Serotonin in Porifera? Evidence from Developing Tedania Ignis, the Caribbean Fire Sponge (Demospongiae)

Total Page:16

File Type:pdf, Size:1020Kb

Serotonin in Porifera? Evidence from Developing Tedania Ignis, the Caribbean Fire Sponge (Demospongiae) SEROTONIN IN PORIFERA? EVIDENCE FROM DEVELOPING TEDANIA IGNIS, THE CARIBBEAN FIRE SPONGE (DEMOSPONGIAE) SIMON WEYRER, KLAUS RÜTZLER AND REINHARD RIEGER Weyrer, S., Rützler, K. & Rieger, R. 19990630: Serotonin in Porifera ? Evidence from developing Tedania ignis, the Caribbean tire sponge (Demospongiae). Memoirs of the Queensland Museum 44: 659-665. Brisbane. ISSN 0079-8835. Histochemical study of larvae and freshly settled juveniles of the Caribbean tire sponge Tedania ignis (Tedaniidae, Poecilosclerida) reveals evidence of serotonin-like immuno-reactivity, a possible indication for the presence ofprecursors ofnerve cells in this species. Already in the earliest stages ofits life, T. ignis is made up oftwo discernable cell types: monociliated cells arranged in quasi-epithelial fashion and covering the larva and the developing settled organism, and mesohylal cells (archeocytes). In the adult sponge, several mesohylal cell types can be distinguished which form a complex connective tissue. Serotonin-like immuno-reactivity demonstrated by us occurs only in two cell types: in sorne archeocytes ofthe parenchymella larvae, and in similar archeocytes and in a second, bipolar cell type ofthe settled, juvenile sponge. The discovery ofa neuroactive substance in cells of developing sponges before and after metamorphosis provides new insights into the origin and evolution of nerve and muscle cells in the Eumetazoa. 0 Pori/era, histochemistry, serotonin, Tedania ignis, larval development, evolution. Simon Weyrer & Reinhard Rieger, Institute of Zoology and Limnology, University of Innsbruck. Technikerstrasse 25, A-6020 Innsbruck, Austria; Klaus Rützler (email: [email protected]), Department ofInvertebrate Zoology, National Museum ofNatural History, Smithsonian Institution, Washington D. C. 20560, USA; 18 January 1999. Although sponges, one ofthe oldest metazoan Phagocytella hypothesis (see Hyman, 1951; groups, possess the greatest diversity of Ivanov, 1988; Rieger et al., 1991; Ax, 1995) biologically active compounds of any marine encouraged the authors to search for precursors phylum, the neurotransmitter serotonin of nerve and muscle cells in sponge larvae in (5-hydroxytryptamine, 5-HT) has been reported early developmental stages rather than in adults, a only once, in myocyte-like cells of Sycon neglected area ofresearch so far (Harrison & De ciliatum (Sycettidae, Calcarea) (Lenz, 1966). Vos, 1991; Woollacott & Pinto, 1995). Such Serotonin appeared early in the evolution of precursors of nerve cells and myocytes in eucaryotes. For example, it is used in chemical sponges could represent the first stage in the signal chains in Protista where, in a species ofthe evolution ofintegrative systems (e.g. Payans de ciliate Blepharisma, a serotonin-like substance is Ceccatty, 1974a, 1989; Mackie, 1990). known to function as a mating pheromone (Haldane, 1954; Miyake, 1984). It has also been MATERIALS AND METHODS shown that a number of lower organisms use serotonin as an internai messenger in their neuro­ Larvae of Tedania ignis (Durchassaing & transmitter-receptor systems (Carr et al., 1989) Michelotti) (Tedaniidae, Poecilosclerida, Demo­ and that sorne of these characteristics of spongiae) were sampled in the laboratory molecular structure that arose in unicellular seawater system of the Smithsonian Coral Reef organisms may have been inherited and modified Field Station at Carrie BowCay, Belize, in March bymetazoans(Mackie, 1990; Van Houten, 1990). 