Classical Electrodynamics Part II

Total Page:16

File Type:pdf, Size:1020Kb

Classical Electrodynamics Part II Classical Electrodynamics Part II by Robert G. Brown Duke University Physics Department Durham, NC 27708-0305 [email protected] Acknowledgements I’d like to dedicate these notes to the memory of Larry C. Biedenharn. Larry was my Ph.D. advisor at Duke and he generously loaned me his (mostly handwritten or crudely typed) lecture notes when in the natural course of events I came to teach Electrodynamics for the first time. Most of the notes have been completely rewritten, typeset with latex, changed to emphasize the things that I think are important, but there are still important fragments that are more or less pure Biedenharn, in particular the lovely exposition of vector spherical harmonics and Hansen solutions (which a student will very likely be unable to find anywhere else). I’d also like to acknowledge and thank my many colleagues at Duke and elsewhere who have contributed ideas, criticisms, or encouragement to me over the years, in particular Mikael Ciftan (my “other advisor” for my Ph.D. and beyond), Richard Palmer and Ronen Plesser. Copyright Notice Copyright Robert G. Brown 1993, 2007 Notice This set of “lecture notes” is designed to support my personal teaching ac- tivities at Duke University, in particular teaching its Physics 318/319 series (graduate level Classical Electrodynamics) using J. D. Jackson’s Classical Elec- trodynamics as a primary text. However, the notes may be useful to students studying from other texts or even as a standalone text in its own right. It is freely available in its entirety online at http://www.phy.duke.edu/ rgb/Class/Electrodynamics.php ∼ as well as through Lulu’s “book previewer” at http://www.lulu.com/content/1144184 (where one can also purchase an inexpensive clean download of the book PDF in Crown Quarto size – 7.444 9.681 inch pages – that can be read using any PDF browser or locally printed).× In this way the text can be used by students all over the world, where each student can pay (or not) according to their means. Nevertheless, I am hoping that students who truly find this work useful will purchase either the PDF download or the current paper snapshot, if only to help subsidize me while I continue to write more inexpensive textbooks in physics or other subjects. These are real lecture notes, and they therefore have errors great and small, missing figures (that I usually draw from memory in class), and they cover and omit topics according to my own view of what is or isn’t important to cover in a one-semester course. Expect them to change without warning as I add content or correct errors. Purchasers of a paper version should be aware of its imperfection and be prepared to either live with it or mark up their own copies with corrections or additions as need be in the lecture note spirit, as I do mine. The text has generous margins, is widely spaced, and contains scattered blank pages for students’ or instructors’ own use to facilitate this. I cherish good-hearted communication from students or other instructors pointing out errors or suggesting new content (and have in the past done my best to implement many such corrections or suggestions). Contents Preface iii 0.1 The Interplay of Physics and Mathematics ............................. vii Links 3 0.1 PersonalContactInformation . 3 0.2 UsefulTextsandWebReferences . 3 I Mathematical Physics 5 1 Mathematical Prelude 7 2 Numbers 9 2.1 RealNumbers............................. 9 2.2 ComplexNumbers .......................... 10 3 Vectors and Vector Products 15 3.1 ScalarsandVectors.......................... 16 3.2 TheScalar,orDotProduct . 16 3.2.1 TheLawofCosines ..................... 