Field Theory of Anyons and the Fractional Quantum Hall Effect 30- 50

Total Page:16

File Type:pdf, Size:1020Kb

Field Theory of Anyons and the Fractional Quantum Hall Effect 30- 50 NO9900079 Field Theory of Anyons and the Fractional Quantum Hall Effect Susanne F. Viefers Thesis submitted for the Degree of Doctor Scientiarum Department of Physics University of Oslo November 1997 30- 50 Abstract This thesis is devoted to a theoretical study of anyons, i.e. particles with fractional statistics moving in two space dimensions, and the quantum Hall effect. The latter constitutes the only known experimental realization of anyons in that the quasiparticle excitations in the fractional quantum Hall system are believed to obey fractional statistics. First, the properties of ideal quantum gases in two dimensions and in particular the equation of state of the free anyon gas are discussed. Then, a field theory formulation of anyons in a strong magnetic field is presented and later extended to a system with several species of anyons. The relation of this model to fractional exclusion statistics, i.e. intermediate statistics introduced by a generalization of the Pauli principle, and to the low-energy excitations at the edge of the quantum Hall system is discussed. Finally, the Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect is studied, mainly focusing on edge effects; both the ground state and the low- energy edge excitations are examined in the simple one-component model and in an extended model which includes spin effets. Contents I General background 5 1 Introduction 7 2 Identical particles and quantum statistics 10 3 Introduction to anyons 13 3.1 Many-particle description 14 3.2 Field theory description 18 3.3 Anyons in a (strong) magnetic field 19 3.4 The anyon gas 21 4 The Quantum Hall Effect 25 4.1 The integer effect 27 4.2 The fractional effect 29 4.3 Edge excitations 30 II Background for the papers 33 5 Field theory of anyons 35 5.1 Motivation 35 5.2 Full field theory 36 5.3 Field theory in the lowest Landau level 37 5.4 Generalization to several components 42 6 Fractional exclusion statistics 43 6.1 Definition of fractional exclusion statistics 44 6.2 State counting and the distribution function 44 6.3 Thermodynamics 46 6.4 Realizations of FES 47 6.5 Connection to the model on the circle 47 7 Chiral Luttinger liquids and QHE edge states 51 7.1 Luttinger theory and bosonization 52 7.2 Theory of QHE edge excitations 55 7.2.1 Hydrodynamical approach 55 7.2.2 Edge states from bulk effective theory 56 7.3 Connection to lowest Landau level anyons 57 7.4 Multicomponent systems 58 8 The Chern-Simons Ginzburg-Landau theory of the FQHE 60 8.1 The model 61 8.2 Bulk properties 62 8.3 Edge properties 64 8.4 Two-component model with one Chern-Simons field 65 8.5 Several Chern-Simons fields 66 Bibliography 68 III Papers 73 Summary of the papers 75 Accompanying papers • Paper I: S. Viefers, F. Ravndal and T. Haugset, "Ideal Quantum Gases in Two Dimensions" Am. J. Phys. 63 (1995) 369-376. • Paper II: T.H. Hansson, J.M. Leinaas and S. Viefers, "Field Theory of Anyons in the Lowest Landau Level", Nucl. Phys. B 470 (1996) 291-316. • Paper III: Serguei Isakov and Susanne Viefers, "Model of Statistically Coupled Chiral Fields on the Circle", Int. J. Mod. Phys. A 12 (1997) 1895-1914. • Paper IV: J.M. Leinaas and S. Viefers, "Bulk and edge properties of the Chern-Simons Ginzburg-Landau theory for the fractional quantum Hall effect", (Preprint) Acknowledgements Many people have contributed to the successful completion of this work, and this is the time to thank them. First of all, I want to thank "The boss" Jon Magne Leinaas for being an excellent supervisor, always patiently answering my questions and explaining to me the many things I didn't understand. His enormous knowledge of physics and enjoyable company have made it a great pleasure to be his student. Jon Magne also introduced me to Hans Hansson whose enthusiasm and physical intuition are only matched by his sense of humour. It has been very inspiring to collaborate with Hans on one of the papers in this thesis and to profit from his knowledge in many discussions. Further, I want to thank him for inviting me to Fysikum in Stockholm for two weeks in the spring of 1995. I also enjoyed very much the collaboration with Serguei Isakov on one of the papers, and having him around as a postdoc has greatly improved the working envi- ronment at the theory group. The paper with Finn Ravndal and Tor Haugset was my first publication ever; thanks to both of them and especially to Finn, without whom this article would have never seen the light of day. The most exciting time during this project was the year we spent at the Center for Advanced Study at the Norwegian Academy of Science. I feel very grateful to Jon Magne for letting me participate there and giving me the