Sycon Ciliatum (Fabricius, 1780)

Total Page:16

File Type:pdf, Size:1020Kb

Sycon Ciliatum (Fabricius, 1780) Sycon ciliatum (Fabricius, 1780) AphiaID: 132251 CILIATED CALCAREOUS SPONGE © Vasco Ferreira / Jul. 13 2013 © Vasco Ferreira v_s_ - iNaturalist.org Sinónimos Scypha ciliata (Fabricius, 1780) Grantia ciliatum (Fabricius, 1870) Scypha ciliata (Fabricius, 1780) Scypha coronata (Ellis & Solander, 1786) Spongia ciliata Fabricius, 1780 Spongia coronata Ellis & Solander, 1786 Sycandra ciliata (Fabricius, 1780) 1 Sycandra ciliata var. lanceolata (Haeckel, 1872) Sycandra ciliata var. ovata (Haeckel, 1872) Sycandra commutatum Haeckel, 1872 Sycandra coronata (Ellis & Solander, 1786) Sycocystis oviformis Haeckel, 1870 Sycodendrum ramosum Haeckel, 1870 Sycon coronatum (Ellis & Solander, 1786) Syconella tubulosum Haeckel, 1870 Sycum giganteum Haeckel, 1870 Sycum lanceolatum Haeckel, 1870 Sycum ovatum Haeckel, 1870 Referências Schelin, D. 2000. “Sycon ciliatum” (On-line), Animal Diversity Web. Accessed March 10, 2019 at https://animaldiversity.org/accounts/Sycon_ciliatum/ Oakley, J.A. 2008. Sycon ciliatum A sponge. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. [cited 10-03-2019]. Available from: https://www.marlin.ac.uk/species/detail/2151 additional source Hayward, P.J.; Ryland, J.S. (Ed.). (1990). The marine fauna of the British Isles and North-West Europe: 1. Introduction and protozoans to arthropods. Clarendon Press: Oxford, UK. ISBN 0-19-857356-1. 627 pp. [details] additional source Integrated Taxonomic Information System (ITIS). , available online at http://www.itis.gov [details] additional source Van Soest, R.W.M. 2001. Porifera, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, 50: pp. 85-103 [details] additional source Borojevic, R.; Cabioch, L.; Lévi, C. 1968. Inventaire de la faune marine de Roscoff. Spongiaires. Cahiers de Biologie Marine 9(1): 1-44., available online at http://www.sb-roscoff.fr/images/stories/sbr/observation/documents/spongiaires.pdf [details] additional source Burton, M. (1930). Norwegian Sponges from the Norman Collection. Proceedings of the Zoological Society of London. 1930 (2): 487-546, pls I-II. [details] additional source Schmidt, O. (1862). Die Spongien des adriatischen Meeres. (Wilhelm Engelmann: Leipzig): i-viii, 1-88, pls 1-7. [details] additional source Stephens, J. 1912. A Biological Survey of Clare Island in the County of Mayo, Ireland and the Adjoining District. Marine Porifera. Proceedings of the Royal Irish Academy 31 (Section 3, Part 59): 1-42, pl. I. [details] 2 additional source Topsent, E. (1891). Voyage de la Goëlette ‘Melita’ aux Canaries et au Sénégal, 1889-1890. Spongiaires. Mémoires de la Société Zoologique de France. 4: 11-15, pl. II. [details] additional source Kelly, M.; Edwards, A.R.; Wilkinson, M.R.; Alvarez, B.; Cook, S. de C.; Bergquist, P.R.; Buckeridge, St J.; Campbell, H.J.; Reiswig, H.M.; Valentine, C.; Vacelet, J. (2009). Phylum Porifera: sponges. in: Gordon, D.P. (Ed.) (2009). New Zealand inventory of biodiversity: 1. Kingdom Animalia: Radiata, Lophotrochozoa, Deuterostomia. pp. 23-46. [details] additional source Scalera-Liaci, L.; Sciscioli, M.; Fiordiponti, F. (1976). Distribuzione dei Poriferi del mar Piccolo di Taronto. Oebalia. 2, 3-19. [details] additional source Trott, T. J. (2004). Cobscook Bay inventory: a historical checklist of marine invertebrates spanning 162 years. Northeastern Naturalist. 11, 261-324., available online at http://www.gulfofmaine.org/kb/files/9793/TROTT-Cobscook%20List.pdf [details] additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France. 307 pp., available online at http://www.vliz.be/imisdocs/publications/145561.pdf [details] additional source Corriero, G. (1989). The sponge fauna from the Stagnone di Marsala (Sicily): taxonomic and ecological observations. Bolletino Museo Istituto Biologia Università Genova. 53: 101-113. [details] additional source Topsent, E. (1892). Contribution à l’étude des Spongiaires de l’Atlantique Nord (Golfe de Gascogne, Terre-Neuve, Açores). Résultats des campagnes scientifiques accomplies par le Prince Albert I. Monaco. 