18 3.3 TheVector,orCrossProduct . 18 3.4 TripleProductsofVectors. 20 3.5 δij and ǫijk .............................. 21 3.5.1 The Kronecker Delta Function and the Einstein Summa- tionConvention ....................... 21 3.5.2 The Levi-Civita Tensor . 22 3.5.3 The Epsilon-Delta Identity . 22 4 Tensors 25 4.1 The Dyad and N-adicForms .................... 25 4.2 CoordinateTransformations. 28 i 5 Group Theory 33 5.0.1 Subgroups........................... 34 5.0.2 Abelian (Commutative) Groups . 34 5.0.3 Lie(Continuous)Groups . 35 5.1 CoordinateTransformationGroups . 35 5.1.1 TheTranslationGroup . 36 5.1.2 TheRotationGroup ..................... 36 5.1.3 TheInversionGroup.. .. .. .. .. .. .. .. .. 37 6 Scalar and Vector Calculus 39 6.1 Scalar Differentiation . 40 6.2 VectorDifferentiation ........................ 41 6.2.1 The Partial Derivative . 41 6.3 TheGradient ............................. 42 6.4 VectorDerivatives .......................... 42 6.4.1 TheSumRules........................ 43 6.4.2 TheProductRules...................... 43 6.5 SecondDerivatives .......................... 44 6.6 ScalarIntegration........................... 45 6.6.1 TheFundamentalTheoremofCalculus . 45 6.7 VectorIntegration .......................... 45 6.8 The Fundamental Theorem(s) of Vector Calculus . 46 6.8.1 AScalarFunctionofVectorCoordinates. 46 6.8.2 TheDivergenceTheorem . 47 6.8.3 Stokes’Theorem ....................... 48 6.9 IntegrationbyParts ......................... 49 6.9.1 ScalarIntegrationbyParts . 49 6.9.2 VectorIntegrationbyParts . 49 6.10 IntegrationByPartsinElectrodynamics . 51 7 Coordinate Systems 55 7.1 Cartesian ............................... 57 7.2 SphericalPolar ............................ 58 7.3 Cylindrical .............................. 60 8 The Dirac δ-Function 63 9 Math References 67 II Non-Relativistic Electrodynamics 69 10 Maxwell’s Equations 71 10.1 TheMaxwellDisplacementCurrent. 71 10.2Potentials ............................... 75 10.2.1 GaugeTransformations . 77 10.2.2 TheLorenzGauge .. .. .. .. .. .. .. .. .. 79 10.2.3 TheCoulomborTransverseGauge . 81 10.3 Poynting’sTheorem,WorkandEnergy. 84 10.4 MagneticMonopoles . .. .. .. .. .. .. .. .. .. .. 88 10.4.1 DiracMonopoles ....................... 89 11 Plane Waves 93 11.1 TheFreeSpaceWaveEquation . 93 11.1.1 Maxwell’s Equations . 93 11.1.2 TheWaveEquation . .. .. .. .. .. .. .. .. 95 11.1.3 PlaneWaves ......................... 96 11.1.4 Polarization of Plane Waves . 99 11.2 Reflection and Refraction at a PlaneInterface ............................ 101 11.2.1 Kinematics and Snell’s Law . 102 11.2.2 Dynamics and Reflection/Refraction . 103 11.3Dispersion............................... 110 11.3.1 StaticCase .......................... 110 11.3.2 DynamicCase ........................ 112 11.3.3 ThingstoNote ........................ 113 11.3.4 Anomalous Dispersion, and Resonant Absorption . 114 11.3.5 Attenuation by a complex ǫ .................115 11.3.6 LowFrequencyBehavior. 116 11.3.7 High Frequency Limit; Plasma Frequency . 117 11.4 Penetration of Waves Into a Conductor – Skin Depth . 119 11.4.1 Wave Attenuation in Two Limits . 119 11.5 Kramers-KronigRelations . 121 11.6 PlaneWavesAssignment. 123 12 Wave Guides 125 12.1 Boundary Conditions at a Conducting Surface: Skin Depth . 125 12.2 Mutilated Maxwell’s Equations (MMEs) . 131 12.3TEMWaves.............................. 134 12.4TEandTMWaves.......................... 135 12.4.1 TMWaves .......................... 137 12.4.2 SummaryofTE/TMwaves . 138 12.5 RectangularWaveguides . 139 12.6 ResonantCavities . .. .. .. .. .. .. .. .. .. .. 140 12.7 WaveGuidesAssignment . 141 13 Radiation 143 13.1 Maxwell’s Equations, Yet Again . 143 13.1.1 Quickie Review of Chapter 6 . 