opportunity to meet physicists, philosophers and tibetologists from all over the world. In addition to the professional benefit, I made several good friends during that year, and in particular I enjoyed very much sharing the office with Heidi Kj0nsberg. My friends and fellow students at the theory group deserve special thanks for making this a nice environment to be in. It has been fun to share the office with Tor Haugset and Elias Bergan and to have Jens Andersen around even at times when nobody else was crazy enough to be at work. Harek Haugerud has been doing a great job running the computer network and helping to organize several "theoretical" Christmas parties. Then, of course, I want to thank my friends and family for making life outside the physics building worth living and for cheering me up on bad days. In particular, my mother deserves to be mentioned for all the moral as well as practical support she has been giving me all these years. Finally, I would like to thank the Norwegian Research Council (NFR), the Norwe- gian Academy of Science and Letters, the Department of Physics (Oslo) and Akershus Fylkeskommune for financial support, and NORDITA both for financial support and kind hospitality during several conferences and a one-week visit in the autumn of 1996. Part I General background Chapter 1 Introduction The world we experience in everyday life is three-dimensional. So at first sight it may seem strange that someone should be interested in studying the physics of two- dimensional - or even worse: one-dimensional - systems. Nevertheless, this is exactly what this thesis is about. Several people, both physicists and non-physicists, have asked me about the motivation for studying abstract systems which do not seem to have much to do with reality and which do not have any "useful" practical applica- tions. So, before giving a rough description of what this field of physics is all about, let me start by trying to answer this question. Actually, there are two answers. First of all, it is not the main purpose of theo- retical physics to develop new technology. The main goal is to obtain a fundamental description and understanding of Nature; demanding practical usefulness of every project would strongly limit the radius of scientific activity. However, a new theoreti- cal understanding of some phenonemon may often lead to new and useful applications even though one was not looking for them in the first place. A good example of this is quantum mechanics which was developed in the first part of this century because peo- ple had discovered phenonema which classical mechanics failed to predict correctly. But in addition to providing a theoretical description of a wide range of phenonema in Nature, quantum mechanical principles are the basis of many modern technolog- ical devices such as lasers, semiconductors or SQUIDS (very sensitive devices for measuring weak magnetic fields, used in medicine). Even worse: It is not even crucial if new theories can be tested in any experiment at the present stage. Sometimes, testing a theory simply demands technology which does not yet exist. ] One of the greatest achievements in modern physics is Einstein's theory of general relativity describing gravity. Einstein developed this theory because he thought it was a logical continuation of special relativity, even though there were, at the time, no indications that classical Newtonian gravity might not be exact. After Einstein had presented his theory, it took several years until the first experimental confirmation: In 1919, English scientists verified that the gravitational field indeed deflects light, as predicted by general relativity. What this teaches us is that the lack of immediate applications or experimental 1 For example, in order to examine the existence of some particles predicted by elementary particle physics one first has to build new and larger accelerators. Introduction verifications does not necessarily make a theory less interesting. In particular, a theoretical study of the physics of lower-dimensional systems is interesting by itself, since it involves trying to understand very fundamental concepts. Secondly - and perhaps more convincingly to some - we shall see that there do exist systems in Nature which are effectively two-dimensional. For example, there are crystals built up of layers consisting of different kinds of atoms in such a way that the electrical resistance experienced by electrons moving within some of these layers is much smaller than that for motion perpendicular to the planes. This means that, at least at low enough temperatures, the electrons do not have enough energy to leave the layer they are in, and their motion is confined to two dimensions. Actually, one has even constructed systems where electrons effectively move in only one dimension: they are called quantum wires.
