Multilinear Algebra and Applications August 1, 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Package 'Einsum'
Package ‘einsum’ May 15, 2021 Type Package Title Einstein Summation Version 0.1.0 Description The summation notation suggested by Einstein (1916) <doi:10.1002/andp.19163540702> is a concise mathematical notation that implicitly sums over repeated indices of n- dimensional arrays. Many ordinary matrix operations (e.g. transpose, matrix multiplication, scalar product, 'diag()', trace etc.) can be written using Einstein notation. The notation is particularly convenient for expressing operations on arrays with more than two dimensions because the respective operators ('tensor products') might not have a standardized name. License MIT + file LICENSE Encoding UTF-8 SystemRequirements C++11 Suggests testthat, covr RdMacros mathjaxr RoxygenNote 7.1.1 LinkingTo Rcpp Imports Rcpp, glue, mathjaxr R topics documented: einsum . .2 einsum_package . .3 Index 5 1 2 einsum einsum Einstein Summation Description Einstein summation is a convenient and concise notation for operations on n-dimensional arrays. Usage einsum(equation_string, ...) einsum_generator(equation_string, compile_function = TRUE) Arguments equation_string a string in Einstein notation where arrays are separated by ’,’ and the result is separated by ’->’. For example "ij,jk->ik" corresponds to a standard matrix multiplication. Whitespace inside the equation_string is ignored. Unlike the equivalent functions in Python, einsum() only supports the explicit mode. This means that the equation_string must contain ’->’. ... the arrays that are combined. All arguments are converted to arrays with -
Notes on Manifolds
Notes on Manifolds Justin H. Le Department of Electrical & Computer Engineering University of Nevada, Las Vegas [email protected] August 3, 2016 1 Multilinear maps A tensor T of order r can be expressed as the tensor product of r vectors: T = u1 ⊗ u2 ⊗ ::: ⊗ ur (1) We herein fix r = 3 whenever it eases exposition. Recall that a vector u 2 U can be expressed as the combination of the basis vectors of U. Transform these basis vectors with a matrix A, and if the resulting vector u0 is equivalent to uA, then the components of u are said to be covariant. If u0 = A−1u, i.e., the vector changes inversely with the change of basis, then the components of u are contravariant. By Einstein notation, we index the covariant components of a tensor in subscript and the contravariant components in superscript. Just as the components of a vector u can be indexed by an integer i (as in ui), tensor components can be indexed as Tijk. Additionally, as we can view a matrix to be a linear map M : U ! V from one finite-dimensional vector space to another, we can consider a tensor to be multilinear map T : V ∗r × V s ! R, where V s denotes the s-th-order Cartesian product of vector space V with itself and likewise for its algebraic dual space V ∗. In this sense, a tensor maps an ordered sequence of vectors to one of its (scalar) components. Just as a linear map satisfies M(a1u1 + a2u2) = a1M(u1) + a2M(u2), we call an r-th-order tensor multilinear if it satisfies T (u1; : : : ; a1v1 + a2v2; : : : ; ur) = a1T (u1; : : : ; v1; : : : ; ur) + a2T (u1; : : : ; v2; : : : ; ur); (2) for scalars a1 and a2. -
The Mechanics of the Fermionic and Bosonic Fields: an Introduction to the Standard Model and Particle Physics
The Mechanics of the Fermionic and Bosonic Fields: An Introduction to the Standard Model and Particle Physics Evan McCarthy Phys. 460: Seminar in Physics, Spring 2014 Aug. 27,! 2014 1.Introduction 2.The Standard Model of Particle Physics 2.1.The Standard Model Lagrangian 2.2.Gauge Invariance 3.Mechanics of the Fermionic Field 3.1.Fermi-Dirac Statistics 3.2.Fermion Spinor Field 4.Mechanics of the Bosonic Field 4.1.Spin-Statistics Theorem 4.2.Bose Einstein Statistics !5.Conclusion ! 1. Introduction While Quantum Field Theory (QFT) is a remarkably successful tool of quantum particle physics, it is not used as a strictly predictive model. Rather, it is used as a framework within which predictive models - such as the Standard Model of particle physics (SM) - may operate. The overarching success of QFT lends it the ability to mathematically unify three of the four forces of nature, namely, the strong and weak nuclear forces, and electromagnetism. Recently substantiated further by the prediction and discovery of the Higgs boson, the SM has proven to be an extraordinarily proficient predictive model for all the subatomic particles and forces. The question remains, what is to be done with gravity - the fourth force of nature? Within the framework of QFT theoreticians have predicted the existence of yet another boson called the graviton. For this reason QFT has a very attractive allure, despite its limitations. According to !1 QFT the gravitational force is attributed to the interaction between two gravitons, however when applying the equations of General Relativity (GR) the force between two gravitons becomes infinite! Results like this are nonsensical and must be resolved for the theory to stand. -