2: 1-165, pls I-XI. [details] additional source Topsent, E.; Olivier, L. (1943). Eponges observées dans les parages de Monaco (fin). Bulletin de l’Institut océanographique, Monaco. 854: 1-12. [details] additional source Rützler, K. (1986). Phylum Porifera (Sponges). Pp. 111-126, in: W. Sterrer (ed.) Marine Fauna and Flora of Bermuda. John Wiley & Sons, New York, i-xxx, 1-742. [details] additional source Burton, M. 1936b. The fishery ground near Alexandria. IX. Sponges. Notes and Memoirs of the Fisheries Research Directorate, Cairo 17: 1-28.[details] additional source Ferrer Hernández, F. (1914). Esponjas del Cantábrico. Trabajos del Museo Nacional de Ciencias Naturales (Zoológica). 14: 1-36. [details] additional source Stephens, J. 1917. Report on the sponges collected off the coasts of Ireland by the dredging expeditions of the Royal Irish Academy and the Royal Dublin Society. Proceedings of the Royal Irish Academy 34 (B): 1-16. [details] additional source Zintzen, V. (2007). Biodiversity of shipwrecks from the Southern Bight of the North Sea. PhD Thesis. Institut Royal des Sciences Naturellles de Belgique/Université Catholique de Louvain: Louvain-la-Neuve. 343 pp. [details] additional source Corriero, G.; Scalera-Liaci, L.; Gristina, M.; Riggio, S.; Mercurio, M. (1997). 3 Composizione tassonomica e distribuzione della fauna e Poriferi e Briozoi in una grotta semisommersa della riserva naturale marina “Isola di Ustica”. Biologia Marina Mediterranea. 4 (1), 34-43. [details] context source (HKRMS) Morton B. & Morton JE. (1983). The sea shore ecology of Hong Kong. Hong Kong: Hong Kong University Press. [details] additional source Solórzano, M.R. (1990). Poríferos del litoral gallego: estudio faunístico, distribución e inventario. Phd Thesis Unversidad de Santiago de Compostela. 1036 pp. [details] additional source Topsent, E. (1891). Spongaires des côtes océaniques de France. Bulletin de la Société Zoologique de France. 6: 125-129. [details] additional source Girard-Descatoire, A.; Castric-Fey, A.; L’Hardy-Halos, M.T. (1995). Inventaire de la Faune et de la Flore sur les fonds rocheux autour de l’île d’Ouessant. Rapport ADMS, Direction Régionale de l’Environnement Bretagne, Conseil Régional de Bretagne, Conseil Général du Finistère, Fonds Européens, Rennes., 148pp. Convention ZNIEFF 94. [details] additional source Ackers, R.G.; Moss, D.; Picton, B.E. (1992). Sponges of the British Isles (‘Sponges V’). A Colour Guide and Working Document. Marine Conservation Society. 1-175. [details] additional source Alander, H. (1942). Sponges from the Swedish west-coast and adjacent waters. Ph.D. Thesis. (University of Lund, H. Struves: Gøteborg). Pp. 1-95, 15 pls. [details] additional source Burton, M. (1931). The Folden Fiord. Report on the sponges collected by Mr. Soot- Ryven in the Folden Fiord in the year 1923. Tromsø Museum Skrifter. 1 (13): 1-8. [details] misapplication Jenkin, C.F. 1908a. The Marine Fauna of Zanzibar and British East Africa, from Collections made by Cyril Crossland, M.A., in the Years 1901 & 1902. The Calcareous Sponges. Proceedings of the Zoological Society of London 1908: 434-456. [details] additional source Van Soest, R.W.M. (2001). Porifera, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels. 50: 85-103. [details] additional source Borojevic, R.; Cabioch, L.; Lévi, C. (1968). Inventaire de la faune marine de Roscoff. Spongiaires. Cahiers de Biologie Marine. 9 (1): 1-44., available online at http://www.sb-roscoff.fr/images/stories/sbr/observation/documents/spongiaires.pdf [details] misapplication Jenkin, C.F. (1908). The Marine Fauna of Zanzibar and British East Africa, from Collections made by Cyril Crossland M.A., in the Years 1901 & 1902, The Calcareous Sponges. Proceedings of the Zoological Society of London. 1908 : 434-456. [details] additional source Burton, M. (1936). The fishery ground near Alexandria. IX. Sponges. Notes and Memoirs of the Fisheries Research Directorate, Cairo. 17: 1-28.