Design of Sputtering System for Hemispherical Boron 10 Target

Total Page:16

File Type:pdf, Size:1020Kb

Design of Sputtering System for Hemispherical Boron 10 Target UNLV Retrospective Theses & Dissertations 1-1-2007 Design of sputtering system for hemispherical boron 10 target Priya Raman University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Raman, Priya, "Design of sputtering system for hemispherical boron 10 target" (2007). UNLV Retrospective Theses & Dissertations. 2185. http://dx.doi.org/10.25669/pumy-gv0l This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. DESIGN OF SPUTTERING SYSTEM FOR HEMISPHERICAL BORON 10 TARGET by Priya Raman Bachelor of Engineering Bharathidasan University Tamil Nadu, India 2004 A thesis submitted in partial fulfillment of the requirements for the Master of Science Degree in Electrical Engineering Department of Electrical and Computer Engineering Howard R. Hughes College of Engineering Graduate College University of Nevada Las Vegas August 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1448417 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 1448417 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced witfi permission of tfie copyrigfit owner. Furtfier reproduction profiibited witfiout permission. Thesis Approval UNE The Graduate College University of Nevada, Las Vegas July 20 .20 07 The Thesis prepared by Priya Raman Entitled Design of Sputtering System for Hemispherical Boron 10 Target is approved in partial fulfillment of the requirements for the degree of ______________ Master of Science in Electrical Engineering Examination CommjMEe Chuif Dean of the Graduate College 1 Exa\nination Committee Men^^er \ \ Y Exanlination Committee Member Graduate College Facidtij Representatroe 11 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT Design of Sputtering System for Hemispherical Boron 10 Target by Priya Raman Dr. Rama Venkat, Examination Committee Chair Professor, Electrical and Computer Engineering University of Nevada, Las Vegas ’°Boron (*‘’B) is an isotope of Boron. ^°B and neutron interaction yields alpha particles, a particles typically deposit their energy within a few tenths of nanometers within a semiconductor creating electron-hole pairs which through radiative recombination yield photon emission of band gap energy. The number of photons emitted directly relates to the energy and flux density of incoming neutron. Thus, '^B coated semiconductors can be used as a neutron detectors. **^B is an expensive material, especially in the disc and the powdered form which is needed for sputtering. Since a hemispherical target of '°B of diameter 4.8cm was available, a sputter source was designed and built around this target. The design was based on various electrostatic and magnetostatic analysis from TRICOMP 6.0(Finite Element Software for Electromagnetics), SOLIDWORKS 2006(3 D Mechanical Design Software) and previous experience with sputtering systems and vacuum systems. The vacuum chamber was evacuated by an unthrottled turbomolecular pump backed by an oil sealed mechanical 111 Reproduced witfi permission of tfie copyrigfit owner. Furtfier reproduction profiibited witfiout permission. pump. The target head consists of '°B, cylindrical soft iron housing with a glass ring to prevent sputtering of iron from the stainless steel ring and Neodymium-Iron-Boron permanent magnet. Thin films of '°B were deposited on silicon wafer and were characterized for its chemical composition and thickness using X-ray fluorescence spectroscopy and Scanning electron Microscope. The growth rate was in the range of 0.046Â /sec. The deposited film contained *^B in the range of 19.46 %, carbon in the range of 1.31% and copper in the range of 14.21%. In addition to all these elements, the films contained 65 % of oxygen. Despite the fact that the system was leak tight (as determined by a quadrupole mass analyzer), the presence of oxygen in the deposited films could not be avoided. This was due to residual water vapor and our neeessarily low deposition rate. This was further ascertained by a theoretical calculation based on RGA measurements and growth rate. Possible improvements to system are: rotating the substrate to improve spatial thickness uniformity, cooling the sputter head so that the deposition rate can be increased and changing the rubber o-ring so that the system can be baked to minimize oxygen incorporation in the film. IV Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ABSTRACT............................................................................................................................iii LIST OF FIGURES.................................... vii ACKNOWLEDGEMENTS.....................................................................................................x CHAPTER 1 INTRODUCTION............................................................................................. 1 1.1 Organization of the Thesis ...........................................................................................3 CHAPTER 2 NEUTRON DETECTORS...............................................................................4 2.1 Principle of Operation .................................................................................... 4 2.2 Device Structure.......................................................................................................... 