Bornologically Isomorphic Representations of Tensor Distributions
Bornologically isomorphic representations of distributions on manifolds E. Nigsch Thursday 15th November, 2018 Abstract Distributional tensor fields can be regarded as multilinear mappings with distributional values or as (classical) tensor fields with distribu- tional coefficients. We show that the corresponding isomorphisms hold also in the bornological setting. 1 Introduction ′ ′ ′r s ′ Let D (M) := Γc(M, Vol(M)) and Ds (M) := Γc(M, Tr(M) ⊗ Vol(M)) be the strong duals of the space of compactly supported sections of the volume s bundle Vol(M) and of its tensor product with the tensor bundle Tr(M) over a manifold; these are the spaces of scalar and tensor distributions on M as defined in [?, ?]. A property of the space of tensor distributions which is fundamental in distributional geometry is given by the C∞(M)-module isomorphisms ′r ∼ s ′ ∼ r ′ Ds (M) = LC∞(M)(Tr (M), D (M)) = Ts (M) ⊗C∞(M) D (M) (1) (cf. [?, Theorem 3.1.12 and Corollary 3.1.15]) where C∞(M) is the space of smooth functions on M. In[?] a space of Colombeau-type nonlinear generalized tensor fields was constructed. This involved handling smooth functions (in the sense of convenient calculus as developed in [?]) in par- arXiv:1105.1642v1 [math.FA] 9 May 2011 ∞ r ′ ticular on the C (M)-module tensor products Ts (M) ⊗C∞(M) D (M) and Γ(E) ⊗C∞(M) Γ(F ), where Γ(E) denotes the space of smooth sections of a vector bundle E over M. In[?], however, only minor attention was paid to questions of topology on these tensor products. -
Multilinear Algebra and Applications July 15, 2014
Multilinear Algebra and Applications July 15, 2014. Contents Chapter 1. Introduction 1 Chapter 2. Review of Linear Algebra 5 2.1. Vector Spaces and Subspaces 5 2.2. Bases 7 2.3. The Einstein convention 10 2.3.1. Change of bases, revisited 12 2.3.2. The Kronecker delta symbol 13 2.4. Linear Transformations 14 2.4.1. Similar matrices 18 2.5. Eigenbases 19 Chapter 3. Multilinear Forms 23 3.1. Linear Forms 23 3.1.1. Definition, Examples, Dual and Dual Basis 23 3.1.2. Transformation of Linear Forms under a Change of Basis 26 3.2. Bilinear Forms 30 3.2.1. Definition, Examples and Basis 30 3.2.2. Tensor product of two linear forms on V 32 3.2.3. Transformation of Bilinear Forms under a Change of Basis 33 3.3. Multilinear forms 34 3.4. Examples 35 3.4.1. A Bilinear Form 35 3.4.2. A Trilinear Form 36 3.5. Basic Operation on Multilinear Forms 37 Chapter 4. Inner Products 39 4.1. Definitions and First Properties 39 4.1.1. Correspondence Between Inner Products and Symmetric Positive Definite Matrices 40 4.1.1.1. From Inner Products to Symmetric Positive Definite Matrices 42 4.1.1.2. From Symmetric Positive Definite Matrices to Inner Products 42 4.1.2. Orthonormal Basis 42 4.2. Reciprocal Basis 46 4.2.1. Properties of Reciprocal Bases 48 4.2.2. Change of basis from a basis to its reciprocal basis g 50 B B III IV CONTENTS 4.2.3. -
Solution: the First Element of the Dual Basis Is the Linear Function Α
Homework assignment 7 pp. 105 3 Exercise 2. Let B = f®1; ®2; ®3g be the basis for C defined by ®1 = (1; 0; ¡1) ®2 = (1; 1; 1) ®3 = (2; 2; 0): Find the dual basis of B. Solution: ¤ The first element of the dual basis is the linear function ®1 such ¤ ¤ ¤ that ®1(®1) = 1; ®1(®2) = 0 and ®1(®3) = 0. To describe such a function more explicitly we need to find its values on the standard basis vectors e1, e2 and e3. To do this express e1; e2; e3 through ®1; ®2; ®3 (refer to the solution of Exercise 1 pp. 54-55 from Homework 6). For each i = 1; 2; 3 you will find the numbers ai; bi; ci such that e1 = ai®1 + bi®2 + ci®3 (i.e. the coordinates of ei relative to the ¤ ¤ ¤ basis ®1; ®2; ®3). Then by linearity of ®1 we get that ®1(ei) = ai. Then ®2(ei) = bi, ¤ and ®3(ei) = ci. This is the answer. It can also be reformulated as follows. If P is the transition matrix from the standard basis e1; e2; e3 to ®1; ®2; ®3, i.e. ¡1 t (®1; ®2; ®3) = (e1; e2; e3)P , then (P ) is the transition matrix from the dual basis ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¡1 t e1; e2; e3 to the dual basis ®1; ®2; a3, i.e. (®1; ®2; a3) = (e1; e2; e3)(P ) . Note that this problem is basically the change of coordinates problem: e.g. ¤ 3 the value of ®1 on the vector v 2 C is the first coordinate of v relative to the basis ®1; ®2; ®3. -
