Integrated Pest Management Package for Leafhoppers and Planthoppers (Insecta: Hemiptera) in Paddy Fields

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Pest Management Package for Leafhoppers and Planthoppers (Insecta: Hemiptera) in Paddy Fields Journal of Agricultural Science and Engineering Vol. 6, No. 3, 2020, pp. 26-37 http://www.aiscience.org/journal/jase ISSN: 2381-6821 (Print); ISSN: 2381-6848 (Online) Integrated Pest Management Package for Leafhoppers and Planthoppers (Insecta: Hemiptera) in Paddy Fields Muhammad Sarwar * National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan Abstract The aim of the present article is to shed light on the current status, species composition, abundance, habitat affinities, distribution patterns of leafhoppers and planthoppers along with their integrated pest management (IPM) in the rice growing regions. Leafhoppers and planthoppers such as white rice leafhopper ( Cofana spectra Distant), brown planthopper (Nilaparvata lugens Stal), whitebacked planthopper [ Sogatella furcifera (Horvath)], green planthoppers [Nephotettix nigropictus (Stal)] and Nephotettix virescens (Distant), and lophopid leafhopper (Pyrilla perpusilla Walker) are sap feeders from the xylem and phloem tissues of the plant. Both adults plus nymphs of leafhoppers and planthoppers have piercing mouthparts that they insert into the leaf blades and leaf sheaths of rice plants to suck sap, and egg laying by hoppers blocks the water and food channels inside the plant. Severely damaged plants become dry and take on the brownish appearance as these have been damaged by fire, hence termed as hopper burn and at this level, crop loss may be 100%. The Integrated Pest Management (IPM) philosophies are growing a healthy crop by conserving of natural enemies; observing the field regularly (e.g., water, plants, pests and natural enemies); and farmers should strive to become experts. Simultaneous planting and cropping of rice over large areas; rotating rice with non-host crops, or fallowing between two rice crops; selective elimination of suitable hosts and habitats (sanitation); plant spacing to allow some sunlight to reach basal portion of plant; proper water management i.e., raising water level, or draining; early planting of short-season rice; integration of resistant varieties; and judicious use of pesticides are key component in IPM. Host plant resistance has served as a key component in IPM programs and in the development of sustainable rice creation systems, widespread adoption of such varieties has helped to stabilize rice production. The overall assessment indicates that resistance in rice to the hoppers is shown by the combined influence of non ‐ preference by the hoppers for feeding, orientation and oviposition coupled with antibiosis. However, to accomplish this, decision-making must always take into consideration both the costs of inputs and the ecological ramifications of these inputs. Keywords Rice Pests, Oryza sativa , Pesticide, Planthopper, Leafhopper, Feeding Damage Received: May 8, 2019 / Accepted: September 3, 2020 / Published online: September 28, 2020 @ 2020 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license. http://creativecommons.org/licenses/by/4.0/ species throughout the world today, but in Asia, it is 1. Introduction differentiated into three subspecies based on geographic conditions; Indica (tropical and subtropical varieties grown Rice, is an annual grass of family Gramineae, and belongs to throughout South and Southeast Asia and southern China), the genus Oryza , which includes twenty wild species and two Javanica (awned and awnless rice with long panicles and cultivated species, O. sativa (Asian rice) and O. glaberrima bold grains growing alongside of Indicas in Indonesia), and (African rice). The O. sativa is the most commonly grown * Corresponding author E-mail address: 27 Muhammad Sarwar: Integrated