143 13.2 Green’sFunctionsfortheWaveEquation . 145 13.2.1 PoissonEquation. 147 13.2.2 Green’s Function for the Helmholtz Equation . 147 13.2.3 Green’s Function for the Wave Equation . 149 13.3 SimpleRadiatingSystems . 152 13.3.1 TheZones........................... 153 13.3.2 TheNearZone ........................ 154 13.3.3 TheFarZone......................... 155 13.4 TheHomogeneousHelmholtzEquation. 156 13.4.1 Properties of Spherical Bessel Functions . 157 13.4.2 JL(r), NL(r), and HL±(r) ..................159 13.4.3 GeneralSolutionstotheHHE. 159 13.4.4 Green’s Functions and Free Spherical Waves. 160 13.5 Electric Dipole Radiation . 161 13.5.1 Radiation outside the source . 162 13.5.2 Dipole Radiation .....................162 13.6 Magnetic Dipole and Electric Quadrupole Radiation Fields . 166 13.6.1 Magnetic Dipole Radiation . 167 13.6.2 Electric Quadrupole Radiation . 168 13.7 RadiationAssignment . 171 14 Vector Multipoles 175 14.1 Angular momentum and spherical harmonics . 175 14.2 Magnetic and Electric Multipoles Revisited . 177 14.3 Vector Spherical Harmonics and Multipoles . 179 15 The Hansen Multipoles 187 15.1 TheHansenMultipoles . 187 15.1.1 The Basic Solutions . 187 15.1.2 Their Significant Properties . 188 15.1.3 Explicit Forms . 188 15.2 Green’s Functions for the Vector Helmholtz Equation . 189 15.3 Multipolar Radiation, revisited . 190 15.4 ALinearCenter-FedHalf-WaveAntenna. 197 15.5 Connection to Old (Approximate) Multipole Moments . 200 15.6 AngularMomentumFlux . 202 15.7 Concluding Remarks About Multipoles . 205 15.8 TableofPropertiesofVectorHarmonics . 206 16 Optical Scattering 209 16.1 Radiation Reaction of a Polarizable Medium . 209 16.2 Scattering from a Small Dielectric Sphere . 212 16.3 ScatteringfromaSmallConducting Sphere . 217 16.4 ManyScatterers ........................... 220 III Relativistic Electrodynamics 225 17 Special Relativity 227 17.1 Einstein’sPostulates . 227 17.2 The ElementaryLorentzTransformation . 228 17.34-Vectors ............................... 232 17.4 Proper Time and Time Dilation . 237 17.5 Addition of Velocities . 238 17.6 RelativisticEnergyandMomentum . 240 18 The Lorentz Group 245 18.1 TheGeometryofSpace–Time . 245 18.2 Tensorsin4Dimensions . 247
Recommended publications
  • Quaternions and Cli Ord Geometric Algebras
    Quaternions and Cliord Geometric Algebras Robert Benjamin Easter First Draft Edition (v1) (c) copyright 2015, Robert Benjamin Easter, all rights reserved. Preface As a rst rough draft that has been put together very quickly, this book is likely to contain errata and disorganization. The references list and inline citations are very incompete, so the reader should search around for more references. I do not claim to be the inventor of any of the mathematics found here. However, some parts of this book may be considered new in some sense and were in small parts my own original research. Much of the contents was originally written by me as contributions to a web encyclopedia project just for fun, but for various reasons was inappropriate in an encyclopedic volume. I did not originally intend to write this book. This is not a dissertation, nor did its development receive any funding or proper peer review. I oer this free book to the public, such as it is, in the hope it could be helpful to an interested reader. June 19, 2015 - Robert B. Easter. (v1) [email protected] 3 Table of contents Preface . 3 List of gures . 9 1 Quaternion Algebra . 11 1.1 The Quaternion Formula . 11 1.2 The Scalar and Vector Parts . 15 1.3 The Quaternion Product . 16 1.4 The Dot Product . 16 1.5 The Cross Product . 17 1.6 Conjugates . 18 1.7 Tensor or Magnitude . 20 1.8 Versors . 20 1.9 Biradials . 22 1.10 Quaternion Identities . 23 1.11 The Biradial b/a .
