Clifford Algebras, Multipartite Systems and Gauge Theory Gravity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2009.05574V4 [Hep-Th] 9 Nov 2020 Predict a New Massless Spin One Boson [The ‘Lorentz’ Boson] Which Should Be Looked for in Experiments
Trace dynamics and division algebras: towards quantum gravity and unification Tejinder P. Singh Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India e-mail: [email protected] Accepted for publication in Zeitschrift fur Naturforschung A on October 4, 2020 v4. Submitted to arXiv.org [hep-th] on November 9, 2020 ABSTRACT We have recently proposed a Lagrangian in trace dynamics at the Planck scale, for unification of gravitation, Yang-Mills fields, and fermions. Dynamical variables are described by odd- grade (fermionic) and even-grade (bosonic) Grassmann matrices. Evolution takes place in Connes time. At energies much lower than Planck scale, trace dynamics reduces to quantum field theory. In the present paper we explain that the correct understanding of spin requires us to formulate the theory in 8-D octonionic space. The automorphisms of the octonion algebra, which belong to the smallest exceptional Lie group G2, replace space- time diffeomorphisms and internal gauge transformations, bringing them under a common unified fold. Building on earlier work by other researchers on division algebras, we propose the Lorentz-weak unification at the Planck scale, the symmetry group being the stabiliser group of the quaternions inside the octonions. This is one of the two maximal sub-groups of G2, the other one being SU(3), the element preserver group of octonions. This latter group, coupled with U(1)em, describes the electro-colour symmetry, as shown earlier by Furey. We arXiv:2009.05574v4 [hep-th] 9 Nov 2020 predict a new massless spin one boson [the `Lorentz' boson] which should be looked for in experiments. -
Introduction to Supersymmetry(1)
Introduction to Supersymmetry(1) J.N. Tavares Dep. Matem¶aticaPura, Faculdade de Ci^encias,U. Porto, 4000 Porto TQFT Club 1Esta ¶euma vers~aoprovis¶oria,incompleta, para uso exclusivo nas sess~oesde trabalho do TQFT club CONTENTS 1 Contents 1 Supersymmetry in Quantum Mechanics 2 1.1 The Supersymmetric Oscillator . 2 1.2 Witten Index . 4 1.3 A fundamental example: The Laplacian on forms . 7 1.4 Witten's proof of Morse Inequalities . 8 2 Supergeometry and Supersymmetry 13 2.1 Field Theory. A quick review . 13 2.2 SuperEuclidean Space . 17 2.3 Reality Conditions . 18 2.4 Supersmooth functions . 18 2.5 Supermanifolds . 21 2.6 Lie Superalgebras . 21 2.7 Super Lie groups . 26 2.8 Rigid Superspace . 27 2.9 Covariant Derivatives . 30 3 APPENDIX. Cli®ord Algebras and Spin Groups 31 3.1 Cli®ord Algebras . 31 Motivation. Cli®ord maps . 31 Cli®ord Algebras . 33 Involutions in V .................................. 35 Representations . 36 3.2 Pin and Spin groups . 43 3.3 Spin Representations . 47 3.4 U(2), spinors and almost complex structures . 49 3.5 Spinc(4)...................................... 50 Chiral Operator. Self Duality . 51 2 1 Supersymmetry in Quantum Mechanics 1.1 The Supersymmetric Oscillator i As we will see later the \hermitian supercharges" Q®, in the N extended SuperPoincar¶eLie Algebra obey the anticommutation relations: i j m ij fQ®;Q¯g = 2(γ C)®¯± Pm (1.1) m where ®; ¯ are \spinor" indices, i; j 2 f1; ¢ ¢ ¢ ;Ng \internal" indices and (γ C)®¯ a bilinear form in the spinor indices ®; ¯. When specialized to 0-space dimensions ((1+0)-spacetime), then since P0 = H, relations (1.1) take the form (with a little change in notations): fQi;Qjg = 2±ij H (1.2) with N \Hermitian charges" Qi; i = 1; ¢ ¢ ¢ ;N. -
Macroscopic Quantum Phenomena in Interacting Bosonic Systems: Josephson flow in Liquid 4He and Multimode Schr¨Odingercat States
Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states by Tyler James Volkoff A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor K. Birgitta Whaley, Chair Professor Philip L. Geissler Professor Richard E. Packard Fall 2014 Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states Copyright 2014 by Tyler James Volkoff 1 Abstract Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states by Tyler James Volkoff Doctor of Philosophy in Chemistry University of California, Berkeley Professor K. Birgitta Whaley, Chair In this dissertation, I analyze certain problems in the following areas: 1) quantum dynam- ical phenomena in macroscopic systems of interacting, degenerate bosons (Parts II, III, and V), and 2) measures of macroscopicity for a large class of two-branch superposition states in separable Hilbert space (Part IV). Part I serves as an introduction to important concepts recurring in the later Parts. In Part II, a microscopic derivation of the effective action for the relative phase of driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from a (3 + 1)D microscopic model with local U(1) gauge symmetry is presented. The effec- tive theory is applied to the transition from linear to sinusoidal current vs. phase behavior observed in recent experiments on liquid 4He driven through nanoaperture arrays. Part III discusses path-integral Monte Carlo (PIMC) numerical simulations of quantum hydrody- namic properties of reservoirs of He II communicating through simple nanoaperture arrays. -
Clifford Algebra and the Interpretation of Quantum
In: J.S.R. Chisholm/A.K. Commons (Eds.), Cliord Algebras and their Applications in Mathematical Physics. Reidel, Dordrecht/Boston (1986), 321–346. CLIFFORD ALGEBRA AND THE INTERPRETATION OF QUANTUM MECHANICS David Hestenes ABSTRACT. The Dirac theory has a hidden geometric structure. This talk traces the concep- tual steps taken to uncover that structure and points out signicant implications for the interpre- tation of quantum mechanics. The unit imaginary in the Dirac equation is shown to represent the generator of rotations in a spacelike plane related to the spin. This implies a geometric interpreta- tion for the generator of electromagnetic gauge transformations as well as for the entire electroweak gauge group of the Weinberg-Salam model. The geometric structure also helps to reveal closer con- nections to classical theory than hitherto suspected, including exact classical solutions of the Dirac equation. 1. INTRODUCTION The interpretation of quantum mechanics has been vigorously and inconclusively debated since the inception of the theory. My purpose today is to call your attention to some crucial features of quantum mechanics which have been overlooked in the debate. I claim that the Pauli and Dirac algebras have a geometric interpretation which has been implicit in quantum mechanics all along. My aim will be to make that geometric interpretation explicit and show that it has nontrivial implications for the physical interpretation of quantum mechanics. Before getting started, I would like to apologize for what may appear to be excessive self-reference in this talk. I have been pursuing the theme of this talk for 25 years, but the road has been a lonely one where I have not met anyone travelling very far in the same direction. -
The Mechanics of the Fermionic and Bosonic Fields: an Introduction to the Standard Model and Particle Physics
The Mechanics of the Fermionic and Bosonic Fields: An Introduction to the Standard Model and Particle Physics Evan McCarthy Phys. 460: Seminar in Physics, Spring 2014 Aug. 27,! 2014 1.Introduction 2.The Standard Model of Particle Physics 2.1.The Standard Model Lagrangian 2.2.Gauge Invariance 3.Mechanics of the Fermionic Field 3.1.Fermi-Dirac Statistics 3.2.Fermion Spinor Field 4.Mechanics of the Bosonic Field 4.1.Spin-Statistics Theorem 4.2.Bose Einstein Statistics !5.Conclusion ! 1. Introduction While Quantum Field Theory (QFT) is a remarkably successful tool of quantum particle physics, it is not used as a strictly predictive model. Rather, it is used as a framework within which predictive models - such as the Standard Model of particle physics (SM) - may operate. The overarching success of QFT lends it the ability to mathematically unify three of the four forces of nature, namely, the strong and weak nuclear forces, and electromagnetism. Recently substantiated further by the prediction and discovery of the Higgs boson, the SM has proven to be an extraordinarily proficient predictive model for all the subatomic particles and forces. The question remains, what is to be done with gravity - the fourth force of nature? Within the framework of QFT theoreticians have predicted the existence of yet another boson called the graviton. For this reason QFT has a very attractive allure, despite its limitations. According to !1 QFT the gravitational force is attributed to the interaction between two gravitons, however when applying the equations of General Relativity (GR) the force between two gravitons becomes infinite! Results like this are nonsensical and must be resolved for the theory to stand. -