Recommended publications
  • Anyon Theory in Gapped Many-Body Systems from Entanglement
    Anyon theory in gapped many-body systems from entanglement Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Bowen Shi, B.S. Graduate Program in Department of Physics The Ohio State University 2020 Dissertation Committee: Professor Yuan-Ming Lu, Advisor Professor Daniel Gauthier Professor Stuart Raby Professor Mohit Randeria Professor David Penneys, Graduate Faculty Representative c Copyright by Bowen Shi 2020 Abstract In this thesis, we present a theoretical framework that can derive a general anyon theory for 2D gapped phases from an assumption on the entanglement entropy. We formulate 2D quantum states by assuming two entropic conditions on local regions, (a version of entanglement area law that we advocate). We introduce the information convex set, a set of locally indistinguishable density matrices naturally defined in our framework. We derive an isomorphism theorem and structure theorems of the information convex sets by studying the internal self-consistency. This line of derivation makes extensive usage of information-theoretic tools, e.g., strong subadditivity and the properties of quantum many-body states with conditional independence. The following properties of the anyon theory are rigorously derived from this framework. We define the superselection sectors (i.e., anyon types) and their fusion rules according to the structure of information convex sets. Antiparticles are shown to be well-defined and unique. The fusion rules are shown to satisfy a set of consistency conditions. The quantum dimension of each anyon type is defined, and we derive the well-known formula of topological entanglement entropy.
    [Show full text]
  • Macroscopic Quantum Phenomena in Interacting Bosonic Systems: Josephson flow in Liquid 4He and Multimode Schr¨Odingercat States
    Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states by Tyler James Volkoff A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor K. Birgitta Whaley, Chair Professor Philip L. Geissler Professor Richard E. Packard Fall 2014 Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states Copyright 2014 by Tyler James Volkoff 1 Abstract Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states by Tyler James Volkoff Doctor of Philosophy in Chemistry University of California, Berkeley Professor K. Birgitta Whaley, Chair In this dissertation, I analyze certain problems in the following areas: 1) quantum dynam- ical phenomena in macroscopic systems of interacting, degenerate bosons (Parts II, III, and V), and 2) measures of macroscopicity for a large class of two-branch superposition states in separable Hilbert space (Part IV). Part I serves as an introduction to important concepts recurring in the later Parts. In Part II, a microscopic derivation of the effective action for the relative phase of driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from a (3 + 1)D microscopic model with local U(1) gauge symmetry is presented. The effec- tive theory is applied to the transition from linear to sinusoidal current vs. phase behavior observed in recent experiments on liquid 4He driven through nanoaperture arrays. Part III discusses path-integral Monte Carlo (PIMC) numerical simulations of quantum hydrody- namic properties of reservoirs of He II communicating through simple nanoaperture arrays.