6 2.2.1 Boron Deposition ............................................................................................... 7 2.2.1.2 Sputtering ................................................................................................... 8 2.2.1.3 Chemical Vapor Deposition .....................................................................9 2.2.2 Theoretical Considerations and Detector Design ...........................................10 2.2.2.1 '*^B Film Coatings and Efficiency .......................................................... 10 2.22.2 Diode Structures ....................................................................................10 2.3 Monte Carlo N-Particle Simulation(Theoretical analysis) ......................................11 2.4 Device/Detector Results [15] ....................................................................................13 CHAPTER 3 PLASMA AND SPUTTERING.....................................................................14 3.1 Plasma......................................................................................................................... 14 3.1.1 Introduction to Glow Discharges ....................................................................17 3.1.1.1 Direct current (DC) glow discharge ................................... 18 3.1.1.2 Radio Frequency (RF) glow discharge ..................................................24 3.2 Sputtering ....................................................................................................................27 3.2.1 Physics of Sputtering ........................................................................................28 3.2.2 Magnetron Sputtering .......................................................................................29 CHAPTER 4 VACUUM SYSTEMS AND INSTRUMENTS USED IN THIN FILM CHARACTERIZATION AND LEAK DETECTION........................................................ 32 4.1 Vacuum Systems......................................................................................................32 4.1.1 Vacuum Pumping Mechanisms .......................................................................33 4.1.1.1 Mechanical Pumps/Roughing Pumps ....................................................34 4.1.1.2 Turbomolecular Pumps ...........................................................................35 4.1.2 Vacuum Chamber............................................................................................. 36 4.1.3 Pressure Gauges ............................................................................................... 37 4.1.3.1 Convectron Gauge .................................................................................37 V Reproduced with permission of the copyright
Recommended publications
  • Chemical Vapor Deposition of Heteroepitaxial Boron Phosphide Thin Films
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2013 Chemical Vapor Deposition of Heteroepitaxial Boron Phosphide Thin Films John Daniel Brasfield University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Semiconductor and Optical Materials Commons Recommended Citation Brasfield, John Daniel, "Chemical aporV Deposition of Heteroepitaxial Boron Phosphide Thin Films. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2558 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by John Daniel Brasfield entitled "Chemical Vapor Deposition of Heteroepitaxial Boron Phosphide Thin Films." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. Charles S. Feigerle, Major Professor We have read this dissertation and recommend its acceptance: Laurence Miller, Frank Vogt, Ziling Xue Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Chemical Vapor Deposition of Heteroepitaxial Boron Phosphide Thin Films A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville John Daniel Brasfield December 2013 Copyright © 2013 by John Daniel Brasfield All rights reserved.
    [Show full text]
  • Synthesis and Characterization of Diamond and Boron Phosphide
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 1972 Synthesis and Characterization of Diamond and Boron Phosphide K. P. Ananthanarayanan University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Ananthanarayanan, K. P., "Synthesis and Characterization of Diamond and Boron Phosphide" (1972). Open Access Dissertations. Paper 690. https://digitalcommons.uri.edu/oa_diss/690 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. T-P 7'i7 3. S ])5 Aisc°' .:. 1 SYNTHESIS AND CHARACTERIZATION OF DIAMOND AND BORON PHOSPHIDE / BY K. P. ANANTHANARAYANAN A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING UNIVERSITY OF RHODE ISLAND 1972 DOCTOR OF PHILOSOPHY THESIS OF K. P. ANANTHANARAYANAN Approved: Thesis Committee: Dean of the Graduate School UNIVERSITY OF RHODE ISLAND 1972 ABSTRACT Semiconducting diamond has been synthesized from carbon-metal melts in a 600 ton tetrahedral anvil press at about 60 kbar and 1400°c. The experimental set up, pressure and temperature calibra- tions, and the growth region in the pressure-temperature regime are indicated. Micrographs of synthesized crystals are shown. The semiconducting properties of diamond, doped with boron, aluminum and titanium have been interpreted using the log R versus l/T curves. In boron-doped diamond ''high concentration" type im- purity conduction occurs and the activation energies vary from 0.15 eV to 0.30 eV.