    [Show full text]
  • Package 'Einsum'
    Package ‘einsum’ May 15, 2021 Type Package Title Einstein Summation Version 0.1.0 Description The summation notation suggested by Einstein (1916) <doi:10.1002/andp.19163540702> is a concise mathematical notation that implicitly sums over repeated indices of n- dimensional arrays. Many ordinary matrix operations (e.g. transpose, matrix multiplication, scalar product, 'diag()', trace etc.) can be written using Einstein notation. The notation is particularly convenient for expressing operations on arrays with more than two dimensions because the respective operators ('tensor products') might not have a standardized name. License MIT + file LICENSE Encoding UTF-8 SystemRequirements C++11 Suggests testthat, covr RdMacros mathjaxr RoxygenNote 7.1.1 LinkingTo Rcpp Imports Rcpp, glue, mathjaxr R topics documented: einsum . .2 einsum_package . .3 Index 5 1 2 einsum einsum Einstein Summation Description Einstein summation is a convenient and concise notation for operations on n-dimensional arrays. Usage einsum(equation_string, ...) einsum_generator(equation_string, compile_function = TRUE) Arguments equation_string a string in Einstein notation where arrays are separated by ’,’ and the result is separated by ’->’. For example "ij,jk->ik" corresponds to a standard matrix multiplication. Whitespace inside the equation_string is ignored. Unlike the equivalent functions in Python, einsum() only supports the explicit mode. This means that the equation_string must contain ’->’. ... the arrays that are combined. All arguments are converted to arrays with
    [Show full text]
  • 1 Parity 2 Time Reversal
    Even Odd Symmetry Lecture 9 1 Parity The normal modes of a string have either even or odd symmetry. This also occurs for stationary states in Quantum Mechanics. The transformation is called partiy. We previously found for the harmonic oscillator that there were 2 distinct types of wave function solutions characterized by the selection of the starting integer in their series representation. This selection produced a series in odd or even powers of the coordiante so that the wave function was either odd or even upon reflections about the origin, x = 0. Since the potential energy function depends on the square of the position, x2, the energy eignevalue was always positive and independent of whether the eigenfunctions were odd or even under reflection. In 1-D parity is the symmetry operation, x → −x. In 3-D the strong interaction is invarient under the symmetry of parity. ~r → −~r Parity is a mirror reflection plus a rotation of 180◦, and transforms a right-handed coordinate system into a left-handed one. Our Macroscopic world is clearly “handed”, but “handedness” in fundamental interactions is more involved. Vectors (tensors of rank 1), as illustrated in the definition above, change sign under Parity. Scalars (tensors of rank 0) do not. One can then construct, using tensor algebra, new tensors which reduce the tensor rank and/or change the symmetry of the tensor. Thus a dual of a symmetric tensor of rank 2 is a pseudovector (cross product of two vectors), and a scalar product of a pseudovector and a vector creates a pseudoscalar. We will construct bilinear forms below which have these rotational and reflection char- acteristics.
    [Show full text]
  • DERIVATIONS and PROJECTIONS on JORDAN TRIPLES an Introduction to Nonassociative Algebra, Continuous Cohomology, and Quantum Functional Analysis
    DERIVATIONS AND PROJECTIONS ON JORDAN TRIPLES An introduction to nonassociative algebra, continuous cohomology, and quantum functional analysis Bernard Russo July 29, 2014 This paper is an elaborated version of the material presented by the author in a three hour minicourse at V International Course of Mathematical Analysis in Andalusia, at Almeria, Spain September 12-16, 2011. The author wishes to thank the scientific committee for the opportunity to present the course and to the organizing committee for their hospitality. The author also personally thanks Antonio Peralta for his collegiality and encouragement. The minicourse on which this paper is based had its genesis in a series of talks the author had given to undergraduates at Fullerton College in California. I thank my former student Dana Clahane for his initiative in running the remarkable undergraduate research program at Fullerton College of which the seminar series is a part. With their knowledge only of the product rule for differentiation as a starting point, these enthusiastic students were introduced to some aspects of the esoteric subject of non associative algebra, including triple systems as well as algebras. Slides of these talks and of the minicourse lectures, as well as other related material, can be found at the author's website (www.math.uci.edu/∼brusso). Conversely, these undergraduate talks were motivated by the author's past and recent joint works on derivations of Jordan triples ([116],[117],[200]), which are among the many results discussed here. Part I (Derivations) is devoted to an exposition of the properties of derivations on various algebras and triple systems in finite and infinite dimensions, the primary questions addressed being whether the derivation is automatically continuous and to what extent it is an inner derivation.