[details] additional source Rützler, K. (1986). Phylum Porifera (Sponges). Pp. 111-126, in: W. Sterrer (ed.) Marine Fauna and Flora of Bermuda. John Wiley & Sons, New York, i-xxx, 1-742. [details] additional source Girard-Descatoire, A.; Castric-Fey, A.; L’Hardy-Halos, M.T. (1995). Inventaire de la 4 Faune et de la Flore sur les fonds rocheux autour de l’île d’Ouessant. Rapport ADMS, Direction Régionale de l’Environnement Bretagne, Conseil Régional de Bretagne, Conseil Général du Finistère, Fonds Européens, Rennes., 148pp. Convention ZNIEFF 94. [details] context source (HKRMS) Morton B. & Morton JE. (1983). The sea shore ecology of Hong Kong. Hong Kong: Hong Kong University Press. [details] additional source Tendal, O.S. (1970). De Danske Peary Land Ekspeditioner, I. Sponges from Jørgen Brønlund Fjord, North Greenland. Meddelelser om Grønland. Meddelelser om Grønland. [details] misapplication Borojevic, R. (1967). Spongiaires d’Afrique du
Recommended publications
  • Spicule Formation in Calcareous Sponges: Coordinated Expression
    www.nature.com/scientificreports OPEN Spicule formation in calcareous sponges: Coordinated expression of biomineralization genes and Received: 17 November 2016 Accepted: 02 March 2017 spicule-type specific genes Published: 13 April 2017 Oliver Voigt1, Maja Adamska2, Marcin Adamski2, André Kittelmann1, Lukardis Wencker1 & Gert Wörheide1,3,4 The ability to form mineral structures under biological control is widespread among animals. In several species, specific proteins have been shown to be involved in biomineralization, but it is uncertain how they influence the shape of the growing biomineral and the resulting skeleton. Calcareous sponges are the only sponges that form calcitic spicules, which, based on the number of rays (actines) are distinguished in diactines, triactines and tetractines. Each actine is formed by only two cells, called sclerocytes. Little is known about biomineralization proteins in calcareous sponges, other than that specific carbonic anhydrases (CAs) have been identified, and that uncharacterized Asx-rich proteins have been isolated from calcitic spicules. By RNA-Seq and RNA in situ hybridization (ISH), we identified five additional biomineralization genes inSycon ciliatum: two bicarbonate transporters (BCTs) and three Asx-rich extracellular matrix proteins (ARPs). We show that these biomineralization genes are expressed in a coordinated pattern during spicule formation. Furthermore, two of the ARPs are spicule- type specific for triactines and tetractines (ARP1 orSciTriactinin ) or diactines (ARP2 or SciDiactinin). Our results suggest that spicule formation is controlled by defined temporal and spatial expression of spicule-type specific sets of biomineralization genes. By the process of biomineralization many animal groups produce mineral structures like skeletons, shells and teeth. Biominerals differ in shape considerably from their inorganic mineral counterparts1.
    [Show full text]
  • Review of the Mineralogy of Calcifying Sponges
    Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 12-2013 Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges Abigail M. Smith Jade Berman Marcus M. Key, Jr. Dickinson College David J. Winter Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Paleontology Commons Recommended Citation Smith, Abigail M.; Berman, Jade; Key,, Marcus M. Jr.; and Winter, David J., "Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges" (2013). Dickinson College Faculty Publications. Paper 338. https://scholar.dickinson.edu/faculty_publications/338 This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. © 2013. Licensed under the Creative Commons http://creativecommons.org/licenses/by- nc-nd/4.0/ Elsevier Editorial System(tm) for Palaeogeography, Palaeoclimatology, Palaeoecology Manuscript Draft Manuscript Number: PALAEO7348R1 Title: Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges Article Type: Research Paper Keywords: sponges; Porifera; ocean acidification; calcite; aragonite; skeletal biomineralogy Corresponding Author: Dr. Abigail M Smith, PhD Corresponding Author's Institution: University of Otago First Author: Abigail M Smith, PhD Order of Authors: Abigail M Smith, PhD; Jade Berman, PhD; Marcus M Key Jr, PhD; David J Winter, PhD Abstract: Most marine sponges precipitate silicate skeletal elements, and it has been predicted that they would be among the few "winners" in an acidifying, high-CO2 ocean.