1994 and November 1995. Larval release was induced in adult specimens collected in the It seems obvious that nerve cells developed nearby mangrove ofTwin Cays (Rützler & Feller, gradual1y over a long period of time but the 1996) and maintained in aerated seawater by sequences ofchanges that must have occurred are exposing them to natural sunlight fol1owing a difficult to establish. Being a primitive outgroup 12-24hr period of dark adaptation (Woollacott, ofthe Eumetazoa, Porifera do not have neurons 1993). The larvae were kept in seawater-rinsed or myocytes that are present in organisms of glass dishes (lOcm diameter) and fixed higher levels'of organisation. A common immediately after release and 80-100hrs after phylogenetic hypothesis such as the Planula or attachment to the substrate. Ta pravide a 660 MEMOIRS OF THE QUEENSLAND MUSEUM substrate suitable for fixation and removal for lie embedded among mesohyl cells (Fig. 2A). subsequent processing, the bottom of these Using a whole-mount fluorescence technique, dishes was coated with polymerised epoxy resin we found serotonin-like immuno-reactivity in (Spurr). special mesohyl cells ofboth larval andjuvenile Specimens were fixed in 4% paraform­ T. ignis. Spherical serotonergic cells appear to be aldehyde (PFA) in phosphate-buffered saline randomly distributed and occur alone or in (PBS; O.lM, pH 7.4) for 6-8hrs, rinsed in PBS, clusters (Figs lB, 2B). In one larva, for example, and. treated with Triton X-IOO (0.2%, 1hr) to 6 clusters of such serotonin positive ceIls were permeabilise membranes. After labelling with found, each composed of 2-4 single spherical the primary antibody (rabbit anti-serotonin, cells with a diameter of4-6J..lm. In some clusters IMMUNOTECH 0601; 2.5%) ovemight at 4°C, as weIl as in several single cells the nuclei are fluorescence-labelling was done for Ihr with a clearly visible and appear as non-fluorescent tetrarhodamine-isothiocyanate-(TRITC)­ regions (Fig. lB). conjugated secondary antibody (swine anti-rabbit; In the juvenile, settled sponge, a few bipolar DAKO, 1%) for 1hr. Specimens were then rinsed cells were found in addition to the spherical cells in PBS, whole-mounted (Gelmount) on slides, that superficially resemble bipolar neurons or and examined under a REICHERT Polyvar 'myocyte-like' ceIls (actinocytes) reported by epifluorescence microscope. Incubation in Bagby (1966) (Fig. 2B, C). These bipolar cells bovine-serum albumin-Triton (BSA-T) without have a maximum length of20-50J..lm. Both types primary antibody was used as the control for ofserotonin-positive cells (spherical and bipolar) nonspecific binding of the secondary antibody. appear to be located in the mesohyl as spicules Three larvae and three settled juvenile sponges can be seen ontop ofthe labelled cells (Fig. 2C). were sectioned (epoxy-embedded, 1J..lm thick, No information is yet available on whether stained with toluidin blue) and investigated in interactions between these morphological types detail. The immuno-staining of both larvae and ofserotonin-positive cells occur, nor do we know freshly settled sponges was carried out by the whether the bipolar cells differentiate from the labelled streptavidin-biotin method (LSAB kit; spherical type. Ifthese serotonergic cells are part DAKO). Histochemical staining of peroxidase ofan integrative system, both cellular commun­ with amino-ethyl-carbazole (AEC, substrate ication at a distance (spherical ceIls) or cell-eell buffer) was used to enhance visibility of the contacts (bipolar ceIls) could be expected. labelled cells. DISCUSSION RESULTS Our study is the tirst to report serotonergic cells Tedania ignis has a parenchymella larva in Demospongiae, a spherical type in both larva composed oftwo types ofcells (Bergquist et al., and post-metamorphosed sponge, and a second 1979). PeripheraIly, flagellated epithelium-like bipolar cell type that is exclusive to the post­ cells coyer the organism. This "epithelium" is larval developing organism . Up to now, monociliated and 10-25 J..lm high. The free­ serotonin was only demonstrated histo­ swimming larva exhibits coordinated ciliary chemically in myocyte-like