The Effect of Cigarette Smoke Exposure on The

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Cigarette Smoke Exposure on The The effect of cigarette smoke exposure on the proteomic composition of human bronchial epithelial cell airway surface liquid Linsey E Haswell 1, Wanda Fields 2, Laetitia Cortes 3, Pascal Croteau 3, Laura McIntosh 3, Daniel Chelsky 3 Clive Meredith 1 and Gary Phillips 1 1British American Tobacco, Group Research and Development, Southampton, SO15 8TL, UK, 2R. J. Reynolds Tobacco Co, Abstract Nº: 1530 3 Poster Board Nº: 146 Research & Development, Winston-Salem, North Carolina, USA and Caprion Proteomics Inc, Montréal, Québec, Canada Corresponding email: [email protected] Introduction Misc. Lipid metabolism Translation 5% Extracellular region 3% 2% Protein DI A B Protein DI A B Protein DI A B 14% The conducting airway epithelium is covered by a thin layer of liquid known as the airway surface Nuclear organization - Transcription HNRNPD 1491.81 X AKR1C2 3.20 X X PSMA7 2.66 X X 4% liquid (ASL). The ASL plays an important defensive role against inhaled particles and chemicals CD109 4.39 X X S100A9 3.12 X X PSMA8 2.66 X X Protein degradation such as cigarette smoke. Human bronchial epithelial cells (HBECs) cultured in vitro at the air- 5% SERPINA3 4.35 X X S100P 3.04 X X CALM1 2.61 X X Inflammation - FUT3 3.85 X X KRT4 3.01 X X S100A11 2.58 X Immune response FUT5 3.85 X X CTSD 2.80 X X CCL20 2.55 X liquid interface secrete mucins and other proteins from their apical surface which are thought to Calcium ion binding 13% 7% FUT6 3.85 X X SERPINA1 2.77 X X PRSS3 2.36 X X mimic the ASL observed in vivo . Mass spectrometry (MS) based proteomics is a technique that is PLUNC 3.70 X X PSME1 2.75 X X KRT9 2.36 X X S100A8 3.51 X X ANXA5 2.69 X X FTH1 2.35 X capable of detecting patterns of secreted proteins in either in vitro or in vivo samples, such as Redox homeostasis - S100A6 3.40 X X KLK13 2.68 X X YWHAQ 2.30 X Stress response ASL or sputum. To verify and quantify selected proteins that could be differentially secreted in the 7% CAPN1 3.27 X X IL8 2.67 X X LDHA 2.30 X Signaling ASL of cultured HBECs, a quantitative mass spectrometry based, multiple reaction monitoring 13% Energy metabolism Table 2. Top 30 proteins differentially secreted following smoke exposure at 48 hours in the low dose vs. air 8% (MRM) assay was developed. This assay offers a fast and cost-effective alternative to Cell adhesion - Wound control comparison. [A] 40% significant peptides (q-value < 0.1) with DI in the same direction (all above or Cytoskeleton healing immunoassays for following panels of potential protein biomarkers. The aim of the current study 8% 11% below 1). [B] 80% of the peptides with DI in the same direction and median DI greater than 1.4. X indicates the was to develop an MRM assay and to identify changes in the protein composition of HBEC ASL specified criteria are met. Figure 1. Biological processes (Entrez GO) associated with ASL proteins in all treatments groups following exposure to cigarette smoke. Effect of cigarette smoke on the ASL proteome Gene Gene Gene Gene Gene Exposure to smoke resulted in 1,113 unique peptide sequences being differentially secreted (q- Protein name Protein name Protein name Protein name Protein name name name name name name Methods 60 kDa heat shock protein, value < 0.1 and DI > 2) in at least one treatment comparison. At the protein-level, 376 distinct ACTN1 Alpha-actinin-1 CRNN Cornulin HSPD1 MUC16 Mucin-16 S100A9 Protein S100-A9 mitochondrial Anterior gradient protein 2 10 kDa heat shock protein, Cell culture: Primary HBECs (Lonza) from 6 non-smoking donors were grown at the air-liquid AGR2 CSTB Cystatin-B HSPE1 MUC20 Mucin-20 S100P S100P-binding protein proteins were considered significant, with the greatest secretion changes occurring 48 hours homolog mitochondrial ® Plasminogen