A Clifford Dyadic Superfield from Bilateral Interactions of Geometric Multispin Dirac Theory
A CLIFFORD DYADIC SUPERFIELD FROM BILATERAL INTERACTIONS OF GEOMETRIC MULTISPIN DIRAC THEORY WILLIAM M. PEZZAGLIA JR. Department of Physia, Santa Clam University Santa Clam, CA 95053, U.S.A., [email protected] and ALFRED W. DIFFER Department of Phyaia, American River College Sacramento, CA 958i1, U.S.A. (Received: November 5, 1993) Abstract. Multivector quantum mechanics utilizes wavefunctions which a.re Clifford ag gregates (e.g. sum of scalar, vector, bivector). This is equivalent to multispinors con structed of Dirac matrices, with the representation independent form of the generators geometrically interpreted as the basis vectors of spacetime. Multiple generations of par ticles appear as left ideals of the algebra, coupled only by now-allowed right-side applied (dextral) operations. A generalized bilateral (two-sided operation) coupling is propoeed which includes the above mentioned dextrad field, and the spin-gauge interaction as partic ular cases. This leads to a new principle of poly-dimensional covariance, in which physical laws are invariant under the reshuffling of coordinate geometry. Such a multigeometric su perfield equation is proposed, whi~h is sourced by a bilateral current. In order to express the superfield in representation and coordinate free form, we introduce Eddington E-F double-frame numbers. Symmetric tensors can now be represented as 4D "dyads", which actually are elements of a global SD Clifford algebra.. As a restricted example, the dyadic field created by the Greider-Ross multivector current (of a Dirac electron) describes both electromagnetic and Morris-Greider gravitational interactions. Key words: spin-gauge, multivector, clifford, dyadic 1. Introduction Multi vector physics is a grand scheme in which we attempt to describe all ba sic physical structure and phenomena by a single geometrically interpretable Algebra. -
Clifford Algebras, Spinors and Supersymmetry. Francesco Toppan
IV Escola do CBPF – Rio de Janeiro, 15-26 de julho de 2002 Algebraic Structures and the Search for the Theory Of Everything: Clifford algebras, spinors and supersymmetry. Francesco Toppan CCP - CBPF, Rua Dr. Xavier Sigaud 150, cep 22290-180, Rio de Janeiro (RJ), Brazil abstract These lectures notes are intended to cover a small part of the material discussed in the course “Estruturas algebricas na busca da Teoria do Todo”. The Clifford Algebras, necessary to introduce the Dirac’s equation for free spinors in any arbitrary signature space-time, are fully classified and explicitly constructed with the help of simple, but powerful, algorithms which are here presented. The notion of supersymmetry is introduced and discussed in the context of Clifford algebras. 1 Introduction The basic motivations of the course “Estruturas algebricas na busca da Teoria do Todo”consisted in familiarizing graduate students with some of the algebra- ic structures which are currently investigated by theoretical physicists in the attempt of finding a consistent and unified quantum theory of the four known interactions. Both from aesthetic and practical considerations, the classification of mathematical and algebraic structures is a preliminary and necessary require- ment. Indeed, a very ambitious, but conceivable hope for a unified theory, is that no free parameter (or, less ambitiously, just few) has to be fixed, as an external input, due to phenomenological requirement. Rather, all possible pa- rameters should be predicted by the stringent consistency requirements put on such a theory. An example of this can be immediately given. It concerns the dimensionality of the space-time. -
Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect
PHYSICAL REVIEW X 3, 011016 (2013) Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect Ashvin Vishwanath Department of Physics, University of California, Berkeley, California 94720, USA Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, USA T. Senthil Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 4 October 2012; revised manuscript received 31 December 2012; published 28 February 2013) We discuss physical properties of ‘‘integer’’ topological phases of bosons in D ¼ 3 þ 1 dimensions, protected by internal symmetries like time reversal and/or charge conservation. These phases invoke interactions in a fundamental way but do not possess topological order; they are bosonic analogs of free- fermion topological insulators and superconductors. While a formal cohomology-based classification of such states was recently discovered, their physical properties remain mysterious. Here, we develop a field-theoretic description of several of these states and show that they possess unusual surface states, which, if gapped, must either break the underlying symmetry or develop topological order. In the latter case, symmetries are implemented in a way that is forbidden in a strictly two-dimensional theory. While these phases are the usual fate of the surface states, exotic gapless states can also be realized. For example, tuning parameters can naturally lead to a deconfined quantum critical point or, in other situations, to a fully symmetric vortex metal phase. We discuss cases where the topological phases are characterized by a quantized magnetoelectric response , which, somewhat surprisingly, is an odd multiple of 2.Two different surface theories are shown to capture these phenomena: The first is a nonlinear sigma model with a topological term. -
Keference International Centre for Theoretical
KEFERENCE INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS IC/86/342 INTERNATIONAL THE REGULAR EFFECTIVE ACTION OF GAUGE FIELD THEORY AND QUANTUM GRAVITY ATOMIC ENERGY AGENCY Nazir S. Baaklini UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION IC/86/342 International Atomic Energy Agency 0. INTRODUCTION and The effective action of quantum field theory, defined by the functional United Nations Educational Scientific and Cultural Organization integral , is an elegant and potentially, very powerful framework for compu- INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ting quantum effects, in a manner that preserves underlying fundamental symmetries. However, this framework had been utilized mainly in computing effective potentials, and in certain discussions of the divergent counter-terms needed in gauge field THE REGULAR EFFECTIVE ACTION OF GAUGE FIELD THEORY theory and quantum gravity. Whereas it should ~ae very fruitful fo develop expre- AND QUANTUM GRAVITY ssions for the effective action which could have general applicability, computa- tions are still performed using conventional Feynman rules. What is needed is a perturbative formalism for the effective action vhicii applies to a general field Nazir S. Baaklini theory containing Bosonic as well as Fermionic fields, and vhich could be used to International Centre for Theoretical Physics, Trieste, Italy address fundamental issues of quantum field theory and quantum gravity. and Dahr el Chir Science Centre, Dhour el Choueir, Lebanon. On the other hand, our study of the effective action makes impact on two fundamental issues. One of these concerns the treatment of gauge field theory and other singular systems. The other concerns the ultraviolet divergences of quantum field theory and quantum gravity. -
The Clifford Algebra and the Group of Similitudes
THE CLIFFORD ALGEBRA AND THE GROUP OF SIMILITUDES MARIA J. WONENBURGER Let C(M, Q) be the Clifford algebra of an even dimensional vector space M relative to a quadratic form Q. When Q is non-degenerate, it is well known that there exists an isomorphism of the orthogonal group 0(Q) onto the group of those automorphisms of C(M, Q) which leave invariant the space M C C(M, Q). These automorphisms are inner and the group of invertible elements of C(M, Q) which define such inner automorphisms is called the Clifford group. If instead of the group 0(Q) we take the group of similitudes y(Q) or even the group of semi-similitudes Ty(Q), it is possible to associate in a natural way with any element