Pest Management Package for Leafhoppers and Planthoppers (Insecta: Hemiptera) in Paddy Fields Japonica (short and roundish grained varieties of temperate Poaceae grasses (Poaceae) are the most favorable zones of Japan, China and Korea). The diversity and overwintering habitat [9]. Among them, Nilaparvata lugens community structure of arthropods in an organic double- (Stal), Sogatella furcifera (Horvath), and Laodelphax cropped rice ecosystem have collected 114 species of striatellus (Fallen), are devastating pests of rice in tropical arthropods, which consist of including 58 species of spiders, and temperate Asia [10]. 16 species of predatory insects, 25 species of phytophagous Amongst sixty-five species of planthoppers representing insects, 15 species of neutral or other insects, in early season associated with rice agroecosystems are reported in tropical crop. Rice is attacked by several insects; some of these pests Asia. Of the total, most notably are the leafhoppers such as are of national significance, while others are pests of regional Cofana spectra (white rice leafhopper) (Hemiptera: significance. Insect pests like gall midge ( Orseola oryzae ), Cicadellidae), Pyrilla perpusilla (leafhopper) (Hemiptera: white backed planthopper ( Sogatodes oryzae ), white backed Lophopidae), Nilaparvata lugens (brown planthopper, and planthopper ( Sogatella furciferra ), yellow stem borer Sogatella furcifera (whitebacked planthopper) (Homoptera: (Sciropophaga insertulas ), leaffloder ( Cnaphalocrosis Delphacidae), the green planthopper Nephotettix nigropictus medinalis ) and brown planthopper ( Nilaparvata lugens ) are and Nephotettix virescens (Homoptera: Cicadellidae). This pests of national significance [1]. article provides summaries and analyses of the key works Indiscriminate intensification of insecticides use, however, and issues, and delivers details on management approaches. involves a number of serious hazards that can be hazards for Today, three major species of rice planthoppers (brown pesticide applicators, hazards for consumers, environmental planthopper, whitebacked planthopper, and small brown hazards and resistance of target pests [2]. Thus, integrated planthopper) have been noted in rice [11]. pest management (IPM) is an ecosystem-based strategy that The Fulgoroidea, Cicadellidae and Membracidae are the most focuses on long-term prevention of pests or their damage likely families in which Viruses transmission vectors are through a combination of techniques [3, 4, 5, 6, 7]. found, because they feed primarily on the phloem [12, 13, 14]. Two plant viruses are known to be transmitted in a 2. Leafhoppers and semipersistent manner by leafhoppers. One is waikavirus- Planthoppers Rice tungro spherical virus (RTSV) and another badnavirus- Rice tungro bacillform virus (RTBV). These viruses are In general, the leafhoppers and planthoppers (order located mainly in phloem tissues of their host plants [15]. Hemiptera) are sucking insects which remove plant sap from Following species of hoppers are observed causing severe the xylem and phloem tissues of the plant. The leafhoppers damage to rice plants:- (family Cicadellidae) attack all aerial parts of the plant, whereas the planthoppers (family Delphacidae) attack the 2.1. White-backed Planthopper Sogatella furcifera (Horvath) (Hemiptera: basal portions (stems). Severely damaged plants dry and take Delphacidae) on the brownish appearance of plants called hopper burn. These insects are severe pests in rice where they not only The adult hopper is 3.5-4.0 mm long, body creamy white cause direct damage by removing of sap, but also act vectors with the mesonotum, abdomen black dorsally and the legs are of serious rice virus diseases, such as rice tungro virus ochraceous brown. There is a conspicuous black dot at the transmitted by the green leafhopper Nephotettix virescens , middle of the posterior margin of each