The Mechanics of the Fermionic and Bosonic Fields: an Introduction to the Standard Model and Particle Physics

Total Page:16

File Type:pdf, Size:1020Kb

The Mechanics of the Fermionic and Bosonic Fields: an Introduction to the Standard Model and Particle Physics The Mechanics of the Fermionic and Bosonic Fields: An Introduction to the Standard Model and Particle Physics Evan McCarthy Phys. 460: Seminar in Physics, Spring 2014 Aug. 27,! 2014 1.Introduction 2.The Standard Model of Particle Physics 2.1.The Standard Model Lagrangian 2.2.Gauge Invariance 3.Mechanics of the Fermionic Field 3.1.Fermi-Dirac Statistics 3.2.Fermion Spinor Field 4.Mechanics of the Bosonic Field 4.1.Spin-Statistics Theorem 4.2.Bose Einstein Statistics !5.Conclusion ! 1. Introduction While Quantum Field Theory (QFT) is a remarkably successful tool of quantum particle physics, it is not used as a strictly predictive model. Rather, it is used as a framework within which predictive models - such as the Standard Model of particle physics (SM) - may operate. The overarching success of QFT lends it the ability to mathematically unify three of the four forces of nature, namely, the strong and weak nuclear forces, and electromagnetism. Recently substantiated further by the prediction and discovery of the Higgs boson, the SM has proven to be an extraordinarily proficient predictive model for all the subatomic particles and forces. The question remains, what is to be done with gravity - the fourth force of nature? Within the framework of QFT theoreticians have predicted the existence of yet another boson called the graviton. For this reason QFT has a very attractive allure, despite its limitations. According to !1 QFT the gravitational force is attributed to the interaction between two gravitons, however when applying the equations of General Relativity (GR) the force between two gravitons becomes infinite! Results like this are nonsensical and must be resolved for the theory to stand. Unfortunately no means to purge these anomalies from the theory have yet been developed. For this reason many physicists have turned to String theory as a means of resolving these anomalies, as it successfully describes how two gravitons interact without these unwanted infinities. In this paper I present independent discussions on six of the foundational topics of modern and particle physics, which are then related and presented as a consequence of each other in the conclusion. I focus on the structure of the standard model Lagrangian and present a concise overview of how it is derived and constructed, followed by a discussion on gauge invariance and how it presented a small crisis for the standard model. Then there will be discussions on the the statistical distribution of fermions and bosons, and the nature of there interactions; namely, exploring the concept of spinor fields and the spin-statistics theorem using these fields. ! 2. The Standard Model of Particle Physics The Standard Model (SM) is a model of particle physics designed to explain how the particles of matter - known as fermions - and the force carrying particles - known as bosons - interact according to the four forces of nature. In creating this model, physicists have divided all the particles of the SM into a few categories to sort them by mass, spin, and type. Fermions (quarks and leptons) all have a fractional spin and quarks take part in the strong nuclear interaction so they exist in the nucleus of the atom and thus have not been directly observed. !2 Experiments done in places like the Large Hadron Collider (LHC) at CERN, FermiLab in Chicago, and other accelerator laboratories around the world have repeatedly confirmed the existence of quarks from the theoretical predictions of the SM. The most significant of these experiments was the discovery of the J/ψ particle. Before 1974 the quark model had remarkable success as a mathematical theory, and demonstrating the existence of the charm quark would confirm the validity of the theory. In particle physics there are two sorts of composite particles called mesons and baryons; all baryons are fermions and all mesons are bosons. Baryons are composed of three quarks and mesons are composed of two quarks. The J/ψ particle is a meson and is composed of a charm quark and a Generation Generation Generation I II III Q u a r k s charm anti-quark, and when its discovery was Name UP CHARM TOP Spin 1/2 1/2 1/2 F e r m i o n s announced by two independent research Charge 2/3 2/3 2/3 Mass 2.4 MeV 1.27 GeV 171.2 GeV groups - at Brookhaven National Laboratory Name DOWN STRANGE BOTTOM Spin 1/2 1/2 1/2 and at Berkeley - on November 10, 1974 the Charge -1/3 -1/3 -1/3 Mass 4.8 MeV 104 MeV 4.2 GeV charm quark was no longer a mathematical Name ELECTRON MUON TAU L e p t o n s Spin 1/2 1/2 1/2 speculation. This would come to be known as Charge -1 -1 -1 Mass 0.511 MeV 105.7 