activator inhibitor interface on 6.5 mm Transwells (Corning) for 30 days, by which time the cells had undergone AHNAK2 Protein AHNAK2 CTSD Cathepsin D IL1B Interleukin-1 beta MUC4 Mucin-4 SERBP1 after low dose smoke exposure as compared to the air control (Table 1). The majority of the 1 RNA-binding protein 1 Aldo-keto reductase family 1 Interleukin 1 receptor mucocilliary differentiation . AKR1B10 CTSZ Cathepsin Z IL1RN MUC5AC Mucin-5AC SERPINA1 Alpha-1-antitrypsin differentially secreted proteins are related to inflammation and immune response, calcium member B10 antagonist protein Aldo-keto reductase family 1 AKR1C2 CTTN Src substrate cortactin IL6 IL-6 MUC5B Mucin-5B SERPINA3 Alpha-1-antichymotrypsin binding and homeostasis, squamous cell differentiation and keratinocytes, protein metabolism member C2 Aldehyde dehydrogenase, ALDH3A1 CXCL1 C-X-C motif chemokine 1 IL8 IL-8 NCL Nucleolin SERPINB1 Leukocyte elastase inhibitor Smoke exposure: A RM20S Smoking Machine (Borgwaldt) was used to generate and dilute dimeric NADP-preferring and oxidative stress (Figure 2). The top 30 proteins that were positively differentially secreted are NAD(P)H dehydrogenase ANXA1 Annexin A1 DKK2 Dickkopf-related protein 2 JRKL Jerky protein homolog-like NQO1 SERPINB13 Serpin B13 smoke from 3R4F cigarettes (University of Kentucky) under the ISO smoking regime (35 ml puff [quinone] 1 listed in Table 2. ANXA5 Annexin A5 EIF5A2 Elongation factor 1-alpha 1 KDM3A Lysine-specific demethylase 3A NUCB1 Nucleobindin-1 SERPINB3 Serpin B3 Nuclear ubiquitous casein and volume drawn over 2 seconds once every minute). The HBECs were transferred to exposure Eukaryotic translation initiation Far upstream element-binding ASAH1 Acid ceramidase ENO1 KHSRP NUCKS1 cyclin-dependent kinases SERPINB4 Serpin B4 factor 5A-2 protein 2 substrate chambers and exposed at the air surface interface (ALI) for 30 minutes to a low or (1:160, ATP synthase subunit O, Pigment epithelium-derived ATP5O ENSA Alpha-endosulfine KLK11 Kallikrein-11 NUDC Nuclear migration protein nudC SERPINF1 2 Time post exposure Number of proteins mitochondrial factor Comparison Protein kinase C and casein smoke:air), high dose (1:60, smoke:air) of cigarette whole smoke or filtered-air alone . ASL was DNA repair protein (hours) ATRN Isoform 2 of Attractin ERCC5 KLK13 Kallikrein-13 PACSIN2 kinase substrate in neurons SFN 14-3-3 protein sigma AB complementing XP-G cells protein 2 collected from the exposed cultures at 4, 12, 24 and 48 hours after exposure by adding 150 µl 4 LD vs AC 0 32 Secreted frizzled-related B2M Beta-2-microglobulin ERO1L ERO1-like protein alpha KRT10 Keratin, type I cytoskeletal 10 PGAM1 Phosphoglycerate mutase 1 SFRP1 protein 1 4 HD vs AC 0 48 phosphate buffered saline to the apical surface, incubating at 37ºC for 10 minutes before Polymeric immunoglobulin Sodium-dependent phosphate BASP1 Brain acid soluble protein 1 EZR Ezrin KRT4 Keratin, type II cytoskeletal 4 PIGR SLC34A2 4 HD vs LD 0 39 receptor transport protein 2B removal. 12 LD vs AC 0 74 3'(2'),5'-bisphosphate Fumarylacetoacetate hydrolase BPNT1 FAHD1 KRT9 Keratin, type I cytoskeletal 9 PIP Prolactin-inducible protein SNAP23 Antileukoproteinase 12 HD vs AC 0 62 nucleotidase 1 domain-containing protein 1 12 HD vs LD 0 92 Peptidyl-prolyl cis-trans Urokinase-type plasminogen Synaptosomal-associated C3 Complement C3 FKBP3 KYNU Kynureninase PLAU SNRPD3 isomerase FKBP3 activator protein 23 Proteomics analysis: ASL samples were concentrated, digested with trypsin and desalted. 