    [Show full text]
  • Belgian Register of Marine Species
    BELGIAN REGISTER OF MARINE SPECIES September 2010 Belgian Register of Marine Species – September 2010 BELGIAN REGISTER OF MARINE SPECIES, COMPILED AND VALIDATED BY THE VLIZ BELGIAN MARINE SPECIES CONSORTIUM VLIZ SPECIAL PUBLICATION 46 SUGGESTED CITATION Leen Vandepitte, Wim Decock & Jan Mees (eds) (2010). Belgian Register of Marine Species, compiled and validated by the VLIZ Belgian Marine Species Consortium. VLIZ Special Publication, 46. Vlaams Instituut voor de Zee (VLIZ): Oostende, Belgium. 78 pp. ISBN 978‐90‐812900‐8‐1. CONTACT INFORMATION Flanders Marine Institute – VLIZ InnovOcean site Wandelaarkaai 7 8400 Oostende Belgium Phone: ++32‐(0)59‐34 21 30 Fax: ++32‐(0)59‐34 21 31 E‐mail: [email protected] or [email protected] ‐ 2 ‐ Belgian Register of Marine Species – September 2010 Content Introduction ......................................................................................................................................... ‐ 5 ‐ Used terminology and definitions ....................................................................................................... ‐ 7 ‐ Belgian Register of Marine Species in numbers .................................................................................. ‐ 9 ‐ Belgian Register of Marine Species ................................................................................................... ‐ 12 ‐ BACTERIA ............................................................................................................................................. ‐ 12 ‐ PROTOZOA ...........................................................................................................................................
    [Show full text]
  • Sponge Fauna in the Sea of Marmara
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 16: 51-59 (2016) DOI: 10.4194/1303-2712-v16_1_06 RESEARCH PAPER Sponge Fauna in the Sea of Marmara Bülent Topaloğlu1,*, Alper Evcen2, Melih Ertan Çınar2 1 Istanbul University, Department of Marine Biology, Faculty of Fisheries, 34131 Vezneciler, İstanbul, Turkey. 2 Ege University, Department of Hydrobiology, Faculty of Fisheries, 35100 Bornova, İzmir, Turkey. * Corresponding Author: Tel.: +90.533 2157727; Fax: +90.512 40379; Received 04 December 2015 E-mail: [email protected] Accepted 08 February 2016 Abstract Sponge species collected along the coasts of the Sea of the Marmara in 2012-2013 were identified. A total of 30 species belonging to 21 families were found, of which four species (Ascandra contorta, Paraleucilla magna, Raspailia (Parasyringella) agnata and Polymastia penicillus) are new records for the eastern Mediterranean, while six species [A. contorta, P. magna, Chalinula renieroides, P. penicillus, R. (P.) agnata and Spongia (Spongia) nitens] are new records for the marine fauna of Turkey and 12 species are new records for the Sea of Marmara. Sponge specimens were generally collected in shallow water, but two species (Thenea muricata and Rhizaxinella elongata) were found at depths deeper than 100 m. One alien species (P. magna) was found at 10 m depth at station K18 (Büyükada). The morphological and distributional features of the species that are new to the Turkish marine fauna are presented. Keywords: Porifera, Benthos, Invertebrate, Turkish Straits System. Marmara Denizi Sünger Faunası Özet Bu çalışmada, Marmara Denizi ve kıyılarında 2012-2013 yılları arasında toplanan Sünger örnekleri tanımlanmıştır.