cells ofCalcarea (see action. A distinct basal lamina and typical below). Among the most primitive Eumetazoa, eumetazoan apical junctional complexes are serotonin is weIl known to act as a neuro­ apparently lacking (but see below). Interior, appar­ transmitter (e.g. in Anthozoa, Umbriaco et al., ently motile mesenchymal cells (mesohyl ceIls) 1990). ActuaIly, 5-HT has a wide range of are arranged beneath the epithelium-like sheath functions in invertebrates, such as control of (Woollacott, 1990, 1993; Amano & Hori, 1994) regeneration processes in Planaria (Kimmel & (Fig. lA). The live larvae are ovoid and have a Carlyon, 1990) and ofbeat ofcilia in echinoderm size of 700-900J..lm long, 500-600J..lm wide, but embryo (Mogami et al., 1992), and as inhibitors the necessary Triton X-100 treatment weakens and activators of muscle of molluscs (Welsh, the cell membranes and larvae usually shrink and 1953; Twarog, 1988). As in Porifera, members of collapse (Fig. lA, B). In the juvenile, settled the phylum Placozoado not differentiate nerve or sponge to(}-- as in the' adult-the exopinacoderm muscle cells and are therefore counted among the which covers the ectosome acts as the protective most primitive eumetazoans (GreIl, 1974; Ax, layer. Inside the sponge, choanocyte chambers 1989; GreIl &, Ruthmann, 1991). Schuchert connected by canals lined with endopinacocytes (1993) demonstrated in Trichoplax adherens SEROTONIN IN PORIFERA ? 661 FIG. 1. Tedania ignis, histology of larva. A, Longitudinal section of an entire larva stained by toluidin blue showing epithelial-like celllayer (e) and dark-staining cells (archaeocytes, arrow) in c1usters near the posterior pole CP) (scale bar=lOOJlm). B, Serotonin-positive cells (s) are randomly distributed in the larval body; at least 6 c1usters of2-4 labelled cells are evident (one marked, asterisk). The nucleus in sorne ofthe cells is visible as a non-fluorescent region (arrow).
Recommended publications
  • Spicule Formation in Calcareous Sponges: Coordinated Expression
    www.nature.com/scientificreports OPEN Spicule formation in calcareous sponges: Coordinated expression of biomineralization genes and Received: 17 November 2016 Accepted: 02 March 2017 spicule-type specific genes Published: 13 April 2017 Oliver Voigt1, Maja Adamska2, Marcin Adamski2, André Kittelmann1, Lukardis Wencker1 & Gert Wörheide1,3,4 The ability to form mineral structures under biological control is widespread among animals. In several species, specific proteins have been shown to be involved in biomineralization, but it is uncertain how they influence the shape of the growing biomineral and the resulting skeleton. Calcareous sponges are the only sponges that form calcitic spicules, which, based on the number of rays (actines) are distinguished in diactines, triactines and tetractines. Each actine is formed by only two cells, called sclerocytes. Little is known about biomineralization proteins in calcareous sponges, other than that specific carbonic anhydrases (CAs) have been identified, and that uncharacterized Asx-rich proteins have been isolated from calcitic spicules. By RNA-Seq and RNA in situ hybridization (ISH), we identified five additional biomineralization genes inSycon ciliatum: two bicarbonate transporters (BCTs) and three Asx-rich extracellular matrix proteins (ARPs). We show that these biomineralization genes are expressed in a coordinated pattern during spicule formation. Furthermore, two of the ARPs are spicule- type specific for triactines and tetractines (ARP1 orSciTriactinin ) or diactines (ARP2 or SciDiactinin). Our results suggest that spicule formation is controlled by defined temporal and spatial expression of spicule-type specific sets of biomineralization genes. By the process of biomineralization many animal groups produce mineral structures like skeletons, shells and teeth. Biominerals differ in shape considerably from their inorganic mineral counterparts1.