    [Show full text]
  • The Mechanics of the Fermionic and Bosonic Fields: an Introduction to the Standard Model and Particle Physics
    The Mechanics of the Fermionic and Bosonic Fields: An Introduction to the Standard Model and Particle Physics Evan McCarthy Phys. 460: Seminar in Physics, Spring 2014 Aug. 27,! 2014 1.Introduction 2.The Standard Model of Particle Physics 2.1.The Standard Model Lagrangian 2.2.Gauge Invariance 3.Mechanics of the Fermionic Field 3.1.Fermi-Dirac Statistics 3.2.Fermion Spinor Field 4.Mechanics of the Bosonic Field 4.1.Spin-Statistics Theorem 4.2.Bose Einstein Statistics !5.Conclusion ! 1. Introduction While Quantum Field Theory (QFT) is a remarkably successful tool of quantum particle physics, it is not used as a strictly predictive model. Rather, it is used as a framework within which predictive models - such as the Standard Model of particle physics (SM) - may operate. The overarching success of QFT lends it the ability to mathematically unify three of the four forces of nature, namely, the strong and weak nuclear forces, and electromagnetism. Recently substantiated further by the prediction and discovery of the Higgs boson, the SM has proven to be an extraordinarily proficient predictive model for all the subatomic particles and forces. The question remains, what is to be done with gravity - the fourth force of nature? Within the framework of QFT theoreticians have predicted the existence of yet another boson called the graviton. For this reason QFT has a very attractive allure, despite its limitations. According to !1 QFT the gravitational force is attributed to the interaction between two gravitons, however when applying the equations of General Relativity (GR) the force between two gravitons becomes infinite! Results like this are nonsensical and must be resolved for the theory to stand.
    [Show full text]
  • Introduction to Abelian and Non-Abelian Anyons
    Introduction to abelian and non-abelian anyons Sumathi Rao Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India. In this set of lectures, we will start with a brief pedagogical introduction to abelian anyons and their properties. This will essentially cover the background material with an introduction to basic concepts in anyon physics, fractional statistics, braid groups and abelian anyons. The next topic that we will study is a specific exactly solvable model, called the toric code model, whose excitations have (mutual) anyon statistics. Then we will go on to discuss non-abelian anyons, where we will use the one dimensional Kitaev model as a prototypical example to produce Majorana modes at the edge. We will then explicitly derive the non-abelian unitary matrices under exchange of these Majorana modes. PACS numbers: I. INTRODUCTION The first question that one needs to answer is why we are interested in anyons1. Well, they are new kinds of excitations which go beyond the usual fermionic or bosonic modes of excitations, so in that sense they are like new toys to play with! But it is not just that they are theoretical constructs - in fact, quasi-particle excitations have been seen in the fractional quantum Hall (FQH) systems, which seem to obey these new kind of statistics2. Also, in the last decade or so, it has been realised that if particles obeying non-abelian statistics could be created, they would play an extremely important role in quantum computation3. So in the current scenario, it is clear that understanding the basic notion of exchange statistics is extremely important.
    [Show full text]
  • Fermion Condensation and Gapped Domain Walls in Topological Orders
    Fermion Condensation and Gapped Domain Walls in Topological Orders Yidun Wan1,2, ∗ and Chenjie Wang2, † 1Department of Physics and Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China 2Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada (Dated: September 12, 2018) We propose the concept of fermion condensation in bosonic topological orders in two spatial dimensions. Fermion condensation can be realized as gapped domain walls between bosonic and fermionic topological orders, which are thought of as a real-space phase transitions from bosonic to fermionic topological orders. This generalizes the previous idea of understanding boson conden- sation as gapped domain walls between bosonic topological orders. We show that generic fermion condensation obeys a Hierarchy Principle by which it can be decomposed into a boson condensation followed by a minimal fermion condensation, which involves a single self-fermion that is its own anti-particle and has unit quantum dimension. We then develop the rules of minimal fermion con- densation, which together with the known rules of boson condensation, provides a full set of rules of fermion condensation. Our studies point to an exact mapping between the Hilbert spaces of a bosonic topological order and a fermionic topological order that share a gapped domain wall. PACS numbers: 11.15.-q, 71.10.-w, 05.30.Pr, 71.10.Hf, 02.10.Kn, 02.20.Uw I. INTRODUCTION to condensing self-bosons in a bTO. A particularly inter- esting question is: Is it possible to condense self-fermions, A gapped quantum matter phase with intrinsic topo- which have nontrivial braiding statistics with some other logical order has topologically protected ground state anyons in the system? At a first glance, fermion conden- degeneracy and anyon excitations1,2 on which quantum sation might be counterintuitive; however, in this work, computation may be realized via anyon braiding, which is we propose a physical context in which fermion conden- robust against errors due to local perturbation3,4.