24 LD vs AC 0 37 Fibrous sheath-interacting Small nuclear ribonucleoprotein C4B Complement C4-B FSIP2 LAMB2 Laminin subunit beta-2 PLUNC Protein Plunc SPP1 24 HD vs AC 0 70 protein 2 Sm D3 Processed samples were analysed by reversed phase liquid chromatography (LC) (nanoAcquity, Neutrophil gelatinase- CALM1 Calmodulin FSTL1 Follistatin-related protein 1 LCN2 PRDX1 Peroxiredoxin-1 SSBP1 Osteopontin 24 HD vs LD 0 104 associated lipocalin Succinyl-CoA ligase [GDP- Waters) using a water/acetonitrile/formic acid gradient. The LC was coupled by nanospray to an 48 LD vs AC 123 192 L-lactate dehydrogenase A CAPN1 Calpain-1 catalytic subunit FTH1 Ferritin heavy chain LDHA PRDX2 Peroxiredoxin-2 SUCLG2 forming] subunit beta, chain 48 HD vs AC 0 106 mitochondrial Orbitrap XL (Thermo Fisher) mass spectrometer. Survey scan (LC-MS) and tandem mass Thioredoxin-dependent 48 HD vs LD 177 179 Isoform 2 of Alpha-(1,3)- L-lactate dehydrogenase B Transforming growth factor CAPS Calcyphosin FUT6 LDHB PRDX3 peroxide reductase, TGFB2 fucosyltransferase chain beta-2 spectrometry (MS/MS) data were acquired in the same run. Protein identification was mitochondrial Table 1. Protein summary in treatment effect comparisons. [A] 40% significant peptides (q-value < 0.1) with CAT Catalase GAA Lysosomal alpha-glucosidase LGALS3 Galectin-3 PRDX5 Peroxiredoxin-5, mitochondrial TIMP1 Metalloproteinase inhibitor 1 accomplished using data acquired by LC-MS/MS. The MS/MS spectra were matched to the Glyceraldehyde-3-phosphate CCL20 C-C motif chemokine 20 GAPDH LGALS3BP Galectin-3-binding protein PRSS3 Trypsin-3 TNF TNF-α differential intensity (DI) in the same direction (all above or below 1). [B] 80% of the peptides with DI in the same dehydrogenase Proteasome subunit alpha corresponding peptide sequences found in the UniProt human protein database using Mascot CD109 CD109 antigen GCN1L1 Translational activator GCN1 LPLUNC1 LPLUNC1 PSMA1 TPI1 Triosephosphate isomerase direction and median DI greater than 1.4. type-1 Monocyte differentiation Lipolysis-stimulated lipoprotein Proteasome activator complex Thioredoxin reductase 1, CD14 GDF15 Growth/differentiation factor 15 LSR PSME1 TXNRD1 (Matrix Science) software. antigen CD14 receptor subunit 1 cytoplasmic Microtubule-associated protein CEL Bile salt-activated lipase GPX2 Glutathione peroxidase 2 MAP4 RORB Nuclear receptor ROR-beta TYMP Thymidine phosphorylase Lipid metabolism Translation Misc.
Recommended publications
  • Calcium-Induced Conformational Changes in the Regulatory Domain of the Human Mitochondrial ATP-Mg/Pi Carrier
    Biochimica et Biophysica Acta 1847 (2015) 1245–1253 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier Steven P.D. Harborne, Jonathan J. Ruprecht, Edmund R.S. Kunji ⁎ The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK article info abstract Article history: The mitochondrial ATP-Mg/Pi carrier imports adenine nucleotides from the cytosol into the mitochondrial matrix Received 24 April 2015 and exports phosphate. The carrier is regulated by the concentration of cytosolic calcium, altering the size of the Received in revised form 15 June 2015 adenine nucleotide pool in the mitochondrial matrix in response to energetic demands. The protein consists of Accepted 6 July 2015 three domains; (i) the N-terminal regulatory domain, which is formed of two pairs of fused calcium-binding EF- Available online 9 July 2015 hands, (ii) the C-terminal mitochondrial carrier domain, which is involved in transport, and (iii) a linker region α Keywords: with an amphipathic -helix of unknown function. The mechanism by which calcium binding to the regulatory do- Calcium regulation mechanism main modulates substrate transport in the carrier domain has not been resolved. Here, we present two new crystal EF-hand conformational change structures of the regulatory domain of the human isoform 1. Careful analysis by SEC confirmed that although the SCaMC regulatory domain crystallised as dimers, full-length ATP-Mg/Pi carrier is monomeric. Therefore, the ATP-Mg/Pi Adenine nucleotide translocase carrier must have a different mechanism of calcium regulation than the architecturally related aspartate/glutamate Regulation of adenine nucleotides carrier, which is dimeric.