MeV 1.777 GeV ELECTRON MUON TAU the November revolution amongst the physics Name NEUTRINO NEUTRINO NEUTRINO community [1]. Spin 1/2 1/2 1/2 Charge 0 0 0 There are the quarks and their anti- Mass <2.2 eV <0.17 MeV <15.5 MeV Name PHOTON GLUON Z B o s n particles that are categorized by ascending Spin 1 1 1 Charge 0 0 0 mass into three generations known as Mass 0 0 91.2 GeV Name W+ W- HIGGS generation I, II, and III. In generation I there Spin 1 1 0 Charge +1 -1 0 are the lightest quarks - the up and down Mass 80.4 GeV 80.4 GeV ≈126 GeV !3 quarks, in generation II there are the charm and strange quarks, and in generation III the heaviest quarks - the top and bottom quarks. The up, charm, and top quarks all have a positive 2/3 charge, and the down, strange, and bottom quarks all have a -1/3 charge [2]. There are also leptons which are particles that do not have any part of the strong nuclear interaction and so have been able to be directly observed. Most people are to some extent familiar with leptons, as they are electrons, muons, tau particles, and their corresponding neutrinos. Leptons are categorized into the same three generations of ascending mass; in generation I there is the electron an electron neutrino, in generation II the muon and muon neutrino, and in generation III the tau and tau neutrino. The electron, muon, and tau all have a -1 charge, and the electron neutrino, muon neutrino, and tau neutrino all have a 0 charge, and as all leptons are fermions they all have a fractional spin. Forces are experienced between particles of matter, like the gravitational force between two massive bodies. The SM accounts for this supposed ‘action at a distance’ by assigning a boson to each force. When two matter particles called fermions interact in this model they exchange force carrier particles called bosons. All fermions “transfer discrete amounts of energy by exchanging bosons with each other” and this is perceived as a force acting on those fermionic particles [3]. The fundamental forces of electromagnetism, the strong nuclear force, the weak nuclear force, and the gravitational force are theorized to be carried by the photon, gluon, W+, W- and Z bosons [4], and graviton respectively. Though the graviton is yet to be observed, the recent discovery of the Higgs boson is a good indicator that there is a graviton.1 ! 1 The Higgs boson is necessary in the SM to preserve gauge invariance. This is discussed in greater detail in 2.2. !4 2.1. The Standard Model Lagrangian The Lagrangian of a system is effectively the difference between the system’s kinetic and potential energy. This term is used to describe the mechanics of a system in a very succinct and efficient mathematical expression. The Lagrangian may be used to trace the path of the system over some period of time with Hamilton’s variational principle, expressed as the action, t (1) " S = ∫ L dt t0 As the system evolves over time the sum of all the changes in potential to kinetic energy represent the totality of the different paths the system could have taken, and the maximized solution is the path actually taken by the system’s evolution [5], such that t (2) "δ ∫ L dt = δS = 0 t0 The SM Lagrangian, LSM, is known for it’s accuracy in predicting the properties and behavior of all the fundamental particles. The Standard Model Lagrangian comes out of the unification of the electromagnetic and weak nuclear forces, known as the electroweak theory. While it is true that the unitary group U(1) defines the electromagnetic gauge field, it is not accurate to say the SU(2) group defines the weak nuclear bosons, because the weak nuclear force exhibits particularly massive gauge bosons. Through a method known as spontaneous symmetry breaking the scalar Higgs field was introduced to give the W± and Z bosons their large mass [6,8] as an attempt to rectify these necessarily massive gauge bosons with quantum theory, and thereby maintain gauge invariance. In this new electroweak theory these gauge bosons are naturally massless and are !5 only given mass by the Higgs field. The electromagnetic and weak nuclear forces are naturally intertwined in a single SU(2) × U(1) gauge symmetry, and when this interacts with the scalar Higgs field the result is the electromagnetic and the massive, short range, weak nuclear bosons that manifest as the photon and weak nuclear observables. The electroweak theory has allowed the long accepted SM Lagrangian to have been such a tremendous success because it has all three generations of quarks and leptons, one Higgs boson, and it describes the SU(3) × SU(2) × U(1) gauge group [7] which corresponds with the SU(3) unitary group the defines the eight massless gauge fields known as gluons, and the SU(2) × U(1) unitary group that defines the three massless gauge fields known as the W± and Z bosons and the one massless gauge field known as the photon [8].