    [Show full text]
  • 25 Years of Quantum Hall Effect
    S´eminaire Poincar´e2 (2004) 1 – 16 S´eminaire Poincar´e 25 Years of Quantum Hall Effect (QHE) A Personal View on the Discovery, Physics and Applications of this Quantum Effect Klaus von Klitzing Max-Planck-Institut f¨ur Festk¨orperforschung Heisenbergstr. 1 D-70569 Stuttgart Germany 1 Historical Aspects The birthday of the quantum Hall effect (QHE) can be fixed very accurately. It was the night of the 4th to the 5th of February 1980 at around 2 a.m. during an experiment at the High Magnetic Field Laboratory in Grenoble. The research topic included the characterization of the electronic transport of silicon field effect transistors. How can one improve the mobility of these devices? Which scattering processes (surface roughness, interface charges, impurities etc.) dominate the motion of the electrons in the very thin layer of only a few nanometers at the interface between silicon and silicon dioxide? For this research, Dr. Dorda (Siemens AG) and Dr. Pepper (Plessey Company) provided specially designed devices (Hall devices) as shown in Fig.1, which allow direct measurements of the resistivity tensor. Figure 1: Typical silicon MOSFET device used for measurements of the xx- and xy-components of the resistivity tensor. For a fixed source-drain current between the contacts S and D, the potential drops between the probes P − P and H − H are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage increases the carrier density below the gate. For the experiments, low temperatures (typically 4.2 K) were used in order to suppress dis- turbing scattering processes originating from electron-phonon interactions.
    [Show full text]
  • Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect
    PHYSICAL REVIEW X 3, 011016 (2013) Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect Ashvin Vishwanath Department of Physics, University of California, Berkeley, California 94720, USA Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, USA T. Senthil Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 4 October 2012; revised manuscript received 31 December 2012; published 28 February 2013) We discuss physical properties of ‘‘integer’’ topological phases of bosons in D ¼ 3 þ 1 dimensions, protected by internal symmetries like time reversal and/or charge conservation. These phases invoke interactions in a fundamental way but do not possess topological order; they are bosonic analogs of free- fermion topological insulators and superconductors. While a formal cohomology-based classification of such states was recently discovered, their physical properties remain mysterious. Here, we develop a field-theoretic description of several of these states and show that they possess unusual surface states, which, if gapped, must either break the underlying symmetry or develop topological order. In the latter case, symmetries are implemented in a way that is forbidden in a strictly two-dimensional theory. While these phases are the usual fate of the surface states, exotic gapless states can also be realized. For example, tuning parameters can naturally lead to a deconfined quantum critical point or, in other situations, to a fully symmetric vortex metal phase. We discuss cases where the topological phases are characterized by a quantized magnetoelectric response , which, somewhat surprisingly, is an odd multiple of 2.Two different surface theories are shown to capture these phenomena: The first is a nonlinear sigma model with a topological term.