    [Show full text]
  • Ultrahigh Thermal Conductivity in Isotope-Enriched Cubic Boron Nitride
    Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chen, Ke et al. "Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride." Science 367, 6477 (January 2020): 555-559 © 2020 The Authors As Published http://dx.doi.org/10.1126/science.aaz6149 Publisher American Association for the Advancement of Science (AAAS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/127819 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride Ke Chen1*, Bai Song1*†‡,, Navaneetha K. Ravichandran2*, Qiye Zheng3§, Xi Chen4#, Hwijong Lee4, Haoran Sun5, Sheng Li6, Geethal Amila Gamage5, Fei Tian5, Zhiwei Ding1, Qichen Song1, Akash Rai3, Hanlin Wu6, Pawan Koirala6, Aaron J. Schmidt1, Kenji Watanabe7, Bing Lv6, Zhifeng Ren5, Li Shi4,8, David G. Cahill3, Takashi Taniguchi7, David Broido2†, and Gang Chen1† 1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 2Department of Physics, Boston College, Chestnut Hill, MA 02467, USA. 3Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. 4Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA 5Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA. 6Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA. 7National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
    [Show full text]
  • Thermoelectric Transports in Pristine and Functionalized Boron Phosphide Monolayers Min‑Shan Li1,3, Dong‑Chuan Mo2,3 & Shu‑Shen Lyu2,3*
    www.nature.com/scientificreports OPEN Thermoelectric transports in pristine and functionalized boron phosphide monolayers Min‑Shan Li1,3, Dong‑Chuan Mo2,3 & Shu‑Shen Lyu2,3* Recently, a new monolayer Group III–V material, two‑dimensional boron phosphide (BP), has shown great potential for energy storage and energy conversion applications. We study the thermoelectric properties of BP monolayer as well as the efect of functionalization by frst‑principles calculation and Boltzmann transport theory. Combined with a moderate bandgap of 0.90 eV and ultra‑high carrier mobility, a large ZT value of 0.255 at 300 K is predicted for two‑dimensional BP. While the drastically reduced thermal conductivity in hydrogenated and fuorinated BP is favored for thermoelectric conversion, the decreased carrier mobility has limited the improvement of thermoelectric fgure of merit. Termoelectric material, which can directly convert waste heat into electricity, provides a promising solution for global issues like energy crisis1–4. Te thermoelectric performance of a material can be characterized by a dimensionless fgure of merit: S2σT ZT = , (1) kel + kla where S is the Seebeck coefcient, σ is the electronic conductivity, kel and kla are the thermal conductivities con- tributed by electrons and phonons, respectively. To obtain high thermoelectric performance, a material generally needs to have high electrical conductivity σ, high Seebeck coefcient S and low thermal conductivity k at the same time5. While the inter-coupling of the electronic parameters has made the optimization of thermoelectric performance a great challenge, early studies suggest that lowering the dimension of materials appears to be an efective approach6–9.
    [Show full text]
  • List of Semiconductor Materials - Wikipedia, the Free Encyclopedia Page 1 of 4
    List of semiconductor materials - Wikipedia, the free encyclopedia Page 1 of 4 List of semiconductor materials From Wikipedia, the free encyclopedia Semiconductor materials are insulators at absolute zero temperature that conduct electricity in a limited way at room temperature. The defining property of a semiconductor material is that it can be doped with impurities that alter its electronic properties in a controllable way. Because of their application in devices like transistors (and therefore computers) and lasers, the search for new semiconductor materials and the improvement of existing materials is an important field of study in materials science. The most commonly used semiconductor materials are crystalline inorganic solids. These materials can be classified according to the periodic table groups from which their constituent atoms come. Semiconductor materials are differing by their properties. Compound semiconductors have advantages and disadvantages in comparison with silicon. For example gallium arsenide has six times higher electron mobility than silicon, which allows faster operation; wider band gap, which allows operation of power devices at higher temperatures, and gives lower thermal noise to low power devices at room temperature; its direct band gap gives it more favorable optoelectronic properties than the indirect band gap of silicon; it can be alloyed to ternary and quaternary compositions, with adjustable band gap width, allowing light emission at chosen wavelengths, and allowing e.g. matching to wavelengths with lowest losses in optical fibers. GaAs can be also grown in a semiinsulating form, which is suitable as a lattice-matching insulating substrate for GaAs devices. Conversely, silicon is robust, cheap, and easy to process, while GaAs is brittle, expensive, and insulation layers can not be created by just growing an oxide layer; GaAs is therefore used only where silicon is not sufficient.[1] Some materials can be prepared with tunable properties, e.g.
