1 4. Differential Operations with Vectors, Tensors Del Operator

Total Page:16

File Type:pdf, Size:1020Kb

1 4. Differential Operations with Vectors, Tensors Del Operator Mathematics Review Polymer Rheology 4. Differential Operations with Vectors, Tensors Scalars, vectors, and tensors are differentiated to determine rates of change (with respect to time, position) •To carryout the differentiation with respect to a single variable, differentiate each coefficient individually. •There is no change in order (vectors remain vectors, scalars remain scalars, etc. ≈ ∂w ’ ≈ ∂B ∂B ∂B ’ ∆ 1 ∆ 11 21 31 ÷ ∆ ∂t ∆ ∂t ∂t ∂t ÷ ∂w ∂w ∂B ∂B ∂B ∂B ∂α = ∆ 2 = ∆ 21 22 23 ÷ ∂t ∂t ∆ ∂t ∂t ∆ ∂t ∂t ∂t ÷ ∆ ∂w ∆ ∂B ∂B ∂B ÷ ∆ 3 ∆ 31 32 33 ÷ « ∂t « ∂t ∂t ∂t ◊ 123 123 © Faith A. Morrison, Michigan Tech U. Mathematics Review Polymer Rheology 4. Differential Operations with Vectors, Tensors (continued) •To carryout the differentiation with respect to 3D spatial variation, use the del (nabla) Del Operator operator. •This is a vector operator •Del may be applied in three different ways ≈ ∂ ’ •Del may operate on scalars, vectors, or tensors ∆ ÷ ∆ ∂x1 ÷ ∂ ∂ ∂ ∆ ∂ ÷ This is written in ∇ ≡ eˆ1 + eˆ2 + eˆ3 = ∆ ÷ Cartesian ∂x1 ∂x2 ∂x3 ∆ ∂x2 ÷ coordinates ∆ ∂ ÷ ∆ ÷ « ∂x3 ◊ 123 3 ∂ ∂ = ƒeˆp = eˆp p=1 ∂xp ∂xp Einstein notation for del © Faith A. Morrison, Michigan Tech U. 1 Mathematics Review Polymer Rheology 4. Differential Operations with Vectors, Tensors (continued) A. Scalars - gradient ≈ ’ This is written in ∆ ∂β Cartesian Gibbs ∆ ∂x1 coordinates notation ∂ ∂ ∂ ∆ ∂β ∇β ≡ eˆ1 β + eˆ2 β + eˆ3 β = ∆ ∂x1 ∂x2 ∂x3 ∆ ∂x2 ∆ ∂β ∆ « ∂x3 123 ∂β Gradient of a = eˆp scalar field ∂xp The gradient of a scalar field is a The gradient operation vector captures the total spatial variation of a scalar, •gradient operation increases the order of the vector, or tensor field. entity operated upon © Faith A. Morrison, Michigan Tech U. Mathematics Review Polymer Rheology 4. Differential Operations with Vectors, Tensors (continued) B. Vectors - gradient ∂ ∂ ∂ ∇w ≡ eˆ1 w + eˆ2 w + eˆ3 w This is all written ∂x1 ∂x2 ∂x3 in Cartesian coordinates (basis The basis vectors ∂ = eˆ1 (w1eˆ1 + w2eˆ2 + w3eˆ3 ) vectors are can move out of ∂x 1 constant) the derivatives ∂ because they are + eˆ2 (w1eˆ1 + w2eˆ2 + w3eˆ3 ) constant (do not ∂x2 change with ∂ position) + eˆ3 (w1eˆ1 + w2eˆ2 + w3eˆ3 ) ∂x3 ∂w1 ∂w2 ∂w3 ∂w1 = eˆ1eˆ1 + eˆ1eˆ2 + eˆ1eˆ3 + eˆ2eˆ1 + ∂x1 ∂x1 ∂x1 ∂x2 ∂w2 ∂w3 ∂w1 ∂w2 ∂w3 eˆ2eˆ2 + eˆ2eˆ3 + eˆ3eˆ1 + eˆ3eˆ2 + eˆ3eˆ3 ∂x2 ∂x2 ∂x3 ∂x3 ∂x3 © Faith A. Morrison, Michigan Tech U. 2 Mathematics Review Polymer Rheology 4. Differential Operations with Vectors, Tensors (continued) B. Vectors - gradient (continued) constants may appear on either side of the Gradient of a differential operator vector field 3 3 ∂wk ∂wk ∂wk ∇w ≡ eˆjeˆk = eˆjeˆk = eˆjeˆk j=1k=1 ∂xj ∂xj ∂xj Einstein notation The gradient of for gradient of a a vector field is vector a tensor © Faith A. Morrison, Michigan Tech U. Mathematics Review Polymer Rheology 4. Differential Operations with Vectors, Tensors (continued) C. Vectors - divergence ≈ ∂ ∂ ∂ ’ Divergence of a ∆ vector field ∇ ⋅ w ≡ eˆ1 + eˆ2 + eˆ3 ⋅ w1eˆ1 + w2eˆ2 + w3eˆ3 « ∂x1 ∂x2 ∂x3 ∂w ∂w ∂w = 1 + 2 + 3 ∂x1 ∂x2 ∂x3 The Divergence 3 ∂wi ∂wi of a vector field = ƒ = is a scalar i=1 ∂xi ∂xi Einstein notation for gradient of a vector © Faith A. Morrison, Michigan Tech U. 3 Mathematics Review Polymer Rheology 4. Differential Operations with Vectors, Tensors (continued) C. Vectors - divergence (continued) This is all written in Cartesian constants may appear coordinates (basis on either side of the vectors are differential operator constant) Using Einstein notation ∂ ∂wj ∂wj ∇ ⋅ w ≡ eˆm ⋅ wjeˆj = eˆm ⋅eˆj = δmj ∂xm ∂xm ∂xm ∂w = j ∂xj •divergence operation decreases the order of the entity operated upon © Faith A. Morrison, Michigan Tech U. Mathematics Review Polymer Rheology 4. Differential Operations with Vectors, Tensors (continued) D. Vectors - Laplacian Using ∂ ∂ ∂ ∂ ∇ ⋅∇w ≡ eˆ ⋅eˆ w eˆ = w eˆ ⋅eˆ eˆ Einstein m p j j j ( m p) j ∂xm ∂xp ∂xm ∂xp notation: ∂ ∂ = wj (δmp)eˆj ∂xm ∂xp ∂ ∂ The Laplacian = wj eˆj of a vector field ∂xp ∂xp is a vector ≈ ∂2w ∂2w ∂2w ’ ∆ 1 + 1 + 1 ∆ ∂x1 ∂x2 ∂x3 ∆∂2w ∂2w ∂2w •Laplacian operation does = ∆ 2 + 2 + 2 not change the order of the ∆ ∂x1 ∂x2 ∂x3 entity operated upon ∆ ∂2w ∂2w ∂2w ∆ 3 + 3 + 3 « ∂x1 ∂x2 ∂x3 123 © Faith A. Morrison, Michigan Tech U. 4 Mathematics Review Polymer Rheology 4. Differential Operations with Vectors, Tensors (continued) (impossible; cannot E. Scalar - divergence ∇ ⋅α decrease order of a scalar) F. Scalar - Laplacian ∇ ⋅∇α G. Tensor - gradient ∇A H. Tensor - divergence ∇ ⋅ A I. Tensor - Laplacian ∇⋅∇A © Faith A. Morrison, Michigan Tech U. 5.