    [Show full text]
  • Notes on Manifolds
    Notes on Manifolds Justin H. Le Department of Electrical & Computer Engineering University of Nevada, Las Vegas [email protected] August 3, 2016 1 Multilinear maps A tensor T of order r can be expressed as the tensor product of r vectors: T = u1 ⊗ u2 ⊗ ::: ⊗ ur (1) We herein fix r = 3 whenever it eases exposition. Recall that a vector u 2 U can be expressed as the combination of the basis vectors of U. Transform these basis vectors with a matrix A, and if the resulting vector u0 is equivalent to uA, then the components of u are said to be covariant. If u0 = A−1u, i.e., the vector changes inversely with the change of basis, then the components of u are contravariant. By Einstein notation, we index the covariant components of a tensor in subscript and the contravariant components in superscript. Just as the components of a vector u can be indexed by an integer i (as in ui), tensor components can be indexed as Tijk. Additionally, as we can view a matrix to be a linear map M : U ! V from one finite-dimensional vector space to another, we can consider a tensor to be multilinear map T : V ∗r × V s ! R, where V s denotes the s-th-order Cartesian product of vector space V with itself and likewise for its algebraic dual space V ∗. In this sense, a tensor maps an ordered sequence of vectors to one of its (scalar) components. Just as a linear map satisfies M(a1u1 + a2u2) = a1M(u1) + a2M(u2), we call an r-th-order tensor multilinear if it satisfies T (u1; : : : ; a1v1 + a2v2; : : : ; ur) = a1T (u1; : : : ; v1; : : : ; ur) + a2T (u1; : : : ; v2; : : : ; ur); (2) for scalars a1 and a2.
    [Show full text]
  • The Mechanics of the Fermionic and Bosonic Fields: an Introduction to the Standard Model and Particle Physics
    The Mechanics of the Fermionic and Bosonic Fields: An Introduction to the Standard Model and Particle Physics Evan McCarthy Phys. 460: Seminar in Physics, Spring 2014 Aug. 27,! 2014 1.Introduction 2.The Standard Model of Particle Physics 2.1.The Standard Model Lagrangian 2.2.Gauge Invariance 3.Mechanics of the Fermionic Field 3.1.Fermi-Dirac Statistics 3.2.Fermion Spinor Field 4.Mechanics of the Bosonic Field 4.1.Spin-Statistics Theorem 4.2.Bose Einstein Statistics !5.Conclusion ! 1. Introduction While Quantum Field Theory (QFT) is a remarkably successful tool of quantum particle physics, it is not used as a strictly predictive model. Rather, it is used as a framework within which predictive models - such as the Standard Model of particle physics (SM) - may operate. The overarching success of QFT lends it the ability to mathematically unify three of the four forces of nature, namely, the strong and weak nuclear forces, and electromagnetism. Recently substantiated further by the prediction and discovery of the Higgs boson, the SM has proven to be an extraordinarily proficient predictive model for all the subatomic particles and forces. The question remains, what is to be done with gravity - the fourth force of nature? Within the framework of QFT theoreticians have predicted the existence of yet another boson called the graviton. For this reason QFT has a very attractive allure, despite its limitations. According to !1 QFT the gravitational force is attributed to the interaction between two gravitons, however when applying the equations of General Relativity (GR) the force between two gravitons becomes infinite! Results like this are nonsensical and must be resolved for the theory to stand.
    [Show full text]
  • Symmetry and Tensors Rotations and Tensors
    Symmetry and tensors Rotations and tensors A rotation of a 3-vector is accomplished by an orthogonal transformation. Represented as a matrix, A, we replace each vector, v, by a rotated vector, v0, given by multiplying by A, 0 v = Av In index notation, 0 X vm = Amnvn n Since a rotation must preserve lengths of vectors, we require 02 X 0 0 X 2 v = vmvm = vmvm = v m m Therefore, X X 0 0 vmvm = vmvm m m ! ! X X X = Amnvn Amkvk m n k ! X X = AmnAmk vnvk k;n m Since xn is arbitrary, this is true if and only if X AmnAmk = δnk m t which we can rewrite using the transpose, Amn = Anm, as X t AnmAmk = δnk m In matrix notation, this is t A A = I where I is the identity matrix. This is equivalent to At = A−1. Multi-index objects such as matrices, Mmn, or the Levi-Civita tensor, "ijk, have definite transformation properties under rotations. We call an object a (rotational) tensor if each index transforms in the same way as a vector. An object with no indices, that is, a function, does not transform at all and is called a scalar. 0 A matrix Mmn is a (second rank) tensor if and only if, when we rotate vectors v to v , its new components are given by 0 X Mmn = AmjAnkMjk jk This is what we expect if we imagine Mmn to be built out of vectors as Mmn = umvn, for example. In the same way, we see that the Levi-Civita tensor transforms as 0 X "ijk = AilAjmAkn"lmn lmn 1 Recall that "ijk, because it is totally antisymmetric, is completely determined by only one of its components, say, "123.