    [Show full text]
  • Flux Growth and Characteristics of Cubic Boron Phosphide
    FLUX GROWTH AND CHARACTERISTICS OF CUBIC BORON PHOSPHIDE by UGOCHUKWU NWAGWU B.S., Pittsburg State University, 2009 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Chemical Engineering College of Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 2013 Approved by: Major Professor J. H. Edgar, PhD Copyright UGOCHUKWU NWAGWU 2013 Abstract Boron phosphide, BP, is a III-V compound semiconductor with a wide band gap of 2.0 eV that is potentially useful in solid state neutron detectors because of the large thermal neutron capture cross-section of the boron-10 isotope (3840 barns). In this study, cubic BP crystals were grown by crystallizing dissolved boron and phosphorus from a nickel solvent in a sealed (previously evacuated) quartz tube. The boron - nickel solution was located at one end of the tube and held at 1150°C. Phosphorus, initially at the opposite end of the tube at a temperature of 430°C, vaporized, filling the tube to a pressure of 1– 5 atmospheres. The phosphorus then dissolved into solution, producing BP. Transparent red crystals up to 4 mm in the largest dimension with mostly hexagonal shape were obtained with a cooling rate of 3°C per hour. The crystal size decreased as the cooling rate increased, and also as growth time decreased. The characterization with x-ray diffraction (XRD) and Raman spectroscopy established that the BP produced through this method were highly crystalline. The lattice constant of the crystals was 4.534 Ǻ, as measured by x-ray diffraction. Intense, sharp Raman phonon peaks were located at 800 cm-1 and 830 cm-1, in agreement with the values reported in the literature.
    [Show full text]
  • SSSSSSS 107 US 7,479,731 B2 Page 2
    USOO7479731B2 (12) United States Patent (10) Patent No.: US 7479,731 B2 Udagawa (45) Date of Patent: Jan. 20, 2009 (54) MULTICOLOR LIGHT-EMITTING LAMP (58) Field of Classification Search .................. 313/409 AND LIGHT SOURCE See application file for complete search history. (75) Inventor: Takashi Udagawa, Chichibu (JP) (56) References Cited (73) Assignee: Showa Denko K.K., Tokyo (JP) U.S. PATENT DOCUMENTS 4.322,735 A 3/1982 Sadamasa et al. ............. 257/89 (*) Notice: Subject to any disclaimer, the term of this 4,929,866 A * 5, 1990 Murata et al................ 313,500 patent is extended or adjusted under 35 5,005,057 A 4/1991 Izumiya et al. U.S.C. 154(b) by 206 days. 5,042,043 A 8, 1991 Hatano et al. 5,324.962 A 6/1994 Komoto et al. 21) Appl. No.: 10/486,985 (21) App 9 (Continued) (22) PCT Filed: Aug. 16, 2002 FOREIGN PATENT DOCUMENTS (86). PCT No.: PCT/UP02/08317 DE 19734034 A1 2, 1998 S371 (c)(1), (Continued) (2), (4) Date: Feb. 18, 2004 Primary Examiner Sikha Roy (87) PCT Pub. No.: WO03/017387 Assistant Examiner Natalie KWalford (74) Attorney, Agent, or Firm Sughrue Mion, PLLC PCT Pub. Date: Feb. 27, 2003 (57) ABSTRACT (65) Prior Publication Data The present invention provides a technique for fabricating a US 2004/O183089 A1 Sep. 23, 2004 multicolor light-emitting lamp by using a blue LED having a structure capable of avoiding cumbersome bonding. In par Related U.S. Application Data ticular, the present invention provides a technique for fabri (60) Provisional application No.