    [Show full text]
  • Two Transgenic Mouse Models for Β-Subunit Components of Succinate-Coa Ligase Yielding Pleiotropic Metabolic Alterations
    Two transgenic mouse models for -subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations Kacso, Gergely; Ravasz, Dora; Doczi, Judit; Németh, Beáta; Madgar, Ory; Saada, Ann; Ilin, Polina; Miller, Chaya; Ostergaard, Elsebet; Iordanov, Iordan; Adams, Daniel; Vargedo, Zsuzsanna; Araki, Masatake; Araki, Kimi; Nakahara, Mai; Ito, Haruka; Gál, Aniko; Molnár, Mária J; Nagy, Zsolt; Patocs, Attila; Adam-Vizi, Vera; Chinopoulos, Christos Published in: Biochemical Journal DOI: 10.1042/BCJ20160594 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Kacso, G., Ravasz, D., Doczi, J., Németh, B., Madgar, O., Saada, A., Ilin, P., Miller, C., Ostergaard, E., Iordanov, I., Adams, D., Vargedo, Z., Araki, M., Araki, K., Nakahara, M., Ito, H., Gál, A., Molnár, M. J., Nagy, Z., ... Chinopoulos, C. (2016). Two transgenic mouse models for -subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations. Biochemical Journal, 473(20), 3463-3485. https://doi.org/10.1042/BCJ20160594 Download date: 02. okt.. 2021 Biochemical Journal (2016) 473 3463–3485 DOI: 10.1042/BCJ20160594 Research Article Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations Gergely Kacso1,2, Dora Ravasz1,2, Judit Doczi1,2, Beáta Németh1,2, Ory Madgar1,2, Ann Saada3, Polina Ilin3, Chaya Miller3, Elsebet Ostergaard4, Iordan Iordanov1,5, Daniel Adams1,2, Zsuzsanna Vargedo1,2, Masatake
    [Show full text]
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
    Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception.
    [Show full text]
  • Tnfa-Induced Mucin 4 Expression Elicits Trastuzumab Resistance in HER2-Positive Breast Cancer María F
    Published OnlineFirst October 3, 2016; DOI: 10.1158/1078-0432.CCR-16-0970 Cancer Therapy: Clinical Clinical Cancer Research TNFa-Induced Mucin 4 Expression Elicits Trastuzumab Resistance in HER2-Positive Breast Cancer María F. Mercogliano1, Mara De Martino1, Leandro Venturutti1, Martín A. Rivas2, Cecilia J. Proietti1, Gloria Inurrigarro3, Isabel Frahm3, Daniel H. Allemand4, Ernesto Gil Deza5, Sandra Ares5, Felipe G. Gercovich5, Pablo Guzman 6, Juan C. Roa6,7, Patricia V. Elizalde1, and Roxana Schillaci1 Abstract Purpose: Although trastuzumab administration improved the Results: TNFa overexpression turned trastuzumab-sensitive outcome of HER2-positive breast cancer patients, resistance cells and tumors into resistant ones. Histopathologic findings events hamper its clinical benefits. We demonstrated that TNFa revealed mucin foci in TNFa-producing tumors. TNFa induced stimulation in vitro induces trastuzumab resistance in HER2- upregulation of MUC4 that reduced trastuzumab binding to its positive breast cancer cell lines. Here, we explored the mechanism epitope and impaired ADCC. Silencing MUC4 enhanced trastu- of TNFa-induced trastuzumab resistance and the therapeutic zumab binding, increased ADCC, and overcame trastuzumab and strategies to overcome it. trastuzumab-emtansine antiproliferative effects in TNFa-overex- Experimental Design: Trastuzumab-sensitive breast cancer pressing cells. Accordingly, administration of TNFa-blocking cells, genetically engineered to stably overexpress TNFa,and antibodies downregulated MUC4 and sensitized de novo trastu- de novo trastuzumab-resistant tumors, were used to evaluate zumab-resistant breast cancer cells and tumors to trastuzumab. In trastuzumab response and TNFa-blocking antibodies effective- HER2-positive breast cancer samples, MUC4 expression was ness respectively. Immunohistochemistry and antibody-depen- found to be an independent predictor of poor disease-free survival dent cell cytotoxicity (ADCC), together with siRNA strategy, (P ¼ 0.008).