Recommended publications
  • Package 'Einsum'
    Package ‘einsum’ May 15, 2021 Type Package Title Einstein Summation Version 0.1.0 Description The summation notation suggested by Einstein (1916) <doi:10.1002/andp.19163540702> is a concise mathematical notation that implicitly sums over repeated indices of n- dimensional arrays. Many ordinary matrix operations (e.g. transpose, matrix multiplication, scalar product, 'diag()', trace etc.) can be written using Einstein notation. The notation is particularly convenient for expressing operations on arrays with more than two dimensions because the respective operators ('tensor products') might not have a standardized name. License MIT + file LICENSE Encoding UTF-8 SystemRequirements C++11 Suggests testthat, covr RdMacros mathjaxr RoxygenNote 7.1.1 LinkingTo Rcpp Imports Rcpp, glue, mathjaxr R topics documented: einsum . .2 einsum_package . .3 Index 5 1 2 einsum einsum Einstein Summation Description Einstein summation is a convenient and concise notation for operations on n-dimensional arrays. Usage einsum(equation_string, ...) einsum_generator(equation_string, compile_function = TRUE) Arguments equation_string a string in Einstein notation where arrays are separated by ’,’ and the result is separated by ’->’. For example "ij,jk->ik" corresponds to a standard matrix multiplication. Whitespace inside the equation_string is ignored. Unlike the equivalent functions in Python, einsum() only supports the explicit mode. This means that the equation_string must contain ’->’. ... the arrays that are combined. All arguments are converted to arrays with
    [Show full text]
  • Pauli Crystals–Interplay of Symmetries
    S S symmetry Article Pauli Crystals–Interplay of Symmetries Mariusz Gajda , Jan Mostowski , Maciej Pylak , Tomasz Sowi ´nski ∗ and Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; [email protected] (M.G.); [email protected] (J.M.); [email protected] (M.P.); [email protected] (M.Z.-K.) * Correspondence: [email protected] Received: 20 October 2020; Accepted: 13 November 2020; Published: 16 November 2020 Abstract: Recently observed Pauli crystals are structures formed by trapped ultracold atoms with the Fermi statistics. Interactions between these atoms are switched off, so their relative positions are determined by joined action of the trapping potential and the Pauli exclusion principle. Numerical modeling is used in this paper to find the Pauli crystals in a two-dimensional isotropic harmonic trap, three-dimensional harmonic trap, and a two-dimensional square well trap. The Pauli crystals do not have the symmetry of the trap—the symmetry is broken by the measurement of positions and, in many cases, by the quantum state of atoms in the trap. Furthermore, the Pauli crystals are compared with the Coulomb crystals formed by electrically charged trapped particles. The structure of the Pauli crystals differs from that of the Coulomb crystals, this provides evidence that the exclusion principle cannot be replaced by a two-body repulsive interaction but rather has to be considered to be a specifically quantum mechanism leading to many-particle correlations. Keywords: pauli exclusion; ultracold fermions; quantum correlations 1. Introduction Recent advances of experimental capabilities reached such precision that simultaneous detection of many ultracold atoms in a trap is possible [1,2].