Recommended publications
  • Package 'Einsum'
    Package ‘einsum’ May 15, 2021 Type Package Title Einstein Summation Version 0.1.0 Description The summation notation suggested by Einstein (1916) <doi:10.1002/andp.19163540702> is a concise mathematical notation that implicitly sums over repeated indices of n- dimensional arrays. Many ordinary matrix operations (e.g. transpose, matrix multiplication, scalar product, 'diag()', trace etc.) can be written using Einstein notation. The notation is particularly convenient for expressing operations on arrays with more than two dimensions because the respective operators ('tensor products') might not have a standardized name. License MIT + file LICENSE Encoding UTF-8 SystemRequirements C++11 Suggests testthat, covr RdMacros mathjaxr RoxygenNote 7.1.1 LinkingTo Rcpp Imports Rcpp, glue, mathjaxr R topics documented: einsum . .2 einsum_package . .3 Index 5 1 2 einsum einsum Einstein Summation Description Einstein summation is a convenient and concise notation for operations on n-dimensional arrays. Usage einsum(equation_string, ...) einsum_generator(equation_string, compile_function = TRUE) Arguments equation_string a string in Einstein notation where arrays are separated by ’,’ and the result is separated by ’->’. For example "ij,jk->ik" corresponds to a standard matrix multiplication. Whitespace inside the equation_string is ignored. Unlike the equivalent functions in Python, einsum() only supports the explicit mode. This means that the equation_string must contain ’->’. ... the arrays that are combined. All arguments are converted to arrays with
    [Show full text]
  • Notes on Manifolds
    Notes on Manifolds Justin H. Le Department of Electrical & Computer Engineering University of Nevada, Las Vegas [email protected] August 3, 2016 1 Multilinear maps A tensor T of order r can be expressed as the tensor product of r vectors: T = u1 ⊗ u2 ⊗ ::: ⊗ ur (1) We herein fix r = 3 whenever it eases exposition. Recall that a vector u 2 U can be expressed as the combination of the basis vectors of U. Transform these basis vectors with a matrix A, and if the resulting vector u0 is equivalent to uA, then the components of u are said to be covariant. If u0 = A−1u, i.e., the vector changes inversely with the change of basis, then the components of u are contravariant. By Einstein notation, we index the covariant components of a tensor in subscript and the contravariant components in superscript. Just as the components of a vector u can be indexed by an integer i (as in ui), tensor components can be indexed as Tijk. Additionally, as we can view a matrix to be a linear map M : U ! V from one finite-dimensional vector space to another, we can consider a tensor to be multilinear map T : V ∗r × V s ! R, where V s denotes the s-th-order Cartesian product of vector space V with itself and likewise for its algebraic dual space V ∗. In this sense, a tensor maps an ordered sequence of vectors to one of its (scalar) components. Just as a linear map satisfies M(a1u1 + a2u2) = a1M(u1) + a2M(u2), we call an r-th-order tensor multilinear if it satisfies T (u1; : : : ; a1v1 + a2v2; : : : ; ur) = a1T (u1; : : : ; v1; : : : ; ur) + a2T (u1; : : : ; v2; : : : ; ur); (2) for scalars a1 and a2.
    [Show full text]
  • The Mechanics of the Fermionic and Bosonic Fields: an Introduction to the Standard Model and Particle Physics
    The Mechanics of the Fermionic and Bosonic Fields: An Introduction to the Standard Model and Particle Physics Evan McCarthy Phys. 460: Seminar in Physics, Spring 2014 Aug. 27,! 2014 1.Introduction 2.The Standard Model of Particle Physics 2.1.The Standard Model Lagrangian 2.2.Gauge Invariance 3.Mechanics of the Fermionic Field 3.1.Fermi-Dirac Statistics 3.2.Fermion Spinor Field 4.Mechanics of the Bosonic Field 4.1.Spin-Statistics Theorem 4.2.Bose Einstein Statistics !5.Conclusion ! 1. Introduction While Quantum Field Theory (QFT) is a remarkably successful tool of quantum particle physics, it is not used as a strictly predictive model. Rather, it is used as a framework within which predictive models - such as the Standard Model of particle physics (SM) - may operate. The overarching success of QFT lends it the ability to mathematically unify three of the four forces of nature, namely, the strong and weak nuclear forces, and electromagnetism. Recently substantiated further by the prediction and discovery of the Higgs boson, the SM has proven to be an extraordinarily proficient predictive model for all the subatomic particles and forces. The question remains, what is to be done with gravity - the fourth force of nature? Within the framework of QFT theoreticians have predicted the existence of yet another boson called the graviton. For this reason QFT has a very attractive allure, despite its limitations. According to !1 QFT the gravitational force is attributed to the interaction between two gravitons, however when applying the equations of General Relativity (GR) the force between two gravitons becomes infinite! Results like this are nonsensical and must be resolved for the theory to stand.