    [Show full text]
  • SKYRMIONS and the V = 1 QUANTUM HALL FERROMAGNET
    o 9 (1997 ACA YSICA OŁOICA A Νo oceeigs o e I Ieaioa Scoo o Semicoucig Comous asowiec 1997 SKYMIOS A E v = 1 QUAUM A EOMAGE M MAA GOEG e o ysics oso Uiesiy oso MA 15 USA EIE A K WES e aoaoies uce ecoogies Muay i 797 USA ece eeimea a eoeica iesigaios ae esue i a si i ou uesaig o e v = 1 quaum a sae ee ow eiss a wea o eiece a e eciaio ga a e esuig quasiaice secum a v = 1 ae ue prdntl o e eomageic may-oy ecage ieacio A gea aiey o eeimeay osee coeaios a v = 1 nnt e icooae io a euaie easio aou e sige-aice moe a sceme og oug o escie e iega qua- um a eec a iig aco 1 eoiss ow ee o e v = 1 sae as e quaum a eomage I is ae we eiew ece eoei- ca a eeimea ogess a eai ou ow oica iesigaios o e v = 1 quaum a egime e ecique o mageo-asoio sec- oscoy as oe o e oweu a oe o e occuacy o e owes aau ee i e egime o 7 v 13 aou e si ga Aiioay we ae eome simuaeous measuemes o e asoio oou- miescece a ooumiescece eciaio seca o e v = 1 sae i oe o euciae e oe o ecioic a eaaio eecs i oica secoscoy i e quaum a egime ACS umes 73Ηm 7-w 73Mí 717Gm 73 1 Ioucio Some iee yeas ae e iscoey o e acioa quaum a e- ec [1] e suy o woimesioa eeco sysems (ES coie o e owes aau ee ( coiues o e a eie aoaoy o e iesiga- io o may-oy ieacios e oieaio o eeimeay osee ac- ioa a saes [] e iscoey o comosie emios a a-iig [3] a e ossiiiy o eoic si-uoaie acioa gou saes [] ae u a ew eames o e aomaies a coiue o caege ou uesaig o sog eeco—eeco coeaios i e eeme mageic quaum imi ecey e v = 1 quaum a sae a egio oug o e we-uesoo wii e (1 622 M.J.
    [Show full text]
  • 8.1. Spin & Statistics
    8.1. Spin & Statistics Ref: A.Khare,”Fractional Statistics & Quantum Theory”, 1997, Chap.2. Anyons = Particles obeying fractional statistics. Particle statistics is determined by the phase factor eiα picked up by the wave function under the interchange of the positions of any pair of (identical) particles in the system. Before the discovery of the anyons, this particle interchange (or exchange) was treated as the permutation of particle labels. Let P be the operator for this interchange. P2 =I → e2iα =1 ∴ eiα = ±1 i.e., α=0,π Thus, there’re only 2 kinds of statistics, α=0(π) for Bosons (Fermions) obeying Bose-Einstein (Fermi-Dirac) statistics. Pauli’s spin-statistics theorem then relates particle spin with statistics, namely, bosons (fermions) are particles with integer (half-integer) spin. To account for the anyons, particle exchange is re-defined as an observable adiabatic (constant energy) process of physically interchanging particles. ( This is in line with the quantum philosophy that only observables are physically relevant. ) As will be shown later, the new definition does not affect statistics in 3-D space. However, for particles in 2-D space, α can be any (real) value; hence anyons. The converse of the spin-statistic theorem then implies arbitrary spin for 2-D particles. Quantization of S in 3-D See M.Alonso, H.Valk, “Quantum Mechanics: Principles & Applications”, 1973, §6.2. In 3-D, the (spin) angular momentum S has 3 non-commuting components satisfying S i,S j =iℏε i j k Sk 2 & S ,S i=0 2 This means a state can be the simultaneous eigenstate of S & at most one Si.
    [Show full text]
  • Many Particle Orbits – Statistics and Second Quantization
    H. Kleinert, PATH INTEGRALS March 24, 2013 (/home/kleinert/kleinert/books/pathis/pthic7.tex) Mirum, quod divina natura dedit agros It’s wonderful that divine nature has given us fields Varro (116 BC–27BC) 7 Many Particle Orbits – Statistics and Second Quantization Realistic physical systems usually contain groups of identical particles such as spe- cific atoms or electrons. Focusing on a single group, we shall label their orbits by x(ν)(t) with ν =1, 2, 3, . , N. Their Hamiltonian is invariant under the group of all N! permutations of the orbital indices ν. Their Schr¨odinger wave functions can then be classified according to the irreducible representations of the permutation group. Not all possible representations occur in nature. In more than two space dimen- sions, there exists a superselection rule, whose origin is yet to be explained, which eliminates all complicated representations and allows only for the two simplest ones to be realized: those with complete symmetry and those with complete antisymme- try. Particles which appear always with symmetric wave functions are called bosons. They all carry an integer-valued spin. Particles with antisymmetric wave functions are called fermions1 and carry a spin whose value is half-integer. The symmetric and antisymmetric wave functions give rise to the characteristic statistical behavior of fermions and bosons. Electrons, for example, being spin-1/2 particles, appear only in antisymmetric wave functions. The antisymmetry is the origin of the famous Pauli exclusion principle, allowing only a single particle of a definite spin orientation in a quantum state, which is the principal reason for the existence of the periodic system of elements, and thus of matter in general.