    [Show full text]
  • Notes on Manifolds
    Notes on Manifolds Justin H. Le Department of Electrical & Computer Engineering University of Nevada, Las Vegas [email protected] August 3, 2016 1 Multilinear maps A tensor T of order r can be expressed as the tensor product of r vectors: T = u1 ⊗ u2 ⊗ ::: ⊗ ur (1) We herein fix r = 3 whenever it eases exposition. Recall that a vector u 2 U can be expressed as the combination of the basis vectors of U. Transform these basis vectors with a matrix A, and if the resulting vector u0 is equivalent to uA, then the components of u are said to be covariant. If u0 = A−1u, i.e., the vector changes inversely with the change of basis, then the components of u are contravariant. By Einstein notation, we index the covariant components of a tensor in subscript and the contravariant components in superscript. Just as the components of a vector u can be indexed by an integer i (as in ui), tensor components can be indexed as Tijk. Additionally, as we can view a matrix to be a linear map M : U ! V from one finite-dimensional vector space to another, we can consider a tensor to be multilinear map T : V ∗r × V s ! R, where V s denotes the s-th-order Cartesian product of vector space V with itself and likewise for its algebraic dual space V ∗. In this sense, a tensor maps an ordered sequence of vectors to one of its (scalar) components. Just as a linear map satisfies M(a1u1 + a2u2) = a1M(u1) + a2M(u2), we call an r-th-order tensor multilinear if it satisfies T (u1; : : : ; a1v1 + a2v2; : : : ; ur) = a1T (u1; : : : ; v1; : : : ; ur) + a2T (u1; : : : ; v2; : : : ; ur); (2) for scalars a1 and a2.
    [Show full text]
  • Macroscopic Quantum Phenomena in Interacting Bosonic Systems: Josephson flow in Liquid 4He and Multimode Schr¨Odingercat States
    Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states by Tyler James Volkoff A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor K. Birgitta Whaley, Chair Professor Philip L. Geissler Professor Richard E. Packard Fall 2014 Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states Copyright 2014 by Tyler James Volkoff 1 Abstract Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states by Tyler James Volkoff Doctor of Philosophy in Chemistry University of California, Berkeley Professor K. Birgitta Whaley, Chair In this dissertation, I analyze certain problems in the following areas: 1) quantum dynam- ical phenomena in macroscopic systems of interacting, degenerate bosons (Parts II, III, and V), and 2) measures of macroscopicity for a large class of two-branch superposition states in separable Hilbert space (Part IV). Part I serves as an introduction to important concepts recurring in the later Parts. In Part II, a microscopic derivation of the effective action for the relative phase of driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from a (3 + 1)D microscopic model with local U(1) gauge symmetry is presented. The effec- tive theory is applied to the transition from linear to sinusoidal current vs. phase behavior observed in recent experiments on liquid 4He driven through nanoaperture arrays. Part III discusses path-integral Monte Carlo (PIMC) numerical simulations of quantum hydrody- namic properties of reservoirs of He II communicating through simple nanoaperture arrays.
    [Show full text]
  • Charged Quantum Fields in Ads2
    Charged Quantum Fields in AdS2 Dionysios Anninos,1 Diego M. Hofman,2 Jorrit Kruthoff,2 1 Department of Mathematics, King’s College London, the Strand, London WC2R 2LS, UK 2 Institute for Theoretical Physics and ∆ Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands Abstract We consider quantum field theory near the horizon of an extreme Kerr black hole. In this limit, the dynamics is well approximated by a tower of electrically charged fields propagating in an SL(2, R) invariant AdS2 geometry endowed with a constant, symmetry preserving back- ground electric field. At large charge the fields oscillate near the AdS2 boundary and no longer admit a standard Dirichlet treatment. From the Kerr black hole perspective, this phenomenon is related to the presence of an ergosphere. We discuss a definition for the quantum field theory whereby we ‘UV’ complete AdS2 by appending an asymptotically two dimensional Minkowski region. This allows the construction of a novel observable for the flux-carrying modes that resembles the standard flat space S-matrix. We relate various features displayed by the highly charged particles to the principal series representations of SL(2, R). These representations are unitary and also appear for massive quantum fields in dS2. Both fermionic and bosonic fields are studied. We find that the free charged massless fermion is exactly solvable for general background, providing an interesting arena for the problem at hand. arXiv:1906.00924v2 [hep-th] 7 Oct 2019 Contents 1 Introduction 2 2 Geometry near the extreme Kerr horizon 4 2.1 Unitary representations of SL(2, R)..........................