    [Show full text]
  • The Matrix Calculus You Need for Deep Learning
    The Matrix Calculus You Need For Deep Learning Terence Parr and Jeremy Howard July 3, 2018 (We teach in University of San Francisco's MS in Data Science program and have other nefarious projects underway. You might know Terence as the creator of the ANTLR parser generator. For more material, see Jeremy's fast.ai courses and University of San Francisco's Data Institute in- person version of the deep learning course.) HTML version (The PDF and HTML were generated from markup using bookish) Abstract This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way|just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. arXiv:1802.01528v3 [cs.LG] 2 Jul 2018 1 Contents 1 Introduction 3 2 Review: Scalar derivative rules4 3 Introduction to vector calculus and partial derivatives5 4 Matrix calculus 6 4.1 Generalization of the Jacobian .
    [Show full text]
  • Linear Differential Equations in N Th-Order ;
    Ordinary Differential Equations Second Course Babylon University 2016-2017 Linear Differential Equations in n th-order ; An nth-order linear differential equation has the form ; …. (1) Where the coefficients ;(j=0,1,2,…,n-1) ,and depends solely on the variable (not on or any derivative of ) If then Eq.(1) is homogenous ,if not then is nonhomogeneous . …… 2 A linear differential equation has constant coefficients if all the coefficients are constants ,if one or more is not constant then has variable coefficients . Examples on linear differential equations ; first order nonhomogeneous second order homogeneous third order nonhomogeneous fifth order homogeneous second order nonhomogeneous Theorem 1: Consider the initial value problem given by the linear differential equation(1)and the n initial Conditions; … …(3) Define the differential operator L(y) by …. (4) Where ;(j=0,1,2,…,n-1) is continuous on some interval of interest then L(y) = and a linear homogeneous differential equation written as; L(y) =0 Definition: Linearly Independent Solution; A set of functions … is linearly dependent on if there exists constants … not all zero ,such that …. (5) on 1 Ordinary Differential Equations Second Course Babylon University 2016-2017 A set of functions is linearly dependent if there exists another set of constants not all zero, that is satisfy eq.(5). If the only solution to eq.(5) is ,then the set of functions is linearly independent on The functions are linearly independent Theorem 2: If the functions y1 ,y2, …, yn are solutions for differential
    [Show full text]
  • Symmetry and Tensors Rotations and Tensors
    Symmetry and tensors Rotations and tensors A rotation of a 3-vector is accomplished by an orthogonal transformation. Represented as a matrix, A, we replace each vector, v, by a rotated vector, v0, given by multiplying by A, 0 v = Av In index notation, 0 X vm = Amnvn n Since a rotation must preserve lengths of vectors, we require 02 X 0 0 X 2 v = vmvm = vmvm = v m m Therefore, X X 0 0 vmvm = vmvm m m ! ! X X X = Amnvn Amkvk m n k ! X X = AmnAmk vnvk k;n m Since xn is arbitrary, this is true if and only if X AmnAmk = δnk m t which we can rewrite using the transpose, Amn = Anm, as X t AnmAmk = δnk m In matrix notation, this is t A A = I where I is the identity matrix. This is equivalent to At = A−1. Multi-index objects such as matrices, Mmn, or the Levi-Civita tensor, "ijk, have definite transformation properties under rotations. We call an object a (rotational) tensor if each index transforms in the same way as a vector. An object with no indices, that is, a function, does not transform at all and is called a scalar. 0 A matrix Mmn is a (second rank) tensor if and only if, when we rotate vectors v to v , its new components are given by 0 X Mmn = AmjAnkMjk jk This is what we expect if we imagine Mmn to be built out of vectors as Mmn = umvn, for example. In the same way, we see that the Levi-Civita tensor transforms as 0 X "ijk = AilAjmAkn"lmn lmn 1 Recall that "ijk, because it is totally antisymmetric, is completely determined by only one of its components, say, "123.
