The Natural State of Kawerau Geothermal Field
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regional Plan for the Tarawera River Catchment
Environment Bay of Plenty P O Box 364 Whakatane NEW ZEALAND Environmental Publication 2003/24 ISSN: 1175-9372 REGIONAL PLAN FOR THE TARAWERA RIVER CATCHMENT 1 February 2004 Environment Bay of Plenty Bay of Plenty Regional Council 1 February 2004 Tarawera River Catchment Plan Reader’s Guide READER’S GUIDE There may be some parts of this regional plan that you are interested in reading. To find these parts quickly, the following guide gives a brief summary of what each chapter is about. Chapter 1 - Introduction: Names the regional plan, outlines its purpose and aims, discusses topics and issues to be managed, the geographical area of the plan, and sets its duration. Chapter 2 - Preparation of the Regional Plan for the Tarawera River Catchment: Provides a summary of how the regional plan was prepared, research undertaken and the people and organisations consulted. Chapter 3 - Statutory Framework: Outlines the primary parts or sections of the Resource Management Act 1991 relevant to the preparation of the regional plan. It also includes definitions of “Issues”, “Objectives”, “Policies”, and “Methods”. Chapter 4 - Policy Framework: Establishes how this regional plan relates to other planning documents at the national, regional and district level. Chapter 5 - Responsibilities: Identifies the principle local body and governmental organisations with resource management responsibilities, and gives a brief resume of their primary functions and duties. Chapter 6 - Physical Description of the Tarawera Catchment: Provides background information on the area covered by the regional plan. Discusses the Tarawera River catchment in four sub-areas, namely the Tarawera Lakes and their catchments, the catchment of the Upper Reach of the Tarawera River, the catchment of the Lower Reach of the Tarawera River, and the Tarawera River mouth. -
The Ngati Awa Raupatu Report
THE NGATI AWA RAUPATU REPORT THE NGAT I AWA RAUPATU REPORT WA I 46 WAITANGI TRIBUNAL REPORT 1999 The cover design by Cliä Whiting invokes the signing of the Treaty of Waitangi and the consequent interwoven development of Maori and Pakeha history in New Zealand as it continuously unfolds in a pattern not yet completely known A Waitangi Tribunal report isbn 1-86956-252-6 © Waitangi Tribunal 1999 Edited and produced by the Waitangi Tribunal Published by Legislation Direct, Wellington, New Zealand Printed by PrintLink, Wellington, New Zealand Text set in Adobe Minion Multiple Master Captions set in Adobe Cronos Multiple Master LIST OF CONTENTS Letter of transmittal. ix Chapter 1Chapter 1: ScopeScopeScope. 1 1.1 Introduction. 1 1.2 The raupatu claims . 2 1.3 Tribal overlaps . 3 1.4 Summary of main åndings . 4 1.5 Claims not covered in this report . 10 1.6 Hearings. 10 Chapter 2: Introduction to the Tribes. 13 2.1 Ngati Awa and Tuwharetoa . 13 2.2 Origins of Ngati Awa . 14 2.3 Ngati Awa today . 16 2.4 Origins of Tuwharetoa. 19 2.5 Tuwharetoa today . .20 2.6 Ngati Makino . 22 Chapter 3: Background . 23 3.1 Musket wars. 23 3.2 Traders . 24 3.3 Missionaries . 24 3.4 The signing of the Treaty of Waitangi . 25 3.5 Law . 26 3.6 Principles of the Treaty of Waitangi. 28 Chapter 4: The Central North Island Wars . 33 4.1 The relevance of the wars to Ngati Awa. 33 4.2 Conclusion . 39 Chapter 5: The Völkner And Fulloon Slayings . -
The Sedimentation and Drainage History of Haroharo Caldera and the Tarawera River System, Taupo Volcanic Zone, New Zealand
The Sedimentation and Drainage History of Haroharo Caldera and The Tarawera River System, Taupo Volcanic Zone, New Zealand Prepared by K A Hodgson and I A Nairn Environment Bay of Plenty Operations Publication 2004/03 August 2004 5 Quay Street P O Box 364 Whakatane NEW ZEALAND ISSN 1176 - 5550 Working with our communities for a better environment Environment Bay of Plenty i Acknowledgements The Department of Conservation (Rotorua Lakes Office) permitted our studies in lake and river reserves. Fletcher Challenge Forests (and its successors) provided detailed contour maps and aerial photographs. Bryan Davy and Hugh Bibby (GNS) provided a pre- publication copy of their paper on seismic imaging in Lake Tarawera. PGSF Contract IANX0201 funded this study. Sedimentation and Drainage History, Tarawera River System Operations Publication 2004/03 Environment Bay of Plenty iii Executive Summary Haroharo caldera has been formed by the coalescence of multiple collapse structures over the last 350 kyr, the latest major collapse accompanying voluminous rhyolite pyroclastic eruptions at ~50 ka. The caldera has formed a sink for precipitation on surrounding catchments, with overflow via the Tarawera River through the Whakatane graben to the sea at ~30 km to NE. Lakes have probably always occupied at least part of the caldera floor, but the early lacustrine history is largely obscured by younger eruptives. Since 26 ka, the Haroharo, Okareka, Rotoma and Tarawera volcanic complexes have grown within the caldera during eleven eruption episodes, confining ten lakes on the caldera margins. Growth of the volcanic complexes has greatly altered drainage paths and ponding areas within and marginal to the caldera, so that the present ~700 km2 caldera catchment area is about half the ~1400 km2 area that drained into the caldera between 26 ka and 9.5 ka. -