forewing, which and grassy stunt virus transmitted by the brown planthopper meets when the forewings come together. Macropterous Nilaparvata lugens . Hopperburn is similar to the feeding males and females and brachypterous females are commonly damage or bugburn caused by the rice black bug, but to found in the rice crop, whereas brachypterous males are very confirm hopperburn caused by planthoppers, check for the rare. The average fecundity of 132.8 eggs/ female in cluster presence of sooty molds at the base of the plant [8]. of 5 to 30 eggs is noted when hopper reared on wheat Planthoppers are a large group of small herbivorous insects, seedlings. The highest numbers of eggs are laid on leaf most of which live on monocotyledons by feeding on phloem sheath of plants followed by midrib and stem. The average sap. A field survey of the overwintering planthoppers incubation period is 8.6±0.24 day with 84.21 percent associated with the rice agro-ecosystemss revealed 22 species hatching and maximum hatching of eggs observed during of planthoppers collected and identified, with one species morning hours. Planthopper completes its post embryonic representing the subfamily Stenocraninae and the other 21 development in 42.09 days (male) and 44.4 days (female) species in Delphacinae incuding Nycheuma cognatum and passes through five nymphal instars to become an adult (Muir), Peregrinus maidis (Ashmead), and Pseudosogata with 89 percent larval survival and 89±0.05 percent moth vatrenus (Fennah). Abandoned rice paddies with dense emergence. Total nymphal durations are 13.8-15.4 days at Journal of Agricultural Science and Engineering Vol. 6, No. 3, 2020, pp. 26-37 28 21-33°C and 50.8-52.1 days at 14-23°C. Adult male is short reveal that S. furcifera and N. lugens are more attracted to lived for 14.4 days as compared to female (15.9 days) with blue and green lights than that of yellow and red lights. 1.0: 0.78 sex
Recommended publications
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • Biodiversity of Insects Associated with Rice ( Oryza Sativa L.) Crop Agroecosystem in the Punjab, Pakistan
    Biodiversity of insects associated with rice ( Oryza sativa L.) crop agroecosystem in the Punjab, Pakistan By MUHAMMAD ASGHAR M.Sc. (Hons.) Agricultural Entomology A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Agricultural Entomology FACULTY OF AGRICULTURE UNIVERSITY OF AGRICULTURE, FAISALABAD PAKISTAN 2010 1 To The Controller of Examinations, University of Agriculture, Faisalabad. We, the Supervisory Committee, certify that the contents and form of thesis submitted by Mr. Muhammad Asghar, Regd. 92-ag-1261 have been found satisfactory and recommend that it be processed for evaluation by the External Examiner (s) for the award of degree. SUPERVISORY COMMITTEE 1. CHAIRMAN: ………………………………………………. (DR. ANJUM SUHAIL) 2. MEMBER ………………………………………………. (DR. MUHAMMAD AFZAL) 3. MEMBER ……………………………………………….. (DR. MUHAMMAD ASLAM KHAN) 2 DEDICATED To My Affectionate Parents Loving Brothers, Sisters and Wife 3 ACKNOWLEDGEMENTS All praises are for “Almighty Allah” who is the creator of this multifaceted and beautiful universe. I consider it as my foremost duty to acknowledge the omnipresent kindness and love of Almighty Allah who made it possible for me to complete the writing of this thesis. I think it is also my supreme obligation to express the gratitude and respect to Holy Prophet Hazrat Muhammad (SAW) who is forever a torch of guidance and knowledge for humanity as a whole. How honourable it is to offer my cordial gratitude to my worthy supervisor and supervisory committee, Prof. Dr. Anjum Suhail; Dr. Muhammad Afzal, Department of Agri. Entomology and Prof. Dr. Muhammad Aslam Khan, Department of Plant Pathology, University of Agriculture, Faisalabad, for their constant interest, valuable suggestions, inspirational guidance and encouragement throughout the course of my studies.