    [Show full text]
  • Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
    ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions.
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Review of the Mineralogy of Calcifying Sponges
    Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 12-2013 Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges Abigail M. Smith Jade Berman Marcus M. Key, Jr. Dickinson College David J. Winter Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Paleontology Commons Recommended Citation Smith, Abigail M.; Berman, Jade; Key,, Marcus M. Jr.; and Winter, David J., "Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges" (2013). Dickinson College Faculty Publications. Paper 338. https://scholar.dickinson.edu/faculty_publications/338 This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. © 2013. Licensed under the Creative Commons http://creativecommons.org/licenses/by- nc-nd/4.0/ Elsevier Editorial System(tm) for Palaeogeography, Palaeoclimatology, Palaeoecology Manuscript Draft Manuscript Number: PALAEO7348R1 Title: Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges Article Type: Research Paper Keywords: sponges; Porifera; ocean acidification; calcite; aragonite; skeletal biomineralogy Corresponding Author: Dr. Abigail M Smith, PhD Corresponding Author's Institution: University of Otago First Author: Abigail M Smith, PhD Order of Authors: Abigail M Smith, PhD; Jade Berman, PhD; Marcus M Key Jr, PhD; David J Winter, PhD Abstract: Most marine sponges precipitate silicate skeletal elements, and it has been predicted that they would be among the few "winners" in an acidifying, high-CO2 ocean.
    [Show full text]
  • Revision of the Genus Trachytedania (Porifera: Poecilosclerida) with A
    J. Mar. Biol. Ass. U.K. 2001), 81,569^579 Printed in the United Kingdom Revision of the genus Trachytedania Porifera: Poecilosclerida) with a description of Trachytedania ferrolensis sp. nov. from the north-east Atlantic F.J. Cristobo*and V. Urgorri O *Departamento de Biodiversidade e Recursos Marin¬ os, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain. E-mail: [email protected] OLaboratorio de Zoolox|¨a Marin¬ a, Departamento de Biolox|¨a Animal, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain. E-mail: [email protected] The genus Trachytedania Ridley, 1881 Porifera: Poecilosclerida), includes those tedaniidae sponges characterized by the presence of acanthostyles. To date, only ¢ve species of the genus Trachytedania have been described of which only three actually belong to this genus. Other species described as Tedania could be considered as Trachytedania because of the presence of acanthostyles in their skeletons. Some authors propose retaining Trachytedania as a subgenus of Tedania because of its skeletal structure. In this work, a taxonomic revision and consideration of the validity of the genus is provided. The morphology and anatomy of Trachytedania ferrolensis sp. nov. from the R|¨a de Ferrol Spain, north-east Atlantic) are described in detail, and the types of the three valid species described as Trachytedania to date: Trachytedania spinata, Trachytedania patagonica and Trachytedania biraphidora are studied. A key to this genus is provided. INTRODUCTION MATERIALS AND METHODS The position of the Family Tedaniidae within the The specimens were collected by SCUBA divers and by Poecilosclerida is still disputed. Species of the genus dredging using a naturalist benthic dredge Holme & Tedania Gray, 1867, have always been di¤cult to di¡er- McIntyre, 1984) in the sublittoral zones of R|¨a de Ferrol entiate clearly Bergquist & Fromont, 1988) and the value Spain).
