.00 188.65 Q542/2013/R13 602430 7125728 188.0 270 45 4.80 88.80 Q542/2013/R14 602423 7125728 188.0 90 45 5.50 215.50 Q542/2013/R15 602467 7125990 183.0 90 45 3.30 101.50 M19/52/4411/83/R303 7126005 602201 195.0 360 46.2 3.50 100.90 M19/52/4411/83/R304 7125974 602177 194.5 360 44.5 8.50 117.55 M19/52/4411/83/R305 7126004 602176 195.5 360 46.8 4.00 64.50 M19/52/4411/83/R306 7126003 602151 196.0 360 47.1 2.80 88.93 2125.78 Drill holes of the Outokumpu company in the area of the Kellojärvi ultramafic complex Hole-id (Euref) (Euref) Elev () Direction Inclination Soil (m) Length (m) KH/SII-16 7126635 600638 185.3 201 41.4 0.00 108.80 KH/ENS-1 7130945 600529 179.0 136 52 1.60 89.50 KH/ENS-2 7130812 600124 176.0 46 44 2.90 42.20 KH/ENS-3 7131020 600662 173.0 136 43 4.20 53.10 293.60 Drill holes of the Outokumpu company in vicinity of the Kellojärvi ultramafic complex Hole-id (Euref) (Euref) Elev () Direction Inclination Soil (m) Length (m) KH/SII-1 7124770 601597 179.8 360 48 6.50 103.50 KH/SII-2 7125831 600800 170.0 315 48.5 12.00 158.00 KH/SII-3 7125957 600659 171.2 135 46.8 20.50 130.70 KH/SII-4 7125839 600596 169.3 360 43.2 6.30 103.70 KH/SII-5 7125197 600776 177.2 40 54.4 3.20 127.40 KH/SII-6 7125257 600823 171.2 40 49.8 11.40 105.30 KH/SII-7 7124523 601109 181.9 360 51.8 1.80 96.90 KH/SII-8 7124535 601358 173.4 360 60.5 1.70 303.80 KH/SII-9 7124615 601154 176.8 360 49.5 0.90 98.20 KH/SII-10 7124401 600964 175.9 360 50 0.70 101.70 KH/SII-11 7126013 600600 171.0 135 50.2 15.50 299.50 KH/SII-12 7126100 601034 173.4 180 50.4 22.50 173.20 KH/SII-13 7125825 599896 166.9 360 45 20.00 140.00 KH/SII-14 7125743 599400 163.8 360 45.5 21.70 130.50 KH/SII-15 7125908 600092 166.4 360 45 28.20 131.10 KH/SII-17 7125997 600749 171.3 90 75.3 14.20 197.50 KH/SII-18 7125819 600597 169.2 360 55.7 7.50 144.80 KH/SII-19 7126437 600015 166.0 360 55 16.20 123.00 KH/SII-2 0 7125729 600909 170.0 11.75 435.90 3104.70