    [Show full text]
  • Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide
    EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide BASAL METAZOANS Dirk Erpenbeck Ludwig-Maximilians Universität München, Germany Simion Paul and Michaël Manuel Université Pierre et Marie Curie in Paris, France. Paulyn Cartwright University of Kansas USA. Oliver Voigt and Gert Wörheide Ludwig-Maximilians Universität München, Germany Keywords: Metazoa, Porifera, sponges, Placozoa, Cnidaria, anthozoans, jellyfishes, Ctenophora, comb jellies Contents 1. Introduction on ―Basal Metazoans‖ 2. Phylogenetic relationships among non-bilaterian Metazoa 3. Porifera (Sponges) 4. Placozoa 5. Ctenophora (Comb-jellies) 6. Cnidaria 7. Cultural impact and relevance to human welfare Glossary Bibliography Biographical Sketch Summary Basal metazoans comprise the four non-bilaterian animal phyla Porifera (sponges), Cnidaria (anthozoans and jellyfishes), Placozoa (Trichoplax) and Ctenophora (comb jellies). The phylogenetic position of these taxa in the animal tree is pivotal for our understanding of the last common metazoan ancestor and the character evolution all Metazoa,UNESCO-EOLSS but is much debated. Morphological, evolutionary, internal and external phylogenetic aspects of the four phyla are highlighted and discussed. SAMPLE CHAPTERS 1. Introduction on “Basal Metazoans” In many textbooks the term ―lower metazoans‖ still refers to an undefined assemblage of invertebrate phyla, whose phylogenetic relationships were rather undefined. This assemblage may contain both bilaterian and non-bilaterian taxa. Currently, ―Basal Metazoa‖ refers to non-bilaterian animals only, four phyla that lack obvious bilateral symmetry, Porifera, Placozoa, Cnidaria and Ctenophora. ©Encyclopedia of Life Support Systems (EOLSS) EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide These four phyla have classically been known as ―diploblastic‖ Metazoa.
    [Show full text]
  • The Evolution of the Mitochondrial Proteome in Animals
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 The evolution of the mitochondrial proteome in animals Viraj Muthye Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Bioinformatics Commons Recommended Citation Muthye, Viraj, "The evolution of the mitochondrial proteome in animals" (2019). Graduate Theses and Dissertations. 17752. https://lib.dr.iastate.edu/etd/17752 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The evolution of the mitochondrial proteome in animals by Viraj Rajendra Muthye A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Bioinformatics and Computational Biology Program of Study Committee: Dennis Lavrov, Co-major Professor Carolyn Lawrence-Dill, Co-major Professor Karin Dorman Robert Jernigan Iddo Friedberg The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright c Viraj Rajendra Muthye, 2019. All rights reserved. ii DEDICATION To my wife, younger brother, parents and friends for their unconditional support, commitment and encouragement throughout my life iii TABLE OF CONTENTS Page ACKNOWLEDGMENTS .
    [Show full text]
  • Seasearch Annual Report 2016
    ANNUAL REPORT 2016 This report summarises Seasearch activities throughout Britain and Ireland in 2016. It includes a summary of the main surveys undertaken (pages 2-5), reports produced and a summary of the data collected. This includes records of Priority habitats and species, locally important features and nationally scarce and rare species (pages 6-9) and habitats (pages 9- 11). It also includes a summary of the training courses run for volunteer divers (page 12) and information on how Seasearch is organised and the data is managed and made available (page 13). All of the reports referred to may be downloaded from the Seasearch website and the species data may be accessed through the National Biodiversity Network website. More detailed datasets are available on request. Seasearch Surveys 2016 Seasearch continued to target much of its survey activity in existing and proposed marine protected areas. In England 23 new Marine Conservation Zones (MCZs) were designated in January 2016, making a total of 50; four Northern Ireland MCZs, including the site at Waterfoot Bay proposed by Seasearch, were designated in December 2016. The following pages summarise the main surveys undertaken in 2016. They were arranged by Seasearch Coordinators and other volunteers; we would like to thank all of the organisations who supported survey activity at a local level. In addition to the surveys outlined here there were many other dives both organised by Seasearch coordinators and undertaken by individual divers. The map shows the location of all the 2016 dives. Data from all of the surveys has been entered into the Marine Recorder database and can be freely accessed on the National Biodiversity Network website www.nbn.org.uk.
    [Show full text]
  • Description of Key Species Groups in the East Marine Region
    Australian Museum Description of Key Species Groups in the East Marine Region Final Report – September 2007 1 Table of Contents Acronyms........................................................................................................................................ 3 List of Images ................................................................................................................................. 4 Acknowledgements ....................................................................................................................... 5 1 Introduction............................................................................................................................ 6 2 Corals (Scleractinia)............................................................................................................ 12 3 Crustacea ............................................................................................................................. 24 4 Demersal Teleost Fish ........................................................................................................ 54 5 Echinodermata..................................................................................................................... 66 6 Marine Snakes ..................................................................................................................... 80 7 Marine Turtles...................................................................................................................... 95 8 Molluscs ............................................................................................................................