    [Show full text]
  • Belgian Register of Marine Species
    BELGIAN REGISTER OF MARINE SPECIES September 2010 Belgian Register of Marine Species – September 2010 BELGIAN REGISTER OF MARINE SPECIES, COMPILED AND VALIDATED BY THE VLIZ BELGIAN MARINE SPECIES CONSORTIUM VLIZ SPECIAL PUBLICATION 46 SUGGESTED CITATION Leen Vandepitte, Wim Decock & Jan Mees (eds) (2010). Belgian Register of Marine Species, compiled and validated by the VLIZ Belgian Marine Species Consortium. VLIZ Special Publication, 46. Vlaams Instituut voor de Zee (VLIZ): Oostende, Belgium. 78 pp. ISBN 978‐90‐812900‐8‐1. CONTACT INFORMATION Flanders Marine Institute – VLIZ InnovOcean site Wandelaarkaai 7 8400 Oostende Belgium Phone: ++32‐(0)59‐34 21 30 Fax: ++32‐(0)59‐34 21 31 E‐mail: [email protected] or [email protected] ‐ 2 ‐ Belgian Register of Marine Species – September 2010 Content Introduction ......................................................................................................................................... ‐ 5 ‐ Used terminology and definitions ....................................................................................................... ‐ 7 ‐ Belgian Register of Marine Species in numbers .................................................................................. ‐ 9 ‐ Belgian Register of Marine Species ................................................................................................... ‐ 12 ‐ BACTERIA ............................................................................................................................................. ‐ 12 ‐ PROTOZOA ...........................................................................................................................................
    [Show full text]
  • Porifera) in Singapore and Description of a New Species of Forcepia (Poecilosclerida: Coelosphaeridae)
    Contributions to Zoology, 81 (1) 55-71 (2012) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae) Swee-Cheng Lim1, 3, Nicole J. de Voogd2, Koh-Siang Tan1 1 Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore 2 Netherlands Centre for Biodiversity, Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 3 E-mail: [email protected] Key words: intertidal, Southeast Asia, sponge assemblage, subtidal, tropical Abstract gia) patera (Hardwicke, 1822) was the first sponge de- scribed from Singapore in the 19th century. This was A surprisingly high number of shallow water sponge species followed by Leucosolenia flexilis (Haeckel, 1872), (197) were recorded from extensive sampling of natural inter- Coelocarteria singaporensis (Carter, 1883) (as Phloeo­ tidal and subtidal habitats in Singapore (Southeast Asia) from May 2003 to June 2010. This is in spite of a highly modified dictyon), and Callyspongia (Cladochalina) diffusa coastline that encompasses one of the world’s largest container Ridley (1884). Subsequently, Dragnewitsch (1906) re- ports as well as extensive oil refining and bunkering industries. corded 24 sponge species from Tanjong Pagar and Pu- A total of 99 intertidal species was recorded in this study. Of lau Brani in the Singapore Strait. A further six species these, 53 species were recorded exclusively from the intertidal of sponge were reported from Singapore in the 1900s, zone and only 45 species were found on both intertidal and subtidal habitats, suggesting that tropical intertidal and subtidal although two species, namely Cinachyrella globulosa sponge assemblages are different and distinct.
    [Show full text]
  • Sponge Fauna in the Sea of Marmara
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 16: 51-59 (2016) DOI: 10.4194/1303-2712-v16_1_06 RESEARCH PAPER Sponge Fauna in the Sea of Marmara Bülent Topaloğlu1,*, Alper Evcen2, Melih Ertan Çınar2 1 Istanbul University, Department of Marine Biology, Faculty of Fisheries, 34131 Vezneciler, İstanbul, Turkey. 2 Ege University, Department of Hydrobiology, Faculty of Fisheries, 35100 Bornova, İzmir, Turkey. * Corresponding Author: Tel.: +90.533 2157727; Fax: +90.512 40379; Received 04 December 2015 E-mail: [email protected] Accepted 08 February 2016 Abstract Sponge species collected along the coasts of the Sea of the Marmara in 2012-2013 were identified. A total of 30 species belonging to 21 families were found, of which four species (Ascandra contorta, Paraleucilla magna, Raspailia (Parasyringella) agnata and Polymastia penicillus) are new records for the eastern Mediterranean, while six species [A. contorta, P. magna, Chalinula renieroides, P. penicillus, R. (P.) agnata and Spongia (Spongia) nitens] are new records for the marine fauna of Turkey and 12 species are new records for the Sea of Marmara. Sponge specimens were generally collected in shallow water, but two species (Thenea muricata and Rhizaxinella elongata) were found at depths deeper than 100 m. One alien species (P. magna) was found at 10 m depth at station K18 (Büyükada). The morphological and distributional features of the species that are new to the Turkish marine fauna are presented. Keywords: Porifera, Benthos, Invertebrate, Turkish Straits System. Marmara Denizi Sünger Faunası Özet Bu çalışmada, Marmara Denizi ve kıyılarında 2012-2013 yılları arasında toplanan Sünger örnekleri tanımlanmıştır.