    [Show full text]
  • Multilinear Algebra and Applications July 15, 2014
    Multilinear Algebra and Applications July 15, 2014. Contents Chapter 1. Introduction 1 Chapter 2. Review of Linear Algebra 5 2.1. Vector Spaces and Subspaces 5 2.2. Bases 7 2.3. The Einstein convention 10 2.3.1. Change of bases, revisited 12 2.3.2. The Kronecker delta symbol 13 2.4. Linear Transformations 14 2.4.1. Similar matrices 18 2.5. Eigenbases 19 Chapter 3. Multilinear Forms 23 3.1. Linear Forms 23 3.1.1. Definition, Examples, Dual and Dual Basis 23 3.1.2. Transformation of Linear Forms under a Change of Basis 26 3.2. Bilinear Forms 30 3.2.1. Definition, Examples and Basis 30 3.2.2. Tensor product of two linear forms on V 32 3.2.3. Transformation of Bilinear Forms under a Change of Basis 33 3.3. Multilinear forms 34 3.4. Examples 35 3.4.1. A Bilinear Form 35 3.4.2. A Trilinear Form 36 3.5. Basic Operation on Multilinear Forms 37 Chapter 4. Inner Products 39 4.1. Definitions and First Properties 39 4.1.1. Correspondence Between Inner Products and Symmetric Positive Definite Matrices 40 4.1.1.1. From Inner Products to Symmetric Positive Definite Matrices 42 4.1.1.2. From Symmetric Positive Definite Matrices to Inner Products 42 4.1.2. Orthonormal Basis 42 4.2. Reciprocal Basis 46 4.2.1. Properties of Reciprocal Bases 48 4.2.2. Change of basis from a basis to its reciprocal basis g 50 B B III IV CONTENTS 4.2.3.
    [Show full text]
  • Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect
    PHYSICAL REVIEW X 3, 011016 (2013) Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect Ashvin Vishwanath Department of Physics, University of California, Berkeley, California 94720, USA Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, USA T. Senthil Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 4 October 2012; revised manuscript received 31 December 2012; published 28 February 2013) We discuss physical properties of ‘‘integer’’ topological phases of bosons in D ¼ 3 þ 1 dimensions, protected by internal symmetries like time reversal and/or charge conservation. These phases invoke interactions in a fundamental way but do not possess topological order; they are bosonic analogs of free- fermion topological insulators and superconductors. While a formal cohomology-based classification of such states was recently discovered, their physical properties remain mysterious. Here, we develop a field-theoretic description of several of these states and show that they possess unusual surface states, which, if gapped, must either break the underlying symmetry or develop topological order. In the latter case, symmetries are implemented in a way that is forbidden in a strictly two-dimensional theory. While these phases are the usual fate of the surface states, exotic gapless states can also be realized. For example, tuning parameters can naturally lead to a deconfined quantum critical point or, in other situations, to a fully symmetric vortex metal phase. We discuss cases where the topological phases are characterized by a quantized magnetoelectric response , which, somewhat surprisingly, is an odd multiple of 2.Two different surface theories are shown to capture these phenomena: The first is a nonlinear sigma model with a topological term.