Vectors and Dual Vectors
Vectors By now you have a pretty good experience with \vectors". Usually, a vector is defined as a quantity that has a direction and a magnitude, such as a position vector, velocity vector, acceleration vector, etc. However, the notion of a vector has a considerably wider realm of applicability than these examples might suggest. The set of all real numbers forms a vector space, as does the set of all complex numbers. The set of functions on a set (e.g., functions of one variable, f(x)) form a vector space. Solutions of linear homogeneous equations form a vector space. We begin by giving the abstract rules for forming a space of vectors, also known as a vector space. A vector space V is a set equipped with an operation of \addition" and an additive identity. The elements of the set are called vectors, which we shall denote as ~u, ~v, ~w, etc. For now, you can think of them as position vectors in order to keep yourself sane. Addition, is an operation in which two vectors, say ~u and ~v, can be combined to make another vector, say, ~w. We denote this operation by the symbol \+": ~u + ~v = ~w: (1) Do not be fooled by this simple notation. The \addition" of vectors may be quite a different operation than ordinary arithmetic addition. For example, if we view position vectors in the x-y plane as \arrows" drawn from the origin, the addition of vectors is defined by the parallelogram rule. Clearly this rule is quite different than ordinary \addition". -
Duality, Part 1: Dual Bases and Dual Maps Notation
Duality, part 1: Dual Bases and Dual Maps Notation F denotes either R or C. V and W denote vector spaces over F. Define ': R3 ! R by '(x; y; z) = 4x − 5y + 2z. Then ' is a linear functional on R3. n n Fix (b1;:::; bn) 2 C . Define ': C ! C by '(z1;:::; zn) = b1z1 + ··· + bnzn: Then ' is a linear functional on Cn. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. Then ' is a linear functional on P(R). Examples: Linear Functionals Definition: linear functional A linear functional on V is a linear map from V to F. In other words, a linear functional is an element of L(V; F). n n Fix (b1;:::; bn) 2 C . Define ': C ! C by '(z1;:::; zn) = b1z1 + ··· + bnzn: Then ' is a linear functional on Cn. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. Then ' is a linear functional on P(R). Linear Functionals Definition: linear functional A linear functional on V is a linear map from V to F. In other words, a linear functional is an element of L(V; F). Examples: Define ': R3 ! R by '(x; y; z) = 4x − 5y + 2z. Then ' is a linear functional on R3. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. -
A Some Basic Rules of Tensor Calculus
A Some Basic Rules of Tensor Calculus The tensor calculus is a powerful tool for the description of the fundamentals in con- tinuum mechanics and the derivation of the governing equations for applied prob- lems. In general, there are two possibilities for the representation of the tensors and the tensorial equations: – the direct (symbolic) notation and – the index (component) notation The direct notation operates with scalars, vectors and tensors as physical objects defined in the three dimensional space. A vector (first rank tensor) a is considered as a directed line segment rather than a triple of numbers (coordinates). A second rank tensor A is any finite sum of ordered vector pairs A = a b + ... +c d. The scalars, vectors and tensors are handled as invariant (independent⊗ from the choice⊗ of the coordinate system) objects. This is the reason for the use of the direct notation in the modern literature of mechanics and rheology, e.g. [29, 32, 49, 123, 131, 199, 246, 313, 334] among others. The index notation deals with components or coordinates of vectors and tensors. For a selected basis, e.g. gi, i = 1, 2, 3 one can write a = aig , A = aibj + ... + cidj g g i i ⊗ j Here the Einstein’s summation convention is used: in one expression the twice re- peated indices are summed up from 1 to 3, e.g. 3 3 k k ik ik a gk ∑ a gk, A bk ∑ A bk ≡ k=1 ≡ k=1 In the above examples k is a so-called dummy index. Within the index notation the basic operations with tensors are defined with respect to their coordinates, e. -
Abstract Tensor Systems As Monoidal Categories