    [Show full text]
  • Equation of State of an Anyon Gas in a Strong Magnetic Field
    EQUATION OF STATE OF AN ANYON GAS IN A STRONG MAGNETIC FIELD Alain DASNIÊRES de VEIGY and Stéphane OUVRY ' Division de Physique Théorique 2, IPN, Orsay Fr-91406 Abstract: The statistical mechanics of an anyon gas in a magnetic field is addressed. An har- monic regulator is used to define a proper thermodynamic limit. When the magnetic field is sufficiently strong, only exact JV-aiiyon groundstates, where anyons occupy the lowest Landau level, contribute to the equation of state. Particular attention is paid to the inter- \ val of definition of the statistical parameter a 6 [-1,0] where a gap exists. Interestingly J enough, one finds that at the critical filling v = — 1 /a where the pressure diverges, the t external magnetic field is entirely screened by the flux tubes carried by the anyons. PACS numbers: 03.65.-w, 05.30.-d, ll.10.-z, 05.70.Ce IPN0/TH 93-16 (APRIL 1993) "f* ' and LPTPE, Tour 16, Université Paris 6 / electronic e-mail: OVVRYeFRCPNlI I * Unité de Recherche des Univenitéi Paria 11 et Paria 6 associée au CNRS y -Introduction : It is now widely accepted that anyons [1] should play a role in the Quantum Hall effect [2]. In the case of the Fractional Quantum Hall effect, Laughlin wavefunctions for the ground state of N electrons in a strong magnetic field with filling v - l/m provide an interesting compromise between Fermi degeneracy and Coulomb correlations. A physical interpretation is that at the critical fractional filling electrons carry exactly m quanta of flux <j>o (m odd), m - 1 quanta screening the external applied field.
    [Show full text]
  • Clifford Algebras, Multipartite Systems and Gauge Theory Gravity
    Mathematical Phyiscs Clifford Algebras, Multipartite Systems and Gauge Theory Gravity Marco A. S. Trindadea Eric Pintob Sergio Floquetc aColegiado de Física Departamento de Ciências Exatas e da Terra Universidade do Estado da Bahia, Salvador, BA, Brazil bInstituto de Física Universidade Federal da Bahia Salvador, BA, Brazil cColegiado de Engenharia Civil Universidade Federal do Vale do São Francisco Juazeiro, BA, Brazil. E-mail: [email protected], [email protected], [email protected] Abstract: In this paper we present a multipartite formulation of gauge theory gravity based on the formalism of space-time algebra for gravitation developed by Lasenby and Do- ran (Lasenby, A. N., Doran, C. J. L, and Gull, S.F.: Gravity, gauge theories and geometric algebra. Phil. Trans. R. Soc. Lond. A, 582, 356:487 (1998)). We associate the gauge fields with description of fermionic and bosonic states using the generalized graded tensor product. Einstein’s equations are deduced from the graded projections and an algebraic Hopf-like structure naturally emerges from formalism. A connection with the theory of the quantum information is performed through the minimal left ideals and entangled qubits are derived. In addition applications to black holes physics and standard model are outlined. arXiv:1807.09587v2 [physics.gen-ph] 16 Nov 2018 1Corresponding author. Contents 1 Introduction1 2 General formulation and Einstein field equations3 3 Qubits 9 4 Black holes background 10 5 Standard model 11 6 Conclusions 15 7 Acknowledgements 16 1 Introduction This work is dedicated to the memory of professor Waldyr Alves Rodrigues Jr., whose contributions in the field of mathematical physics were of great prominence, especially in the study of clifford algebras and their applications to physics [1].
    [Show full text]