    [Show full text]
  • Abstract Tensor Systems As Monoidal Categories
    Abstract Tensor Systems as Monoidal Categories Aleks Kissinger Dedicated to Joachim Lambek on the occasion of his 90th birthday October 31, 2018 Abstract The primary contribution of this paper is to give a formal, categorical treatment to Penrose’s abstract tensor notation, in the context of traced symmetric monoidal categories. To do so, we introduce a typed, sum-free version of an abstract tensor system and demonstrate the construction of its associated category. We then show that the associated category of the free abstract tensor system is in fact the free traced symmetric monoidal category on a monoidal signature. A notable consequence of this result is a simple proof for the soundness and completeness of the diagrammatic language for traced symmetric monoidal categories. 1 Introduction This paper formalises the connection between monoidal categories and the ab- stract index notation developed by Penrose in the 1970s, which has been used by physicists directly, and category theorists implicitly, via the diagrammatic languages for traced symmetric monoidal and compact closed categories. This connection is given as a representation theorem for the free traced symmet- ric monoidal category as a syntactically-defined strict monoidal category whose morphisms are equivalence classes of certain kinds of terms called Einstein ex- pressions. Representation theorems of this kind form a rich history of coherence results for monoidal categories originating in the 1960s [17, 6]. Lambek’s con- arXiv:1308.3586v1 [math.CT] 16 Aug 2013 tribution [15, 16] plays an essential role in this history, providing some of the earliest examples of syntactically-constructed free categories and most of the key ingredients in Kelly and Mac Lane’s proof of the coherence theorem for closed monoidal categories [11].
    [Show full text]
  • Quantum Chromodynamics (QCD) QCD Is the Theory That Describes the Action of the Strong Force
    Quantum chromodynamics (QCD) QCD is the theory that describes the action of the strong force. QCD was constructed in analogy to quantum electrodynamics (QED), the quantum field theory of the electromagnetic force. In QED the electromagnetic interactions of charged particles are described through the emission and subsequent absorption of massless photons (force carriers of QED); such interactions are not possible between uncharged, electrically neutral particles. By analogy with QED, quantum chromodynamics predicts the existence of gluons, which transmit the strong force between particles of matter that carry color, a strong charge. The color charge was introduced in 1964 by Greenberg to resolve spin-statistics contradictions in hadron spectroscopy. In 1965 Nambu and Han introduced the octet of gluons. In 1972, Gell-Mann and Fritzsch, coined the term quantum chromodynamics as the gauge theory of the strong interaction. In particular, they employed the general field theory developed in the 1950s by Yang and Mills, in which the carrier particles of a force can themselves radiate further carrier particles. (This is different from QED, where the photons that carry the electromagnetic force do not radiate further photons.) First, QED Lagrangian… µ ! # 1 µν LQED = ψeiγ "∂µ +ieAµ $ψe − meψeψe − Fµν F 4 µν µ ν ν µ Einstein notation: • F =∂ A −∂ A EM field tensor when an index variable µ • A four potential of the photon field appears twice in a single term, it implies summation µ •γ Dirac 4x4 matrices of that term over all the values of the index
    [Show full text]
  • About Matrices, Tensors and Various Abbrevia- Tions
    About matrices, tensors and various abbrevia- tions The objects we deal with in this course are rather complicated. We therefore use a simplifying notation where at every step as much as possible of this complexity is hidden. Basically this means that objects that are made out of many elements or components. are written without indices as much as possible. We also have several different types of indices present. The ones that show up in this course are: • Dirac-Indices a; b; c • Lorentz indices, both upper and lower µ, ν; ρ • SU(2)L indices i; j; k • SU(3)c indices α; β; γ Towards the right I have written the type of symbols used in this note to denote a particular type of index. The course contains even more, three-vector indices or various others denoting sums over types of quarks and/or leptons. An object is called scalar or singlet if it has no index of a particular type of index, a vector if it has one, a matrix if it has two and a tensor if it has two or more. A vector can also be called a column or row matrix. Examples are b with elements bi: 0 1 b1 B C B b2 C b = (b1; b2; : : : ; bn) b = (b1 b2 ··· bn) b = B . C (1) B . C @ . A bn In the first case is a vector, the second a row matrix and the last a column vector. Objects with two indices are called a matrix or sometimes a tensor and de- noted by 0 1 c11 c12 ··· c1n B C B c21 c22 ··· c2n C c = (cij) = B .