    [Show full text]
  • Pyrilla Perpusilla): Distribution, Life Cycle, Nature of Damage and Control Measures
    Pest of Sugarcane (Pyrilla perpusilla): Distribution, Life cycle, Nature of damage and Control measures Distribution Pyrilla perpusilla commonly known as Sugarcane plant hopper is mainly found is Asian countries like Afghanistan, Bangladesh, Burma, Cambodia, India, Indonesia, Nepal, Pakistan, South China, Sri Lanka, Thailand, and Vietnam. The original host of P. perpusilla is not known but it has been recorded feeding and reproducing on a wide range of species of Gramineae, Leguminae and Moraceae families. Identification of Pyrilla perpusilla Adult Pyrilla perpusilla is a pale tawny-yellow, soft-bodied insect with head prominently drawn forward to form a snout. The wingspan of males is 16 - 18 mm and 19 - 21 mm for females. Females have cretaceous threads called anal pads, arranged as bundles on terminal segment. The fore wings are semi-opaque in nature, with yellow-brown color. The fore wings are lightly covered with minute black spots. Both adults and nymphs are very active and suck sap from the leaves of sugarcane. On the slightest disturbance, they jump from leaf to leaf. Lifecycle or Pyrilla perpusilla Egg: Females lay eggs on the lower, shady and concealed side of the leaves near the midrib. Eggs are laid in clusters of 30-40 in number in rows of 4-5. They are covered by pale waxy material. Eggs are oval-shaped, pale whitish to bluish green when laid and turn brown just before hatching. A female lays 600 - 800 eggs in her lifetime. Nymph: Nymph passes through five nymphal instar stages to reach adult stage. The following table gives
    [Show full text]
  • 1. Maize Shootfly: Atherigona Orientalis (Muscidae: Diptera)
    Lecture No 4 PESTS OF MAIZE AND WHEAT I. PEST OF MAIZE More than 130 insects have been recorded causing damage to maize in India. Among these, about half a dozen pests are of economic importance. Shoot fly, borers, shoot bug and aphid, polyphagous pest like cornworm cause considerable yield reduction in maize. Major pests 1. Maize shootfly Atherigona orientalis Muscidae Diptera 2. Stem borer Chilo partellus Crambidae Lepidoptera 3. Pink stem borer Sesamia inferens Noctuidae Lepidoptera 4. Cornworm/ Earworm Helicoverpa armigera Noctuidae Lepidoptera 5. Web worm Cryptoblabes gnidiella Pyraustidae Lepidoptera 6. Aphid Rhopalosiphum maidis Aphididae Hemiptera 7. Shoot bug Peregrinus maidis Delphacidae Hemiptera Minor Pests 8. Climbing Mythimna separata Noctuidae Lepidoptera cut worm 9. Ash weevil Myllocerus sp., Curculionidae Coleoptera 10. Phadka grasshopper Hieroglyphus Acrididae Orthoptera nigrorepletus 11. Leafhopper Pyrilla perpusilla Lophopidae Hemiptera Major pests 1. Maize shootfly: Atherigona orientalis (Muscidae: Diptera) Distribution and status Uttar Pradesh, Andhra Pradesh, Tamil Nadu, Maharashtra, Karnataka. Host range: Maize, sorghum, ragi and bajra Damage symptoms The maggot feeds on the young growing shoots resulting in “dead hearts”. Bionomics: Small grey coloured fly. Management • Grow resistant cultivars like DMR 5, NCD, VC 80 • Furrow application of phorate granules 10 G 10 kg/ha (or) lindane 6 G 25 kg per ha 2. Stem borer: Chilo partellus (Crambidae: Lepidoptera) Distribution and status India, Pakistan, Sri Lanka, Indonesia, Iraq, Japan, Uganda, Taiwan, Sudan, Nepal, Bangladesh and Thailand. Host range: Jowar, bajra, sugarcane and rice Damage symptoms It infests the crop a month after sowing and upto emergence of cobs. Central shoot withering leading to “dead heart” is the typical damage symptom.