Abstract Tensor Systems as Monoidal Categories Aleks Kissinger Dedicated to Joachim Lambek on the occasion of his 90th birthday October 31, 2018 Abstract The primary contribution of this paper is to give a formal, categorical treatment to Penrose’s abstract tensor notation, in the context of traced symmetric monoidal categories. To do so, we introduce a typed, sum-free version of an abstract tensor system and demonstrate the construction of its associated category. We then show that the associated category of the free abstract tensor system is in fact the free traced symmetric monoidal category on a monoidal signature. A notable consequence of this result is a simple proof for the soundness and completeness of the diagrammatic language for traced symmetric monoidal categories. 1 Introduction This paper formalises the connection between monoidal categories and the ab- stract index notation developed by Penrose in the 1970s, which has been used by physicists directly, and category theorists implicitly, via the diagrammatic languages for traced symmetric monoidal and compact closed categories. This connection is given as a representation theorem for the free traced symmet- ric monoidal category as a syntactically-defined strict monoidal category whose morphisms are equivalence classes of certain kinds of terms called Einstein ex- pressions. Representation theorems of this kind form a rich history of coherence results for monoidal categories originating in the 1960s [17, 6]. Lambek’s con- arXiv:1308.3586v1 [math.CT] 16 Aug 2013 tribution [15, 16] plays an essential role in this history, providing some of the earliest examples of syntactically-constructed free categories and most of the key ingredients in Kelly and Mac Lane’s proof of the coherence theorem for closed monoidal categories [11]. -
Quantum Chromodynamics (QCD) QCD Is the Theory That Describes the Action of the Strong Force
Quantum chromodynamics (QCD) QCD is the theory that describes the action of the strong force. QCD was constructed in analogy to quantum electrodynamics (QED), the quantum field theory of the electromagnetic force. In QED the electromagnetic interactions of charged particles are described through the emission and subsequent absorption of massless photons (force carriers of QED); such interactions are not possible between uncharged, electrically neutral particles. By analogy with QED, quantum chromodynamics predicts the existence of gluons, which transmit the strong force between particles of matter that carry color, a strong charge. The color charge was introduced in 1964 by Greenberg to resolve spin-statistics contradictions in hadron spectroscopy. In 1965 Nambu and Han introduced the octet of gluons. In 1972, Gell-Mann and Fritzsch, coined the term quantum chromodynamics as the gauge theory of the strong interaction. In particular, they employed the general field theory developed in the 1950s by Yang and Mills, in which the carrier particles of a force can themselves radiate further carrier particles. (This is different from QED, where the photons that carry the electromagnetic force do not radiate further photons.) First, QED Lagrangian… µ ! # 1 µν LQED = ψeiγ "∂µ +ieAµ $ψe − meψeψe − Fµν F 4 µν µ ν ν µ Einstein notation: • F =∂ A −∂ A EM field tensor when an index variable µ • A four potential of the photon field appears twice in a single term, it implies summation µ •γ Dirac 4x4 matrices of that term over all the values of the index -
About Matrices, Tensors and Various Abbrevia- Tions
About matrices, tensors and various abbrevia- tions The objects we deal with in this course are rather complicated. We therefore use a simplifying notation where at every step as much as possible of this complexity is hidden. Basically this means that objects that are made out of many elements or components. are written without indices as much as possible. We also have several different types of indices present. The ones that show up in this course are: • Dirac-Indices a; b; c • Lorentz indices, both upper and lower µ, ν; ρ • SU(2)L indices i; j; k • SU(3)c indices α; β; γ Towards the right I have written the type of symbols used in this note to denote a particular type of index. The course contains even more, three-vector indices or various others denoting sums over types of quarks and/or leptons. An object is called scalar or singlet if it has no index of a particular type of index, a vector if it has one, a matrix if it has two and a tensor if it has two or more. A vector can also be called a column or row matrix. Examples are b with elements bi: 0 1 b1 B C B b2 C b = (b1; b2; : : : ; bn) b = (b1 b2 ··· bn) b = B . C (1) B . C @ . A bn In the first case is a vector, the second a row matrix and the last a column vector. Objects with two indices are called a matrix or sometimes a tensor and de- noted by 0 1 c11 c12 ··· c1n B C B c21 c22 ··· c2n C c = (cij) = B .