    [Show full text]
  • To Study Mutant P53 Gain of Function, Various Tumor-Derived P53 Mutants
    Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Shama K Khokhar M.Sc., Bilaspur University, 2004 B.Sc., Bhopal University, 2002 2007 1 COPYRIGHT SHAMA K KHOKHAR 2007 2 WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Date of Defense: 12-03-07 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SHAMA KHAN KHOKHAR ENTITLED Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Madhavi P. Kadakia, Ph.D. Thesis Director Daniel Organisciak , Ph.D. Department Chair Committee on Final Examination Madhavi P. Kadakia, Ph.D. Steven J. Berberich, Ph.D. Michael Leffak, Ph.D. Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies 3 Abstract Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, Wright State University, 2007 Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. p63, a member of the p53 gene family, known to play a role in development, has more recently also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and mammary glands. Germline missense mutations of p63 have been shown to be responsible for several human developmental syndromes including SHFM, EEC and ADULT syndromes and are associated with anomalies in the development of organs of epithelial origin.
    [Show full text]
  • A Stealth Cloak for Cancer Cells
    BMB Rep. 2021; 54(7): 344-355 BMB www.bmbreports.org Reports Invited Mini Review Mucin in cancer: a stealth cloak for cancer cells Dong-Han Wi1, Jong-Ho Cha2,3 & Youn-Sang Jung1,* 1Department of Life Science, Chung-Ang University, Seoul, 06974, 2Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, 3Department of Biomedical Science, Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon 22212, Korea Mucins are high molecular-weight epithelial glycoproteins and mucinous colorectal carcinoma (MCC) (3). Since tumor growth are implicated in many physiological processes, including epit- sites induce inhospitable conditions for them to survive, helial cell protection, signaling transduction, and tissue home- mucins are suggested as an oncogenic microenvironment that ostasis. Abnormality of mucus expression and structure contri- avoids hypoxia, acidic, and other biological hurdles. The com- butes to biological properties related to human cancer progress- position and structure of mucins enable them to mimic the ion. Tumor growth sites induce inhospitable conditions. Many surface of tumor cells like the surface of normal epithelial cells kinds of research suggest that mucins provide a microenviron- (4). Additionally, the mucus layer captures growth factors or ment to avoid hypoxia, acidic, and other biological conditions cytokines, contributing to cell growth of the tumor. Alter- that promote cancer progression. Given that the mucus layer natively, these properties interfere with the interaction bet- captures growth factors or cytokines, we propose that mucin ween the immune system and tumor cells. Indeed, a high helps to ameliorate inhospitable conditions in tumor-growing concentration of soluble mucins downregulates the motility sites.
    [Show full text]
  • Human Kallikrein Gene 11 (KLK11) Mrna Overexpression Is Associated with Poor Prognosis in Patients with Epithelial Ovarian Cancer
    2766 Vol. 10, 2766–2770, April 15, 2004 Clinical Cancer Research Human Kallikrein Gene 11 (KLK11) mRNA Overexpression Is Associated with Poor Prognosis in Patients with Epithelial Ovarian Cancer 0.0225 ؍ Kazushi Shigemasa,1 Lijun Gu,1 significantly associated with overall survival (P ؍ Hirotoshi Tanimoto,2 Timothy J. O’Brien,3 and and P 0.0202, respectively) after multivariate analysis. Conclusions: KLK11 expression may play an important Koso Ohama1 role in ovarian cancer development and act as an independ- 1 Department of Obstetrics and Gynecology, Hiroshima University ent prognostic marker in ovarian cancer patients. Graduate School of Biomedical Sciences, Hiroshima, Japan; 2Department of Gynecology, National Hiroshima Hospital, Higashi Hiroshima, Japan; and 3Departments of Biochemistry and Molecular INTRODUCTION Biology and Obstetrics and Gynecology, University of Arkansas for Serine proteases comprise a family of protein-degrading Medical Sciences, Little Rock, Arkansas enzymes that serve a variety of biological functions, including induction of blood coagulation, activation of growth and angio- ABSTRACT genic factors, and degradation of extracellular matrix compo- nents (1–4). Purpose: The purpose of this study was to examine The human kallikrein gene family, a subfamily of serine expression levels of the human tissue kallikrein 11 gene proteases, is located at the chromosomal locus 19q13.3-q13.4. (KLK11) in epithelial ovarian tumors and to identify the Until recently, this family was thought to include only three relationship between KLK11 expression and patient sur- genes, the pancreatic renal kallikrein gene (KLK1), the human vival. glandular kallikrein gene (KLK2), and KLK3, which encodes Experimental Design: KLK11 mRNA expression was prostate-specific antigen (hK3).