    [Show full text]
  • Pyrilla the Sugarcane Leafhopper, Pyrilla Perpusilla Walker
    IPM Package of Practices for Management of Sugarcane Leaf hopper/ Pyrilla The sugarcane Leafhopper, Pyrilla perpusilla Walker (Lophopidae: Homoptera), commonly known as Indian sugarcane leafhopper, is one of the most destructive pests, and widely distributed in India including in Bihar, Haryana, Uttar Pradesh, Punjab, and Madhya Pradesh than in peninsular India. It is a threat to Indian sugar industry and a serious pest, causing 31.6% reduction in cane yield and 2-3% reduction in sugar recovery if not properly managed. Life cycle of Sugarcane Pyrilla Egg: The female Pyrilla lays eggs during day time, on the abaxial surface of the leaves along the midrib and it prefers a lower, shady and concealed side of leaves near midrib for oviposition. They are deposited in four to five rows (30-40 numbers/cluster) and are covered with a waxy thread-like material secreted by the female. During the winter, eggs are laid on the inside of the base of the leaf sheath, giving some protection from adverse climatic conditions. The females usually lay white to greenish yellow eggs which are 0.9-1.0 mm long and 0.45-0.64 mm wide. The interval between each laying during April-October is 2-6 days, 7-25 days during November-December and 57-126 days during November-January. Twenty to fifty eggs are laid at a time, with a life-time fecundity of 600-800. The incubation period varies with season, ranging from 6 to 30 days. Eggs mass of Pyrilla Nymph: Newly emerged nymphs are 0.8-1.0 mm long and 0.54-0.64 mm wide, milky white in colour and pass through five instars, each occupying 7-41 days with a maximum total nymphal period of 134 days, to become adult.
    [Show full text]
  • Doctor of Philosophy Agricultural Entomology
    INTEGRATED PEST MANAGEMENT OF SUGARCANE PYRILLA, Pyrilla perpusilla WLK. (HOMOPTERA : LOPHOPIDAE) IN PUNJAB, PAKISTAN By Amer Rasul 94-ag-1212 M.Sc. (Hons.) Agri Entomology Thesis submitted in partial fulfillment of requirements for the degree of DOCTOR OF PHILOSOPHY IN AGRICULTURAL ENTOMOLOGY DEPARTMENT OF AGRICULTURAL ENTOMOLOGY UNIVERSITY OF AGRICULTURE, FAISALABAD PAKISTAN 2011 i The Controller of Examinations, University of Agriculture, Faisalabad. We, supervisory committee certify that contents and form of thesis submitted by Mr. Amer Rasul (94-ag-1212) have been found satisfactory and recommend that it may be processed for evaluation by external examiner(s) for the award of degree. SUPERVISORY COMMITTEE CHAIRMAN _______________________________ (DR. MANSOOR UL HASAN) MEMBER _______________________________ (DR. ANJUM SUHAIL) MEMBER _______________________________ (DR. SHAHBAZ TALIB SAHI) ii Dedicated To My Beloved Parents ACKNOWLEDGEMENTS I am indebted to the ALMIGHTY ALLAH, the propitious, the benevolent and the sovereign, whose blessing and glory flourished my thoughts and thrived my ambitions, giving me talented teachers, affectionate parents, sweet sisters and caring brothers. Trampling lips and wet eyes praise the HOLY PROPHET MUHAMMAD (Peace be upon him), for enlightening our conscience with the essence of faith in ALLAH, converging all His kindness and mercy upon him. With profound gratitude and a deep sence of devotion, I wish to thank my worthy supervisor, Dr. Mansoor-ul-Hassan, Professor, Department of Agri. Entomology, University of Agriculture, Faisalabad, for his co-operative/encouraging attitude, utilizing help, keen interest, valuable comments and guidance throughout the course of this study. I do not find appropriate words to express my deep gratitude to my sincere and respectable teachers: Dr.