    [Show full text]
  • Deposition of Boron-Containing Films from Decaborane
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Peter Dowben Publications Research Papers in Physics and Astronomy September 1990 Deposition of Boron-Containing Films From Decaborane James T. Spencer Syracuse University Peter A. Dowben University of Nebraska-Lincoln, [email protected] Yoon G. Kim Syracuse University Follow this and additional works at: https://digitalcommons.unl.edu/physicsdowben Part of the Physics Commons Spencer, James T.; Dowben, Peter A.; and Kim, Yoon G., "Deposition of Boron-Containing Films From Decaborane" (1990). Peter Dowben Publications. 82. https://digitalcommons.unl.edu/physicsdowben/82 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Peter Dowben Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. United States Patent [191 [ill Patent Number: 4,957,773 Spencer et al. [453 Date of Patent: Sep. 18, 1990 [54] DEPOSITION OF BORON-CONTAINING 4,522,849 7/1985 Lewandowski . FILMS FROM DECABORANE 4,622,236 6/1986 Morimoto et al. 4,655,893 4/1987 Beale . [75] Inventors: James T. Spencer, Syracuse; Peter A. 4,656,052 4/1987 Satou et al. Dowben, Dewitt; Yoon G. Kim, 4,695,476 9/1987 Feild, Jr. .................................427/6 Syracuse, all of N.Y. 4,714,625 12/1987 Chopra et al. 4,762,729 8/1988 Hirano et al. .........................427/38 [73] Assignee: Syracuse University, Syracuse, N.Y. 4,818,625 4/1989 Lavendel et al. ................ 427/248.1 [21] Appl. No.: 309,213 FOREIGN PATENT DOCUMENTS [22] Filed: Feb.
    [Show full text]
  • Extremely Hazardous Chemicals
    Science Safety Office California State University, Long Beach www.csulb.edu/cnsm/safety EXTREMELY HAZARDOUS CHEMICALS This list and the assigned hazard designations is based upon 22CCR Sect. 66680. Hazard Legend: T = toxic/poison F = flammable C = corrosive R = reactive * = water reactive • 1,1-Dimethylhydrazene, UDMH (T,F) • Ammonium bifluoride (T,C) • 2,3,7,8-Tetrachlorodibenzo-para-dioxin, TCDD, • Amyltrichlorsilane * (T,C,R) Dioxin (T) • Anisoyl choride * (T,C) • 2,3-Dichlorophenoxyacentic acid (T) • Antimony pentachloride * (T,C,R) • 2,4-Dichlorophenoxyacentic acid (T) • Antimony pentafluoride * (T,C,R) • 2,4,5-Trichlorophenoxyacetic acid (T) • Antimony tribromide* • 2,6-Dinitro-ortho-cresol, DNPC, SINOX, EGETOL • Antimony trifluoride * (T,C) 30 (T) • Antimony triiodide * • 2-Acetylaminofluorene, 2-AAF (T) • Antimony trivinyl * • 2-Aminopyridine (T) • Arsenic (T) • 3,3-Dichlorobenzidine and salts, DCB (T) • Arsenic acid and salts (T) • 4,4'-Methylene bis (2-chloroaniline), MOCA (T) • Arsenic compounds (T) • 4-Aminodiphenyl, 4-ADP (T) • Arsenic pentaselenide (T) • 4-Nitrobiphenyl, 4-NBP (T) • Arsenic pentoxide, Arsenic oxide (T) • Acetone cyanohydrin (T) • Arsenic sulfide, Arsenic disulfide (T) • Acetyl bromide * (T) • Arsenic tribromide, Arsenic bromide (T) • Acetyl chloride * (T) • Arsenic trichloride, Arsenic chloride (T) • Acrolein, Aqualin (T,F) • Arsenic triiodide, Arsenic iodide (T) • Acrylonitrile (T,F) • Arsenic trioxide, Arsenic oxide (T) • Adiponitrile (T) • Arsenious acid and salts (T) • ALDRIN 1,2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-
    [Show full text]
  • First-Principles Investigation of the Adsorption Behaviors of CH2O on BN, Aln, Gan, Inn, BP, and P Monolayers
    Delft University of Technology First-principles investigation of the adsorption behaviors of CH 2 O on BN, AlN, GaN, InN, BP, and P monolayers Feng, Chuang; Qin, Hongbo; Yang, Daoguo; Zhang, Guoqi DOI 10.3390/ma12040676 Publication date 2019 Document Version Final published version Published in Materials Citation (APA) Feng, C., Qin, H., Yang, D., & Zhang, G. (2019). First-principles investigation of the adsorption behaviors of CH O on BN, AlN, GaN, InN, BP, and P monolayers. Materials, 12(4), 1-8. [676]. https://doi.org/10.3390/ma120406762 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. materials Article First-Principles Investigation of the Adsorption Behaviors of CH2O on BN, AlN, GaN, InN, BP, and P Monolayers Chuang Feng 1, Hongbo Qin 1,* , Daoguo Yang 1 and Guoqi Zhang 1,2 1 School of Mechanical and Electronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; [email protected] (C.F.); [email protected] (D.Y.); [email protected] (G.Z.) 2 EEMCS Faculty, Delft University of Technology, 2628 Delft, The Netherlands * Correspondence: [email protected]; Tel.: +86-773-2290108 Received: 29 January 2019; Accepted: 18 February 2019; Published: 25 February 2019 Abstract: CH2O is a common toxic gas molecule that can cause asthma and dermatitis in humans.