    [Show full text]
  • Depletion of the Third Complement Component Ameliorates Age- Dependent Oxidative Stress and Positively Modulates Autophagic Activity in Aged Retinas in a Mouse Model
    Hindawi Oxidative Medicine and Cellular Longevity Volume 2017, Article ID 5306790, 17 pages https://doi.org/10.1155/2017/5306790 Research Article Depletion of the Third Complement Component Ameliorates Age- Dependent Oxidative Stress and Positively Modulates Autophagic Activity in Aged Retinas in a Mouse Model 1 1 1 1 Dorota Rogińska, Miłosz P. Kawa, Ewa Pius-Sadowska, Renata Lejkowska, 1 2 3,4 3,4 Karolina Łuczkowska, Barbara Wiszniewska, Kai Kaarniranta, Jussi J. Paterno, 5 1 2,6 Christian A. Schmidt, Bogusław Machaliński, and Anna Machalińska 1Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland 2Department of Histology and Embryology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland 3Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland 4Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland 5Clinic for Internal Medicine C, University of Greifswald, 17475 Greifswald, Germany 6Department of Ophthalmology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland Correspondence should be addressed to Anna Machalińska; [email protected] Received 25 April 2017; Revised 28 June 2017; Accepted 9 July 2017; Published 8 August 2017 Academic Editor: Kota V. Ramana Copyright © 2017 Dorota Rogińska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The aim of the study was to investigate the influence of complement component C3 global depletion on the biological structure and function of the aged retina. In vivo morphology (OCT), electrophysiological function (ERG), and the expression of selected oxidative stress-, apoptosis-, and autophagy-related proteins were assessed in retinas of 12-month-old C3-deficient and WT mice.
    [Show full text]
  • Digitalcommons@UNMC Regulation of the Transmembrane Mucin MUC4
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Fall 12-18-2015 Regulation of the transmembrane mucin MUC4 by Wnt/β-catenin in gastrointestinal cancers Priya Pai University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, and the Molecular Biology Commons Recommended Citation Pai, Priya, "Regulation of the transmembrane mucin MUC4 by Wnt/β-catenin in gastrointestinal cancers" (2015). Theses & Dissertations. 58. https://digitalcommons.unmc.edu/etd/58 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. i Regulation of the transmembrane mucin MUC4 by Wnt/β- catenin in gastrointestinal cancers By PRIYA PAI A DISSERTATION Presented to the Faculty of The University of Nebraska Graduate College In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy Department of Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor Surinder K. Batra University of Nebraska Medical Center Omaha, Nebraska November, 2015 ii Regulation of the transmembrane mucin MUC4 by Wnt/β-catenin in gastrointestinal cancers Priya Pai, PhD. University of Nebraska Medical Center, 2015 Supervisor: Surinder K. Batra, PhD. The transmembrane mucin MUC4 is a high molecular weight glycoprotein that is expressed de novo in pancreatic ductal adenocarcinoma (PDAC). MUC4 has been shown to play a tumor-promoting role in malignancies such as PDAC, ovarian cancer and breast cancer.
    [Show full text]
  • Kallikrein 13: a New Player in Coronaviral Infections
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.01.971499; this version posted March 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Kallikrein 13: a new player in coronaviral infections. 2 3 Aleksandra Milewska1,2, Katherine Falkowski2, Magdalena Kalinska3, Ewa Bielecka3, 4 Antonina Naskalska1, Pawel Mak4, Adam Lesner5, Marek Ochman6, Maciej Urlik6, Jan 5 Potempa2,7, Tomasz Kantyka3,8, Krzysztof Pyrc1,* 6 7 1 Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian 8 University, Gronostajowa 7a, 30-387 Krakow, Poland. 9 2 Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, 10 Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland. 11 3 Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska 12 Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, 13 Poland. 14 4 Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and 15 Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387, Krakow, Poland. 16 5 University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland. 17 6 Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical 18 University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland. 19 7 Centre for Oral Health and Systemic Diseases, University of Louisville School of Dentistry, 20 Louisville, KY 40202, USA. 21 8 Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 22 5020 Bergen, Norway 23 24 25 26 27 28 29 30 31 * Correspondence should be addressed to Krzysztof Pyrc ([email protected]), Virogenetics 32 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 33 Gronostajowa 7, 30-387 Krakow, Poland; Phone number: +48 12 664 61 21; www: 34 http://virogenetics.info/.
    [Show full text]