    [Show full text]
  • Female Genitalia of Seasogoniayoung from China
    A peer-reviewed open-access journal ZooKeysFemale 164: 25–40 genitalia (2012) of Seasogonia Young from China, with a new synonym and a new record... 25 doi: 10.3897/zookeys.164.2132 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Female genitalia of Seasogonia Young from China, with a new synonym and a new record (Hemiptera, Cicadellidae, Cicadellini) Ze-hong Meng1,†, Mao-fa Yang1,‡ 1 Institute of Entomology, Guizhou University; the Provincial Key Laboratory for Agricultural Pest Manage- ment of Mountainous Region, Guiyang, Guizhou, 550025, China Corresponding author: Mao-fa Yang ([email protected]) Academic editor: M. Wilson | Received 24 September 2011 | Accepted 28 December 2011 | Published 11 January 2012 Citation: Meng Z-H, Yang M-F (2012) Female genitalia of Seasogonia Young from China, with a new synonym and a new record (Hemiptera, Cicadellidae, Cicadellini). ZooKeys 164: 24–40. doi: 10.3897/zookeys.164.2132 Abstract Seasogonia Young, 1986 is a sharpshooter genus with 13 species, four of them recorded from China. In this paper, S. sandaracata (Distant, 1908) is recorded as new for China and S. rufipenna Li & Wang, 1992 is regarded as a junior synonym of S. nigromaculata Kuoh, 1991. The morphological diversity of the female genitalia of Seasogonia is still poorly known. We provide herein detailed descriptions and illustrations of three Chinese Seasogonia species. Notes on the female genitalia of Seasogonia, including intraspecific and interspecific variation, and comparisons between the female genitalia of Seasogonia and of other related genera from China are provided. The preliminary results indicate that the female genitalia may provide useful features for the taxonomy of Seasogonia and other members of the Old World Cicadellini.
    [Show full text]
  • Occurrence of Fulgoraecia (= Epiricania) Melanoleuca
    PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles OPEN ACCESS online every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Short Communication Occurrence of Fulgoraecia (= Epiricania) melanoleuca (Lepidoptera: Epipyropidae) as a parasitoid of sugarcane lophopid planthopper Pyrilla perpusilla in Tamil Nadu (India) with brief notes on its life stages H. Sankararaman, G. Naveenadevi & S. Manickavasagam 26 May 2020 | Vol. 12 | No. 8 | Pages: 15927–15931 DOI: 10.11609/jot.5033.12.8.15927-15931 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible for the accuracy of the politcal boundaries shown in the maps by the authors.
    [Show full text]
  • Review Article Insect Vectors of Rice Yellow Mottle Virus
    Hindawi Publishing Corporation Journal of Insects Volume 2015, Article ID 721751, 12 pages http://dx.doi.org/10.1155/2015/721751 Review Article Insect Vectors of Rice Yellow Mottle Virus Augustin Koudamiloro,1,2 Francis Eegbara Nwilene,3 Abou Togola,3 and Martin Akogbeto2 1 Africa Rice Center (AfricaRice), 01 BP 2031 Cotonou, Benin 2University of Abomey-Calavi, 01 BP 4521 Cotonou, Benin 3AfricaRice Nigeria Station, c/o IITA, PMB 5320, Ibadan, Nigeria Correspondence should be addressed to Augustin Koudamiloro; [email protected] Received 9 July 2014; Revised 2 November 2014; Accepted 5 November 2014 Academic Editor: Rostislav Zemek Copyright © 2015 Augustin Koudamiloro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rice yellow mottle virus (RYMV) is the major viral constraint to rice production in Africa. RYMV was first identified in 1966 in Kenya and then later in most African countries where rice is grown. Several studies have been conducted so far on its evolution, pathogenicity, resistance genes, and especially its dissemination by insects. Many of these studies showed that, among RYMV vectors, insects especially leaf-feeders found in rice fields are the major source of virus transmission. Many studies have shown that the virus is vectored by several insect species in a process of a first ingestion of leaf material and subsequent transmission in following feedings. About forty insect species were identified as vectors of RYMV since 1970 up to now. They were essentially the beetles, grasshoppers, and the leafhoppers.