    [Show full text]
  • Fracture and Yield Behaviour of Wear and Erosion Resistant Boron Phosphide Coatings for Aerospace and Automotive Applications
    Volume 75 International Scientific Journal Issue 1 published monthly by the September 2015 World Academy of Materials Pages 30-34 and Manufacturing Engineering Fracture and yield behaviour of wear and erosion resistant boron phosphide coatings for aerospace and automotive applications A.A. Ogwu*, T. Hellwig, D. Haddow School of Engineering and Computing, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, United Kingdom * Corresponding e-mail address: [email protected] ABSTRACT Purpose: The investigation of mechanical properties of boron phosphide thin film coatings prepared by PECVD. Design/methodology/approach: The hardness of the films was determined by nano- indentation. The fracture toughness was measured by Vickers indentation and the yield strength of the films on ZnS and <100> silicon substrate was measured by a simplified form of the spherical cavity model. Findings: The measured mechanical properties indicate that boron phosphide coatings have potential engineering applications beyond protecting infrared substrates from sand erosion in aerospace environments. Research limitations/implications: Their mechanical properties are comparable to those of DLC and Si-DLC films, in addition to their superior corrosion and sand abrasion resistance. Practical implications: Originality/value: Experimental data on the mechanical properties of boron phosphide coatings that indicate their surface protection promise in engineering applications. Keywords: Boron phosphide; Thin films; Mechanical properties Reference to this paper should be given in the following way: A.A. Ogwu, T. Hellwig, D. Haddow, Fracture and yield behaviour of wear and erosion resistant boron phosphide coatings for aerospace and automotive applications, Archives of Materials Science and Engineering 75/1 (2015) 30-34.
    [Show full text]
  • Integration of Boron Arsenide Cooling Substrates Into Gallium Nitride Devices
    ARTICLES https://doi.org/10.1038/s41928-021-00595-9 Integration of boron arsenide cooling substrates into gallium nitride devices Joon Sang Kang1,3, Man Li1,3, Huan Wu1,3, Huuduy Nguyen1,3, Toshihiro Aoki2 and Yongjie Hu 1 ✉ Thermal management is critical in modern electronic systems. Efforts to improve heat dissipation have led to the exploration of novel semiconductor materials with high thermal conductivity, including boron arsenide (BAs) and boron phosphide (BP). However, the integration of such materials into devices and the measurement of their interface energy transport remain unex- plored. Here, we show that BAs and BP cooling substrates can be heterogeneously integrated with metals, a wide-bandgap semiconductor (gallium nitride, GaN) and high-electron-mobility transistor devices. GaN-on-BAs structures exhibit a high ther- mal boundary conductance of 250 MW m−2 K−1, and comparison of device-level hot-spot temperatures with length-dependent scaling (from 100 μm to 100 nm) shows that the power cooling performance of BAs exceeds that of reported diamond devices. Furthermore, operating AlGaN/GaN high-electron-mobility transistors with BAs cooling substrates exhibit substantially lower hot-spot temperatures than diamond and silicon carbide at the same transistor power density, illustrating their potential for use in the thermal management of radiofrequency electronics. We attribute the high thermal management performance of BAs and BP to their unique phonon band structures and interface matching. n most electronic systems, large amounts of waste heat are dis- been reported in boron phosphide (BP, ref. 7) and 1,300 W m−1 K−1 in sipated from hot spots to heat sinks across a series of device lay- boron arsenide (BAs, refs.
    [Show full text]