of these groups an automorphism or semi-automorphism, respectively, of the subalgebra of even elements C+(M, Q) C C(M, Q). Each one of the automorphisms of C+(M, Q) so defined can be extended, as it is shown here (Theorem 2), to an inner automorphism of C(M, Q), although the extension is not unique. A semi-automorphism of C+(M, Q) associated to a semi-similitude of Q can be extended to all of C(M, Q) if and only if the ratio of the semi-similitude satisfies the conditions given in Theorem 3. Although the extension is not unique, Theorem 3 gives all the possible ex tensions. We do not know if there exist semi-similitudes whose ratios do not satisfy the conditions of Theorem 3. -
Decomposition Algorithms in Clifford Algebras
Preliminaries Decomposition Algorithms Broader Framework Decomposition algorithms in Clifford algebras G. Stacey Staples1 Department of Mathematics and Statistics Southern Illinois University Edwardsville Combinatorics and Computer Algebra Fort Collins, 2015 1Joint work with David Wylie G. Stacey Staples Decomposition algorithms in Clifford algebras Preliminaries Cayley graphs & hypercubes Decomposition Algorithms Hyperplanes & Reflections Broader Framework C`Q(V ) Vector space V over R. n = dim(V ). Nondegenerate quadratic form Q, inducing h·; ·iQ. 2n dim’l algebra obtained by associative linear extension of xy = hx; yiQ + x ^ y G. Stacey Staples Decomposition algorithms in Clifford algebras Preliminaries Cayley graphs & hypercubes Decomposition Algorithms Hyperplanes & Reflections Broader Framework C`Q(V ) Vector space V over R. n = dim(V ). Nondegenerate quadratic form Q, inducing h·; ·iQ. 2n dim’l algebra obtained by associative linear extension of xy = hx; yiQ + x ^ y Familiar special cases: C, H. G. Stacey Staples Decomposition algorithms in Clifford algebras Preliminaries Cayley graphs & hypercubes Decomposition Algorithms Hyperplanes & Reflections Broader Framework Example: Clifford algebra C`p;q 1 Real, associative algebra of dimension 2n. 2 Generators fei : 1 ≤ i ≤ ng along with the unit scalar e; = 1 2 R. 3 Generators satisfy: [ei ; ej ] := ei ej + ej ei = 0 for 1 ≤ i 6= j ≤ n; ( 2 1 if 1 ≤ i ≤ p; ei = −1 ifp + 1 ≤ i ≤ p + q: G. Stacey Staples Decomposition algorithms in Clifford algebras Preliminaries Cayley graphs & hypercubes Decomposition Algorithms Hyperplanes & Reflections Broader Framework Multi-index notation Let [n] = f1; 2;:::; ng and denote arbitrary, canonically ordered subsets of [n] by capital Roman characters. 2[n] denotes the power set of [n]. -
Clifford Algebra of Spacetime and the Conformal Group
Clifford Algebra of Spacetime and the Conformal Group C. Castroa and M. Pavˇsiˇcb ABSTRACT We demonstrate the emergence of the conformal group SO(4,2) from the Clifford algebra of spacetime. The latter algebra is a manifold, called Clifford space, which is assumed to be the arena in which physics takes place. A Clifford space does not contain only points (events), but also lines, surfaces, volumes, etc..., and thus provides a framework for description of extended objects. A subspace of the Clifford space is the space whose metric is invariant with respect to the conformal group SO(4,2) which can be given either passive or active interpretation. As advocated long ago by one of us, active conformal transformations, including dilatations, imply that sizes of physical objects can change as a result of free motion, without the presence of forces. This theory is conceptually and technically very different from Weyl’s theory and provides when extended to a curved conformal space a resolution of the long standing problem of realistic masses in Kaluza- Klein theories. arXiv:hep-th/0203194v2 10 Nov 2003 Keywords: Clifford algebra, conformal group, geometric calculus 0a Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta 0bJoˇzef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Email: [email protected] 1 Introduction Extended objects such as membranes or branes of any dimension are nowadays subject of extensive studies. A deeper geometric principle behind such theories remains to be fully explored. It has been found that various string theories are different faces of a conjectured single theory, called M-theory which has not yet been rigorously formulated.