    [Show full text]
  • Porifera, Class Calcarea)
    Molecular Phylogenetic Evaluation of Classification and Scenarios of Character Evolution in Calcareous Sponges (Porifera, Class Calcarea) Oliver Voigt1, Eilika Wu¨ lfing1, Gert Wo¨ rheide1,2,3* 1 Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universita¨tMu¨nchen, Mu¨nchen, Germany, 2 GeoBio-Center LMU, Ludwig-Maximilians-Universita¨t Mu¨nchen, Mu¨nchen, Germany, 3 Bayerische Staatssammlung fu¨r Pala¨ontologie und Geologie, Mu¨nchen, Germany Abstract Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute.
    [Show full text]
  • Phylogeny and Evolutionary Perspective of Opisthokonta Protists
    Phylogeny and evolutionary perspective of Opisthokonta protists Guifré Torruella i Cortés ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Phylum Porifera
    Phylum Porifera Sponges belong to Phylum Porifera (Lat. Porus=pore; ferre=to bear). They are the most primitive among the multicellular organisms. General Characters Sponges are divided into three classes based on the composition of their spicules and skeletal fibers. They are: Calcerea, Desmospongia, and Hexactinellida. Examples: Clathrina, Sycon (Scypha), Grantia, Euplectella, Hyalonema, Oscarella, Plakina, Thenea, Cliona, Halichondria, Cladorhiza, Spongilla, Euspondia, etc. Sponges are solitary or colonial in nature and found distributed in all seas. They are attached to rocks, stones or shells or wooden pieces in the waters or coral to provide a suitable substratum. The sponge’s body is vase-like, tubular, cushion-like or cylindrical in shape with different colours like bright red, yellow, orange, and pink or violet or even white and black. Sponges are mostly asymmetrical and some are radially symmetrical. No tissue or organ is present in sponges. Only cells display a considerable degree of independence. Sponges are sessile and freely branched in structure. Body wall consists of two epitheloid layers (epitheloid resembles epithelium but lacks basal lamina and cell junctions): an outer pinacoderm and an inner choanoderm. Epithelial-like cells called pinacocytes form the outermost body, called a pinacoderm, that serves a protective function similar that of our epidermis. Scattered among the pinacoderm are the ostia that allow entry of water into the body of the sponge. These pores have given the sponges their phylum name Porifera—pore-bearers. Choanocytes are flagellated cells which line the spongocoel and form the so called 'choanoderm': the layer represents endoderm of a diploblastic poriferan organism. The flagella help in creating a unidirectional flow of water around the body of sponge.
    [Show full text]
  • Whole-Body Regeneration in Sponges: Diversity, Fine Mechanisms, and Future Prospects
    G C A T T A C G G C A T genes Review Whole-Body Regeneration in Sponges: Diversity, Fine Mechanisms, and Future Prospects Alexander Ereskovsky 1,2,3,* , Ilya E. Borisenko 2 , Fyodor V. Bolshakov 4 and Andrey I. Lavrov 4 1 Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Station Marine d’Endoume, Rue de la Batterie des Lions, Avignon University, 13007 Marseille, France 2 Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; [email protected] 3 Evolution of Morphogenesis Laboratory, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia 4 Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, 119192 Moscow, Russia; [email protected] (F.V.B.); [email protected] (A.I.L.) * Correspondence: [email protected]; Tel.: +33-662-107-366 Abstract: While virtually all animals show certain abilities for regeneration after an injury, these abilities vary greatly among metazoans. Porifera (Sponges) is basal metazoans characterized by a wide variety of different regenerative processes, including whole-body regeneration (WBR). Consid- ering phylogenetic position and unique body organization, sponges are highly promising models, as they can shed light on the origin and early evolution of regeneration in general and WBR in particu- lar. The present review summarizes available data on the morphogenetic and cellular mechanisms accompanying different types of WBR in sponges. Sponges show a high diversity of WBR, which principally could be divided into (1) WBR from a body fragment and (2) WBR by aggregation of dissociated cells.
    [Show full text]