    [Show full text]
  • Multilinear Algebra and Applications July 15, 2014
    Multilinear Algebra and Applications July 15, 2014. Contents Chapter 1. Introduction 1 Chapter 2. Review of Linear Algebra 5 2.1. Vector Spaces and Subspaces 5 2.2. Bases 7 2.3. The Einstein convention 10 2.3.1. Change of bases, revisited 12 2.3.2. The Kronecker delta symbol 13 2.4. Linear Transformations 14 2.4.1. Similar matrices 18 2.5. Eigenbases 19 Chapter 3. Multilinear Forms 23 3.1. Linear Forms 23 3.1.1. Definition, Examples, Dual and Dual Basis 23 3.1.2. Transformation of Linear Forms under a Change of Basis 26 3.2. Bilinear Forms 30 3.2.1. Definition, Examples and Basis 30 3.2.2. Tensor product of two linear forms on V 32 3.2.3. Transformation of Bilinear Forms under a Change of Basis 33 3.3. Multilinear forms 34 3.4. Examples 35 3.4.1. A Bilinear Form 35 3.4.2. A Trilinear Form 36 3.5. Basic Operation on Multilinear Forms 37 Chapter 4. Inner Products 39 4.1. Definitions and First Properties 39 4.1.1. Correspondence Between Inner Products and Symmetric Positive Definite Matrices 40 4.1.1.1. From Inner Products to Symmetric Positive Definite Matrices 42 4.1.1.2. From Symmetric Positive Definite Matrices to Inner Products 42 4.1.2. Orthonormal Basis 42 4.2. Reciprocal Basis 46 4.2.1. Properties of Reciprocal Bases 48 4.2.2. Change of basis from a basis to its reciprocal basis g 50 B B III IV CONTENTS 4.2.3.
    [Show full text]
  • Abstract Tensor Systems As Monoidal Categories
    Abstract Tensor Systems as Monoidal Categories Aleks Kissinger Dedicated to Joachim Lambek on the occasion of his 90th birthday October 31, 2018 Abstract The primary contribution of this paper is to give a formal, categorical treatment to Penrose’s abstract tensor notation, in the context of traced symmetric monoidal categories. To do so, we introduce a typed, sum-free version of an abstract tensor system and demonstrate the construction of its associated category. We then show that the associated category of the free abstract tensor system is in fact the free traced symmetric monoidal category on a monoidal signature. A notable consequence of this result is a simple proof for the soundness and completeness of the diagrammatic language for traced symmetric monoidal categories. 1 Introduction This paper formalises the connection between monoidal categories and the ab- stract index notation developed by Penrose in the 1970s, which has been used by physicists directly, and category theorists implicitly, via the diagrammatic languages for traced symmetric monoidal and compact closed categories. This connection is given as a representation theorem for the free traced symmet- ric monoidal category as a syntactically-defined strict monoidal category whose morphisms are equivalence classes of certain kinds of terms called Einstein ex- pressions. Representation theorems of this kind form a rich history of coherence results for monoidal categories originating in the 1960s [17, 6]. Lambek’s con- arXiv:1308.3586v1 [math.CT] 16 Aug 2013 tribution [15, 16] plays an essential role in this history, providing some of the earliest examples of syntactically-constructed free categories and most of the key ingredients in Kelly and Mac Lane’s proof of the coherence theorem for closed monoidal categories [11].