    [Show full text]
  • The Wronskian
    Jim Lambers MAT 285 Spring Semester 2012-13 Lecture 16 Notes These notes correspond to Section 3.2 in the text. The Wronskian Now that we know how to solve a linear second-order homogeneous ODE y00 + p(t)y0 + q(t)y = 0 in certain cases, we establish some theory about general equations of this form. First, we introduce some notation. We define a second-order linear differential operator L by L[y] = y00 + p(t)y0 + q(t)y: Then, a initial value problem with a second-order homogeneous linear ODE can be stated as 0 L[y] = 0; y(t0) = y0; y (t0) = z0: We state a result concerning existence and uniqueness of solutions to such ODE, analogous to the Existence-Uniqueness Theorem for first-order ODE. Theorem (Existence-Uniqueness) The initial value problem 00 0 0 L[y] = y + p(t)y + q(t)y = g(t); y(t0) = y0; y (t0) = z0 has a unique solution on an open interval I containing the point t0 if p, q and g are continuous on I. The solution is twice differentiable on I. Now, suppose that we have obtained two solutions y1 and y2 of the equation L[y] = 0. Then 00 0 00 0 y1 + p(t)y1 + q(t)y1 = 0; y2 + p(t)y2 + q(t)y2 = 0: Let y = c1y1 + c2y2, where c1 and c2 are constants. Then L[y] = L[c1y1 + c2y2] 00 0 = (c1y1 + c2y2) + p(t)(c1y1 + c2y2) + q(t)(c1y1 + c2y2) 00 00 0 0 = c1y1 + c2y2 + c1p(t)y1 + c2p(t)y2 + c1q(t)y1 + c2q(t)y2 00 0 00 0 = c1(y1 + p(t)y1 + q(t)y1) + c2(y2 + p(t)y2 + q(t)y2) = 0: We have just established the following theorem.
    [Show full text]
  • Multilinear Algebra and Applications July 15, 2014
    Multilinear Algebra and Applications July 15, 2014. Contents Chapter 1. Introduction 1 Chapter 2. Review of Linear Algebra 5 2.1. Vector Spaces and Subspaces 5 2.2. Bases 7 2.3. The Einstein convention 10 2.3.1. Change of bases, revisited 12 2.3.2. The Kronecker delta symbol 13 2.4. Linear Transformations 14 2.4.1. Similar matrices 18 2.5. Eigenbases 19 Chapter 3. Multilinear Forms 23 3.1. Linear Forms 23 3.1.1. Definition, Examples, Dual and Dual Basis 23 3.1.2. Transformation of Linear Forms under a Change of Basis 26 3.2. Bilinear Forms 30 3.2.1. Definition, Examples and Basis 30 3.2.2. Tensor product of two linear forms on V 32 3.2.3. Transformation of Bilinear Forms under a Change of Basis 33 3.3. Multilinear forms 34 3.4. Examples 35 3.4.1. A Bilinear Form 35 3.4.2. A Trilinear Form 36 3.5. Basic Operation on Multilinear Forms 37 Chapter 4. Inner Products 39 4.1. Definitions and First Properties 39 4.1.1. Correspondence Between Inner Products and Symmetric Positive Definite Matrices 40 4.1.1.1. From Inner Products to Symmetric Positive Definite Matrices 42 4.1.1.2. From Symmetric Positive Definite Matrices to Inner Products 42 4.1.2. Orthonormal Basis 42 4.2. Reciprocal Basis 46 4.2.1. Properties of Reciprocal Bases 48 4.2.2. Change of basis from a basis to its reciprocal basis g 50 B B III IV CONTENTS 4.2.3.