    [Show full text]
  • Benthic Habitats and Biodiversity of Dampier and Montebello Marine
    CSIRO OCEANS & ATMOSPHERE Benthic habitats and biodiversity of the Dampier and Montebello Australian Marine Parks Edited by: John Keesing, CSIRO Oceans and Atmosphere Research March 2019 ISBN 978-1-4863-1225-2 Print 978-1-4863-1226-9 On-line Contributors The following people contributed to this study. Affiliation is CSIRO unless otherwise stated. WAM = Western Australia Museum, MV = Museum of Victoria, DPIRD = Department of Primary Industries and Regional Development Study design and operational execution: John Keesing, Nick Mortimer, Stephen Newman (DPIRD), Roland Pitcher, Keith Sainsbury (SainsSolutions), Joanna Strzelecki, Corey Wakefield (DPIRD), John Wakeford (Fishing Untangled), Alan Williams Field work: Belinda Alvarez, Dion Boddington (DPIRD), Monika Bryce, Susan Cheers, Brett Chrisafulli (DPIRD), Frances Cooke, Frank Coman, Christopher Dowling (DPIRD), Gary Fry, Cristiano Giordani (Universidad de Antioquia, Medellín, Colombia), Alastair Graham, Mark Green, Qingxi Han (Ningbo University, China), John Keesing, Peter Karuso (Macquarie University), Matt Lansdell, Maylene Loo, Hector Lozano‐Montes, Huabin Mao (Chinese Academy of Sciences), Margaret Miller, Nick Mortimer, James McLaughlin, Amy Nau, Kate Naughton (MV), Tracee Nguyen, Camilla Novaglio, John Pogonoski, Keith Sainsbury (SainsSolutions), Craig Skepper (DPIRD), Joanna Strzelecki, Tonya Van Der Velde, Alan Williams Taxonomy and contributions to Chapter 4: Belinda Alvarez, Sharon Appleyard, Monika Bryce, Alastair Graham, Qingxi Han (Ningbo University, China), Glad Hansen (WAM),
    [Show full text]
  • Checklist of Sponges (Porifera) of the South China Sea Region
    Micronesica 35-36:100-120. 2003 Taxonomic inventory of the sponges (Porifera) of the Mariana Islands MICHELLE KELLY National Institute of Water & Atmospheric Research (NIWA) Ltd Private Bag 109-695 Newmarket, Auckland, New Zealand JOHN HOOPER Queensland Museum P.O. Box 3300 South Brisbane, Queensland 4101, Australia VALERIE PAUL1 AND GUSTAV PAULAY2 Marine Laboratory University of Guam Mangilao, Guam 96923 USA ROB VAN SOEST AND WALLIE DE WEERDT Institute for Biodiversity and Ecosystem Dynamics Zoologisch Museum University of Amsterdam P. O. Box 94766, 1090 GT Amsterdam, The Netherlands Abstract—We review the sponge fauna of the Mariana Islands based on new and existing collections, and literature records. 124 species of siliceous sponges (Class Demospongiae) and 4 species of calcareous sponges (Class Calcarea) have been identified to date, representing 73 genera, 44 families, within 16 orders. Several species are adventive. Approximately 30% (40) of the species encountered are undescribed, but not all are endemics, as the authors know them from other locations. Approximately 30% (38) of the species are known from diverse locations within the Indo West Pacific, but several well-known, widespread species are absent. The actual diversity of sponge fauna of the Marianas is considerably higher, as many species, especially cryptic and encrusting taxa, remain to be collected and studied. Introduction Our knowledge of the sponge fauna of the tropical Pacific has increased substantially in recent years, as a result of enhanced collecting effort driven in 1 current address: Smithsonian Marine Station at Fort Pierce, Fort Pierce FL 34949 2 corresponding author; current address: Florida Museum of Natural History, University of Florida, Gainesville FL 32611-7800, USA; email: [email protected] Kelly et al.: Sponges of the Marianas 101 part by pharmaceutical interests, and by the attention of a larger number of systematists working on Pacific sponges than ever before.