    [Show full text]
  • Quantum Chromodynamics (QCD) QCD Is the Theory That Describes the Action of the Strong Force
    Quantum chromodynamics (QCD) QCD is the theory that describes the action of the strong force. QCD was constructed in analogy to quantum electrodynamics (QED), the quantum field theory of the electromagnetic force. In QED the electromagnetic interactions of charged particles are described through the emission and subsequent absorption of massless photons (force carriers of QED); such interactions are not possible between uncharged, electrically neutral particles. By analogy with QED, quantum chromodynamics predicts the existence of gluons, which transmit the strong force between particles of matter that carry color, a strong charge. The color charge was introduced in 1964 by Greenberg to resolve spin-statistics contradictions in hadron spectroscopy. In 1965 Nambu and Han introduced the octet of gluons. In 1972, Gell-Mann and Fritzsch, coined the term quantum chromodynamics as the gauge theory of the strong interaction. In particular, they employed the general field theory developed in the 1950s by Yang and Mills, in which the carrier particles of a force can themselves radiate further carrier particles. (This is different from QED, where the photons that carry the electromagnetic force do not radiate further photons.) First, QED Lagrangian… µ ! # 1 µν LQED = ψeiγ "∂µ +ieAµ $ψe − meψeψe − Fµν F 4 µν µ ν ν µ Einstein notation: • F =∂ A −∂ A EM field tensor when an index variable µ • A four potential of the photon field appears twice in a single term, it implies summation µ •γ Dirac 4x4 matrices of that term over all the values of the index
    [Show full text]
  • About Matrices, Tensors and Various Abbrevia- Tions
    About matrices, tensors and various abbrevia- tions The objects we deal with in this course are rather complicated. We therefore use a simplifying notation where at every step as much as possible of this complexity is hidden. Basically this means that objects that are made out of many elements or components. are written without indices as much as possible. We also have several different types of indices present. The ones that show up in this course are: • Dirac-Indices a; b; c • Lorentz indices, both upper and lower µ, ν; ρ • SU(2)L indices i; j; k • SU(3)c indices α; β; γ Towards the right I have written the type of symbols used in this note to denote a particular type of index. The course contains even more, three-vector indices or various others denoting sums over types of quarks and/or leptons. An object is called scalar or singlet if it has no index of a particular type of index, a vector if it has one, a matrix if it has two and a tensor if it has two or more. A vector can also be called a column or row matrix. Examples are b with elements bi: 0 1 b1 B C B b2 C b = (b1; b2; : : : ; bn) b = (b1 b2 ··· bn) b = B . C (1) B . C @ . A bn In the first case is a vector, the second a row matrix and the last a column vector. Objects with two indices are called a matrix or sometimes a tensor and de- noted by 0 1 c11 c12 ··· c1n B C B c21 c22 ··· c2n C c = (cij) = B .
    [Show full text]
  • Darvas, G.: Quaternion/Vector Dual Space Algebras Applied to the Dirac
    Bulletin of the Transilvania University of Bra¸sov • Vol 8(57), No. 1 - 2015 Series III: Mathematics, Informatics, Physics, 27-42 QUATERNION/VECTOR DUAL SPACE ALGEBRAS APPLIED TO THE DIRAC EQUATION AND ITS EXTENSIONS Gy¨orgyDARVAS 1 Comunicated to the conference: Finsler Extensions of Relativity Theory, Brasov, Romania, August 18 - 23, 2014 Abstract The paper re-applies the 64-part algebra discussed by P. Rowlands in a series of (FERT and other) papers in the recent years. It demonstrates that the original introduction of the γ algebra by Dirac to "the quantum the- ory of the electron" can be interpreted with the help of quaternions: both the α matrices and the Pauli (σ) matrices in Dirac's original interpretation can be rewritten in quaternion forms. This allows to construct the Dirac γ matrices in two (quaternion-vector) matrix product representations - in accordance with the double vector algebra introduced by P. Rowlands. The paper attempts to demonstrate that the Dirac equation in its form modified by P. Rowlands, essentially coincides with the original one. The paper shows that one of these representations affects the γ4 and γ5 matrices, but leaves the vector of the Pauli spinors intact; and the other representation leaves the γ matrices intact, while it transforms the spin vector into a quaternion pseudovector. So the paper concludes that the introduction of quaternion formulation in QED does not provide us with additional physical informa- tion. These transformations affect all gauge extensions of the Dirac equation, presented by the author earlier, in a similar way. This is demonstrated by the introduction of an additional parameter (named earlier isotopic field-charge spin) and the application of a so-called tau algebra that governs its invariance transformation.
    [Show full text]