Review of the Mineralogy of Calcifying Sponges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spicule Formation in Calcareous Sponges: Coordinated Expression
www.nature.com/scientificreports OPEN Spicule formation in calcareous sponges: Coordinated expression of biomineralization genes and Received: 17 November 2016 Accepted: 02 March 2017 spicule-type specific genes Published: 13 April 2017 Oliver Voigt1, Maja Adamska2, Marcin Adamski2, André Kittelmann1, Lukardis Wencker1 & Gert Wörheide1,3,4 The ability to form mineral structures under biological control is widespread among animals. In several species, specific proteins have been shown to be involved in biomineralization, but it is uncertain how they influence the shape of the growing biomineral and the resulting skeleton. Calcareous sponges are the only sponges that form calcitic spicules, which, based on the number of rays (actines) are distinguished in diactines, triactines and tetractines. Each actine is formed by only two cells, called sclerocytes. Little is known about biomineralization proteins in calcareous sponges, other than that specific carbonic anhydrases (CAs) have been identified, and that uncharacterized Asx-rich proteins have been isolated from calcitic spicules. By RNA-Seq and RNA in situ hybridization (ISH), we identified five additional biomineralization genes inSycon ciliatum: two bicarbonate transporters (BCTs) and three Asx-rich extracellular matrix proteins (ARPs). We show that these biomineralization genes are expressed in a coordinated pattern during spicule formation. Furthermore, two of the ARPs are spicule- type specific for triactines and tetractines (ARP1 orSciTriactinin ) or diactines (ARP2 or SciDiactinin). Our results suggest that spicule formation is controlled by defined temporal and spatial expression of spicule-type specific sets of biomineralization genes. By the process of biomineralization many animal groups produce mineral structures like skeletons, shells and teeth. Biominerals differ in shape considerably from their inorganic mineral counterparts1. -
Bryozoan Studies 2019
BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod -
1 Microbiome Diversity and Host Immune Functions May Define the Fate of Sponge Holobionts
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.20.449181; this version posted June 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Microbiome diversity and host immune functions may define the fate of sponge holobionts 2 under future ocean conditions 3 4 Running title: Sponge holobionts under future ocean conditions 5 6 Niño Posadas1, Jake Ivan P. Baquiran1, Michael Angelou L. Nada1, Michelle Kelly2, 7 Cecilia Conaco1* 8 9 1Marine Science Institute, University of the Philippines Diliman, Quezon City, 1101, 10 Philippines 11 2National Institute of Water and Atmospheric Research, Ltd., Auckland, New Zealand 12 13 *Corresponding author: 14 Cecilia Conaco 15 E-mail: [email protected] 16 17 18 19 20 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.20.449181; this version posted June 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 24 Abstract 25 26 The sponge-associated microbial community contributes to the overall health and 27 adaptive capacity of the sponge holobiont. This community is regulated by the 28 environment, as well as the immune system of the host. However, little is known about 29 the effect of environmental stress on the regulation of host immune functions and how 30 this may, in turn, affect sponge-microbe interactions. -
Associated Organisms Inhabiting the Calcareous Sponge Clathrina Lutea in La Parguera Natural
bioRxiv preprint doi: https://doi.org/10.1101/596429; this version posted April 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Associated organisms inhabiting the calcareous sponge Clathrina lutea in La Parguera Natural 2 Reserve, Puerto Rico 3 4 Jaaziel E. García-Hernández1,2*, Nicholas M. Hammerman2,3*, Juan J. Cruz-Motta2 & Nikolaos V. 5 Schizas2 6 * These authors contributed equally 7 1University of Puerto Rico at Mayagüez, Department of Biology, PO Box 9000, Mayagüez, PR 8 00681 9 2University of Puerto Rico at Mayagüez, Department of Marine Sciences, Marine Genomic 10 Biodiversity Laboratory, PO Box 9000, Mayagüez, PR 00681 11 3School of Biological Sciences, University of Queensland, Gehrmann Laboratories, Level 8, 12 Research Road, St Lucia, QLD 4072, Australia 13 14 15 Nikolaos V. Schizas, [email protected], FAX: 787-899-5500 16 17 Running Head: Infauna of the calcareous sponge Clathrina lutea 18 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/596429; this version posted April 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 21 ABSTRACT 22 Sponges provide an array of ecological services and benefits for Caribbean coral reefs. They 23 function as habitats for a bewildering variety of species, however limited attention has been paid 24 in the systematics and distribution of sponge-associated fauna in the class Calcarea or for that 25 matter of sponges in the Caribbean. -
Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions. -
Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment
fmars-08-705053 July 14, 2021 Time: 18:29 # 1 REVIEW published: 20 July 2021 doi: 10.3389/fmars.2021.705053 Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment Christopher J. Freeman1*, Cole G. Easson2, Cara L. Fiore3 and Robert W. Thacker4,5 1 Department of Biology, College of Charleston, Charleston, SC, United States, 2 Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States, 3 Department of Biology, Appalachian State University, Boone, NC, United States, 4 Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States, 5 Smithsonian Tropical Research Institute, Panama City, Panama Marine sponges have been successful in their expansion across diverse ecological niches around the globe. Pioneering work attributed this success to both a well- developed aquiferous system that allowed for efficient filter feeding on suspended organic matter and the presence of microbial symbionts that can supplement host Edited by: heterotrophic feeding with photosynthate or dissolved organic carbon. We now know Aldo Cróquer, The Nature Conservancy, that sponge-microbe interactions are host-specific, highly nuanced, and provide diverse Dominican Republic nutritional benefits to the host sponge. Despite these advances in the field, many current Reviewed by: hypotheses pertaining to the evolution of these interactions are overly generalized; these Ryan McMinds, University of South Florida, over-simplifications limit our understanding of the evolutionary processes shaping these United States symbioses and how they contribute to the ecological success of sponges on modern Alejandra Hernandez-Agreda, coral reefs. To highlight the current state of knowledge in this field, we start with seminal California Academy of Sciences, United States papers and review how contemporary work using higher resolution techniques has Torsten Thomas, both complemented and challenged their early hypotheses. -
Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data. -
Multiscale Approach Reveals That Cloudina Aggregates Are Detritus
Multiscale approach reveals that Cloudina aggregates PNAS PLUS are detritus and not in situ reef constructions Akshay Mehraa,1 and Adam Maloofa aDepartment of Geosciences, Princeton University, Princeton, NJ 08544 Edited by Donald E. Canfield, Institute of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, Odense M., Denmark, and approved January 19, 2018 (received for review November 14, 2017) The earliest metazoans capable of biomineralization appeared precluding physical separation or the use of traditional computed during the late Ediacaran Period (635–541 Ma) in strata associ- tomography (CT) techniques. The inability to produce in situ ated with shallow water microbial reefs. It has been suggested 3D reconstructions has led researchers to make measurements that some Ediacaran microbial reefs were dominated (and possi- of Cloudina individuals and aggregates on polished slabs, thin bly built) by an abundant and globally distributed tubular organ- sections, and bedding planes (3, 4, 7). Unfortunately, as noted ism known as Cloudina. If true, this interpretation implies that by previous researchers, 3D spatial and size distributions can- metazoan framework reef building—a complex behavior that is not be estimated from 2D cross-sections (12). Furthermore, syn- responsible for some of the largest bioconstructions and most thetic experiments reveal that, in the case of tubular structures diverse environments in modern oceans—emerged much earlier such as Cloudina, it is not possible to correctly infer orienta- than previously thought. Here, we present 3D reconstructions of tion from 2D cross-sections (Fig. 1 A–C), and diameter measure- Cloudina populations, produced using an automated serial grind- ments made on cross-sections through curved and/or elliptical ing and imaging system coupled with a recently developed neural tubes are subject to a large degree of error (as great as 35%; Fig. -
(1104L) Animal Kingdom Part I
(1104L) Animal Kingdom Part I By: Jeffrey Mahr (1104L) Animal Kingdom Part I By: Jeffrey Mahr Online: < http://cnx.org/content/col12086/1.1/ > OpenStax-CNX This selection and arrangement of content as a collection is copyrighted by Jerey Mahr. It is licensed under the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). Collection structure revised: October 17, 2016 PDF generated: October 17, 2016 For copyright and attribution information for the modules contained in this collection, see p. 58. Table of Contents 1 (1104L) Animals introduction ....................................................................1 2 (1104L) Characteristics of Animals ..............................................................3 3 (1104L)The Evolutionary History of the Animal Kingdom ..................................11 4 (1104L) Phylum Porifera ........................................................................23 5 (1104L) Phylum Cnidaria .......................................................................31 6 (1104L) Phylum Rotifera & Phylum Platyhelminthes ........................................45 Glossary .............................................................................................53 Index ................................................................................................56 Attributions .........................................................................................58 iv Available for free at Connexions <http://cnx.org/content/col12086/1.1> Chapter 1 (1104L) Animals introduction1 -
PROGRAMME ABSTRACTS AGM Papers
The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important. -
The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks. -
Porifera) in Singapore and Description of a New Species of Forcepia (Poecilosclerida: Coelosphaeridae)
Contributions to Zoology, 81 (1) 55-71 (2012) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae) Swee-Cheng Lim1, 3, Nicole J. de Voogd2, Koh-Siang Tan1 1 Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore 2 Netherlands Centre for Biodiversity, Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 3 E-mail: [email protected] Key words: intertidal, Southeast Asia, sponge assemblage, subtidal, tropical Abstract gia) patera (Hardwicke, 1822) was the first sponge de- scribed from Singapore in the 19th century. This was A surprisingly high number of shallow water sponge species followed by Leucosolenia flexilis (Haeckel, 1872), (197) were recorded from extensive sampling of natural inter- Coelocarteria singaporensis (Carter, 1883) (as Phloeo tidal and subtidal habitats in Singapore (Southeast Asia) from May 2003 to June 2010. This is in spite of a highly modified dictyon), and Callyspongia (Cladochalina) diffusa coastline that encompasses one of the world’s largest container Ridley (1884). Subsequently, Dragnewitsch (1906) re- ports as well as extensive oil refining and bunkering industries. corded 24 sponge species from Tanjong Pagar and Pu- A total of 99 intertidal species was recorded in this study. Of lau Brani in the Singapore Strait. A further six species these, 53 species were recorded exclusively from the intertidal of sponge were reported from Singapore in the 1900s, zone and only 45 species were found on both intertidal and subtidal habitats, suggesting that tropical intertidal and subtidal although two species, namely Cinachyrella globulosa sponge assemblages are different and distinct.