    [Show full text]
  • Arxiv:1907.02341V1 [Gr-Qc]
    Different types of torsion and their effect on the dynamics of fields Subhasish Chakrabarty1, ∗ and Amitabha Lahiri1, † 1S. N. Bose National Centre for Basic Sciences Block - JD, Sector - III, Salt Lake, Kolkata - 700106 One of the formalisms that introduces torsion conveniently in gravity is the vierbein-Einstein- Palatini (VEP) formalism. The independent variables are the vierbein (tetrads) and the components of the spin connection. The latter can be eliminated in favor of the tetrads using the equations of motion in the absence of fermions; otherwise there is an effect of torsion on the dynamics of fields. We find that the conformal transformation of off-shell spin connection is not uniquely determined unless additional assumptions are made. One possibility gives rise to Nieh-Yan theory, another one to conformally invariant torsion; a one-parameter family of conformal transformations interpolates between the two. We also find that for dynamically generated torsion the spin connection does not have well defined conformal properties. In particular, it affects fermions and the non-minimally coupled conformal scalar field. Keywords: Torsion, Conformal transformation, Palatini formulation, Conformal scalar, Fermion arXiv:1907.02341v1 [gr-qc] 4 Jul 2019 ∗ [email protected][email protected] 2 I. INTRODUCTION Conventionally, General Relativity (GR) is formulated purely from a metric point of view, in which the connection coefficients are given by the Christoffel symbols and torsion is set to zero a priori. Nevertheless, it is always interesting to consider a more general theory with non-zero torsion. The first attempt to formulate a theory of gravity that included torsion was made by Cartan [1].
    [Show full text]
  • Clifford Algebras, Multipartite Systems and Gauge Theory Gravity
    Mathematical Phyiscs Clifford Algebras, Multipartite Systems and Gauge Theory Gravity Marco A. S. Trindadea Eric Pintob Sergio Floquetc aColegiado de Física Departamento de Ciências Exatas e da Terra Universidade do Estado da Bahia, Salvador, BA, Brazil bInstituto de Física Universidade Federal da Bahia Salvador, BA, Brazil cColegiado de Engenharia Civil Universidade Federal do Vale do São Francisco Juazeiro, BA, Brazil. E-mail: [email protected], [email protected], [email protected] Abstract: In this paper we present a multipartite formulation of gauge theory gravity based on the formalism of space-time algebra for gravitation developed by Lasenby and Do- ran (Lasenby, A. N., Doran, C. J. L, and Gull, S.F.: Gravity, gauge theories and geometric algebra. Phil. Trans. R. Soc. Lond. A, 582, 356:487 (1998)). We associate the gauge fields with description of fermionic and bosonic states using the generalized graded tensor product. Einstein’s equations are deduced from the graded projections and an algebraic Hopf-like structure naturally emerges from formalism. A connection with the theory of the quantum information is performed through the minimal left ideals and entangled qubits are derived. In addition applications to black holes physics and standard model are outlined. arXiv:1807.09587v2 [physics.gen-ph] 16 Nov 2018 1Corresponding author. Contents 1 Introduction1 2 General formulation and Einstein field equations3 3 Qubits 9 4 Black holes background 10 5 Standard model 11 6 Conclusions 15 7 Acknowledgements 16 1 Introduction This work is dedicated to the memory of professor Waldyr Alves Rodrigues Jr., whose contributions in the field of mathematical physics were of great prominence, especially in the study of clifford algebras and their applications to physics [1].
    [Show full text]