    [Show full text]
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • Policy Gradient
    Lecture 7: Policy Gradient Lecture 7: Policy Gradient David Silver Lecture 7: Policy Gradient Outline 1 Introduction 2 Finite Difference Policy Gradient 3 Monte-Carlo Policy Gradient 4 Actor-Critic Policy Gradient Lecture 7: Policy Gradient Introduction Policy-Based Reinforcement Learning In the last lecture we approximated the value or action-value function using parameters θ, V (s) V π(s) θ ≈ Q (s; a) Qπ(s; a) θ ≈ A policy was generated directly from the value function e.g. using -greedy In this lecture we will directly parametrise the policy πθ(s; a) = P [a s; θ] j We will focus again on model-free reinforcement learning Lecture 7: Policy Gradient Introduction Value-Based and Policy-Based RL Value Based Learnt Value Function Implicit policy Value Function Policy (e.g. -greedy) Policy Based Value-Based Actor Policy-Based No Value Function Critic Learnt Policy Actor-Critic Learnt Value Function Learnt Policy Lecture 7: Policy Gradient Introduction Advantages of Policy-Based RL Advantages: Better convergence properties Effective in high-dimensional or continuous action spaces Can learn stochastic policies Disadvantages: Typically converge to a local rather than global optimum Evaluating a policy is typically inefficient and high variance Lecture 7: Policy Gradient Introduction Rock-Paper-Scissors Example Example: Rock-Paper-Scissors Two-player game of rock-paper-scissors Scissors beats paper Rock beats scissors Paper beats rock Consider policies for iterated rock-paper-scissors A deterministic policy is easily exploited A uniform random policy
    [Show full text]
  • High Order Gradient, Curl and Divergence Conforming Spaces, with an Application to NURBS-Based Isogeometric Analysis
    High order gradient, curl and divergence conforming spaces, with an application to compatible NURBS-based IsoGeometric Analysis R.R. Hiemstraa, R.H.M. Huijsmansa, M.I.Gerritsmab aDepartment of Marine Technology, Mekelweg 2, 2628CD Delft bDepartment of Aerospace Technology, Kluyverweg 2, 2629HT Delft Abstract Conservation laws, in for example, electromagnetism, solid and fluid mechanics, allow an exact discrete representation in terms of line, surface and volume integrals. We develop high order interpolants, from any basis that is a partition of unity, that satisfy these integral relations exactly, at cell level. The resulting gradient, curl and divergence conforming spaces have the propertythat the conservationlaws become completely independent of the basis functions. This means that the conservation laws are exactly satisfied even on curved meshes. As an example, we develop high ordergradient, curl and divergence conforming spaces from NURBS - non uniform rational B-splines - and thereby generalize the compatible spaces of B-splines developed in [1]. We give several examples of 2D Stokes flow calculations which result, amongst others, in a point wise divergence free velocity field. Keywords: Compatible numerical methods, Mixed methods, NURBS, IsoGeometric Analyis Be careful of the naive view that a physical law is a mathematical relation between previously defined quantities. The situation is, rather, that a certain mathematical structure represents a given physical structure. Burke [2] 1. Introduction In deriving mathematical models for physical theories, we frequently start with analysis on finite dimensional geometric objects, like a control volume and its bounding surfaces. We assign global, ’measurable’, quantities to these different geometric objects and set up balance statements.
    [Show full text]
  • An Introduction to Pseudo-Differential Operators
    An introduction to pseudo-differential operators Jean-Marc Bouclet1 Universit´ede Toulouse 3 Institut de Math´ematiquesde Toulouse [email protected] 2 Contents 1 Background on analysis on manifolds 7 2 The Weyl law: statement of the problem 13 3 Pseudodifferential calculus 19 3.1 The Fourier transform . 19 3.2 Definition of pseudo-differential operators . 21 3.3 Symbolic calculus . 24 3.4 Proofs . 27 4 Some tools of spectral theory 41 4.1 Hilbert-Schmidt operators . 41 4.2 Trace class operators . 44 4.3 Functional calculus via the Helffer-Sj¨ostrandformula . 50 5 L2 bounds for pseudo-differential operators 55 5.1 L2 estimates . 55 5.2 Hilbert-Schmidt estimates . 60 5.3 Trace class estimates . 61 6 Elliptic parametrix and applications 65 n 6.1 Parametrix on R ................................ 65 6.2 Localization of the parametrix . 71 7 Proof of the Weyl law 75 7.1 The resolvent of the Laplacian on a compact manifold . 75 7.2 Diagonalization of ∆g .............................. 78 7.3 Proof of the Weyl law . 81 A Proof of the Peetre Theorem 85 3 4 CONTENTS Introduction The spirit of these notes is to use the famous Weyl law (on the asymptotic distribution of eigenvalues of the Laplace operator on a compact manifold) as a case study to introduce and illustrate one of the many applications of the pseudo-differential calculus. The material presented here corresponds to a 24 hours course taught in Toulouse in 2012 and 2013. We introduce all tools required to give a complete proof of the Weyl law, mainly the semiclassical pseudo-differential calculus, and then of course prove it! The price to pay is that we avoid presenting many classical concepts or results which are not necessary for our purpose (such as Borel summations, principal symbols, invariance by diffeomorphism or the G˚ardinginequality).
    [Show full text]