    [Show full text]
  • Ajay Kumar Tiwari Editor Advances in Seed Production and Management Advances in Seed Production and Management Ajay Kumar Tiwari Editor
    Ajay Kumar Tiwari Editor Advances in Seed Production and Management Advances in Seed Production and Management Ajay Kumar Tiwari Editor Advances in Seed Production and Management Editor Ajay Kumar Tiwari UP Council of Sugarcane Research Shahjahanpur, Uttar Pradesh, India ISBN 978-981-15-4197-1 ISBN 978-981-15-4198-8 (eBook) https://doi.org/10.1007/978-981-15-4198-8 # Springer Nature Singapore Pte Ltd. 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
    [Show full text]
  • Phylogenetic Evidence for an Animal Pathogen Origin of Ergot and The
    Molecular Ecology (2007) 16, 1701–1711 doi: 10.1111/j.1365-294X.2007.03225.x PBlackwell Puhblishing Ltdylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes J. W. SPATAFORA,* G.-H. SUNG,* J.-M. SUNG,† N. L. HYWEL-JONES‡ and J. F. WHITE, JR§ *Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA, †Department of Applied Biology, Kangwon National University, Chuncheon 200-701, Korea, ‡Mycology Laboratory, National Center for Genetic Engineering and Biotechnology, Science Park, Pathum Thani 12120, Thailand, §Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA Abstract Grass-associated fungi (grass symbionts) in the family Clavicipitaceae (Ascomycota, Hypo- creales) are species whose host range is restricted to the plant family Poaceae and rarely Cyperaceae. The best-characterized species include Claviceps purpurea (ergot of rye) and Neotyphodium coenophialum (endophyte of tall fescue). They have been the focus of con- siderable research due to their importance in agricultural and grassland ecosystems and the diversity of their bioactive secondary metabolites. Here we show through multigene phylogenetic analyses and ancestral character state reconstruction that the grass symbionts in Clavicipitaceae are a derived group that originated from an animal pathogen through a dynamic process of interkingdom host jumping. The closest relatives of the grass symbi- onts include the genera Hypocrella, a pathogen of scale insects and white flies, and Metarhizium, a generalist arthropod pathogen. These data do not support the monophyly of Clavicipitaceae, but place it as part of a larger clade that includes Hypocreaceae, a family that contains mainly parasites of other fungi.
    [Show full text]
  • APPENDIX G. Bibliography of ECOTOX Open Literature
    APPENDIX G. Bibliography of ECOTOX Open Literature Explanation of OPP Acceptability Criteria and Rejection Codes for ECOTOX Data Studies located and coded into ECOTOX must meet acceptability criteria, as established in the Interim Guidance of the Evaluation Criteria for Ecological Toxicity Data in the Open Literature, Phase I and II, Office of Pesticide Programs, U.S. Environmental Protection Agency, July 16, 2004. Studies that do not meet these criteria are designated in the bibliography as “Accepted for ECOTOX but not OPP.” The intent of the acceptability criteria is to ensure data quality and verifiability. The criteria parallel criteria used in evaluating registrant-submitted studies. Specific criteria are listed below, along with the corresponding rejection code. · The paper does not report toxicology information for a chemical of concern to OPP; (Rejection Code: NO COC) • The article is not published in English language; (Rejection Code: NO FOREIGN) • The study is not presented as a full article. Abstracts will not be considered; (Rejection Code: NO ABSTRACT) • The paper is not publicly available document; (Rejection Code: NO NOT PUBLIC (typically not used, as any paper acquired from the ECOTOX holding or through the literature search is considered public) • The paper is not the primary source of the data; (Rejection Code: NO REVIEW) • The paper does not report that treatment(s) were compared to an acceptable control; (Rejection Code: NO CONTROL) • The paper does not report an explicit duration of exposure; (Rejection Code: NO DURATION) • The paper does not report a concurrent environmental chemical concentration/dose or application rate; (Rejection Code: NO CONC) • The paper does not report the location of the study (e.g., laboratory vs.
    [Show full text]