    [Show full text]
  • Species Composition of the Free Living Multicellular Invertebrate Animals
    Historia naturalis bulgarica, 21: 49-168, 2015 Species composition of the free living multicellular invertebrate animals (Metazoa: Invertebrata) from the Bulgarian sector of the Black Sea and the coastal brackish basins Zdravko Hubenov Abstract: A total of 19 types, 39 classes, 123 orders, 470 families and 1537 species are known from the Bulgarian Black Sea. They include 1054 species (68.6%) of marine and marine-brackish forms and 508 species (33.0%) of freshwater-brackish, freshwater and terrestrial forms, connected with water. Five types (Nematoda, Rotifera, Annelida, Arthropoda and Mollusca) have a high species richness (over 100 species). Of these, the richest in species are Arthropoda (802 species – 52.2%), Annelida (173 species – 11.2%) and Mollusca (152 species – 9.9%). The remaining 14 types include from 1 to 38 species. There are some well-studied regions (over 200 species recorded): first, the vicinity of Varna (601 spe- cies), where investigations continue for more than 100 years. The aquatory of the towns Nesebar, Pomorie, Burgas and Sozopol (220 to 274 species) and the region of Cape Kaliakra (230 species) are well-studied. Of the coastal basins most studied are the lakes Durankulak, Ezerets-Shabla, Beloslav, Varna, Pomorie, Atanasovsko, Burgas, Mandra and the firth of Ropotamo River (up to 100 species known). The vertical distribution has been analyzed for 800 species (75.9%) – marine and marine-brackish forms. The great number of species is found from 0 to 25 m on sand (396 species) and rocky (257 species) bottom. The groups of stenohypo- (52 species – 6.5%), stenoepi- (465 species – 58.1%), meso- (115 species – 14.4%) and eurybathic forms (168 species – 21.0%) are represented.
    [Show full text]
  • Sponge Biodiversity of the United Kingdom
    Sponge Biodiversity of the United Kingdom A report from the Sponge Biodiversity of the United Kingdom project May 2008-May 2011 Claire Goodwin & Bernard Picton National Museums Northern Ireland Sponge Biodiversity of the United Kingdom Contents Page 1. Introduction 2 1.1 Project background 2 1.2 Project aims 2 1.3 Project outputs 2 2. Methods 3 2.1 Survey methodology 3 2.2 Survey locations 4 2.2.1 Firth of Lorn and Sound of Mull , Scotland 6 2.2.2 Pembrokeshire , Wales 6 2.2.3 Firth of Clyde , Scotland 6 2.2.4 Isles of Scilly , England 8 2.2.5 Sark, Channel Isles 8 2.2.6 Plymouth , England 8 2.3 Laboratory methodology 10 2.3.1 The identifi cation process 10 2.4 Data handling 11 3. Results 13 3.1 Notes on UK sponge communities 13 3.1.1 Scotland 13 3.1.2 Wales 13 3.1.3 Isles of Scilly 13 3.1.4 Sark 13 3.1.5 Sponge biogeography 15 3.2 Species of particular interest 15 4. Publications 34 4.1 Manuscripts in preparation 34 4.2 Published/accepted manuscripts 37 5. Publicity 37 5.1 Academic conference presentations 37 5.2 Public talks/events 38 5.3 Press coverage 38 6. Training Courses 39 7. Collaborations with other Organisations 42 8. Conclusions 44 8.1 Ulster Museum, National Museums Northern Ireland – a centre of excellence for sponge 44 taxonomy 8.2 Future work 44 8.2.1. Species requiring further work 45 9. Acknowledgements 46 10.
    [Show full text]