IN the MATTER of the Resource Management Act 1991 and in the MATTER of an Application to the BAY of PLENTY REGIONAL COUNCIL By
IN THE MATTER of the Resource Management Act 1991 AND IN THE MATTER of an application to the BAY OF PLENTY REGIONAL COUNCIL by NGATI TUWHARETOA GEOTHERMAL ASSETS LIMITED for a change to the conditions of a resource consent (67151) that authorises the discharge of geothermal water from the eastbank of the Tarawera River STATEMENT OF EVIDENCE OF RAE BEVERLEY ADLAM 1. INTRODUCTION 1.1 My full name is Rae Beverley Adlam. 1.2 I was born in Whakatane Hospital in 1946 and was raised in Onepu/Kawerau. I have a number of iwi and hapu affiliations, but my primary iwi is Ngati Tuwharetoa ki Kawerau (“Ngati Tuwharetoa”). This is my Turangawaewae. 1.3 I present this evidence as an Elder (Kuia) of Ngati Tuwharetoa. Relevant background 1.4 I hold the degree of Masters in Business Administration from the University of Auckland (1991). My Masters thesis was on the feasibility of using Ormat geothermal power stations at Kawerau. 1.5 In the 1980s, I was appointed to the boards of the Bay of Plenty Electric Power Board, the New Zealand Forestry Corporation, Trustbank Bay of Plenty and others. I was the New Zealand Businesswoman of the Year in 1986. I became a member of the New Zealand Order of Merit (MNZM) in 2008 for services to business. I also received the Queen’s Service Medal in 1990 for services to the community. 1.6 I have held senior management roles in the public service, namely Director of Marketing and Services, Department of Internal Affairs; General Manager of Women & Childrens Health, Health Waikato; and Director of Kaupapa Maori Affairs & Policy with the Ministry of Foreign Affairs. -
An Introductory Review
1 Citation: Lowe, D.J. 2010. Quaternary volcanism, tephras, and tephra-derived soils in New Zealand: an introductory review. In: Lowe, D.J.; Neall, V.E., Hedley, M; Clothier, B.; Mackay, A. 2010. Guidebook for Pre-conference North Island, New Zealand „Volcanoes to Oceans‟ field tour (27-30 July). 19th World Soils Congress, International Union of Soil Sciences, Brisbane. Soil and Earth Sciences Occasional Publication No. 3, Massey University, Palmerston North, pp. 7-29. Quaternary volcanism, tephras, and tephra-derived soils in New Zealand: an introductory review David J. Lowe Department of Earth and Ocean Sciences, University of Waikato, Hamilton Introduction This two-part article comprises brief introductions to (1) volcanism and its products in general and to the broad pattern of Quaternary volcanism and tephrostratigraphy in North Island, and (2) the ensuing tephra-derived soils of North Island. Part 1 derives mainly from Smith et al. (2006), Leonard et al. (2007), and Lowe (2008a). Other useful reviews include those of Neall (2001), Graham (2008: Chapter 7), Wilson et al. (2009), and Cole et al. (2010). Recent reviews on tephras include Shane (2000), Alloway et al. (2007), Lowe (2008b, 2011), and Lowe et al. (2008a, 2008b). A history of tephra studies in New Zealand was reported by Lowe (1990). Part 2 describes the distribution and character of the main tephra-derived soils, these being Entisols and Andisols (mostly Vitrands and Udands) and Ultisols (Lowe and Palmer, 2005). Books on these and other soils in New Zealand include NZ Soil Bureau (1968), Gibbs (1980), McLaren and Cameron (1996), Cornforth (1998), and Molloy and Christie (1998). -
Rangitaiki Community Board 22 August 2018
RANGITĀIKI COMMUNITY BOARD WEDNESDAY, 22 AUGUST 2018 AGENDA Meeting to be held in the Edgecumbe Community Library, College Road, Edgecumbe at 5:30 pm Marty Grenfell CHIEF EXECUTIVE 16 August 2018 WHAKATĀNE DISTRICT COUNCIL WEDNESDAY, 22 AUGUST 2018 Rangitāiki Community Board - AGENDA TABLE OF CONTENTS ITEM SUBJECT PAGE NO 1 Membership .............................................................................................. 4 2 Apologies .................................................................................................. 4 3 Conflict of Interest ..................................................................................... 4 4 Public Forum ............................................................................................. 4 5 Presentation .............................................................................................. 5 6 Recovery Update ....................................................................................... 5 7 Confirmation of Minutes ........................................................................... 6 7.1 Minutes - Rangitāiki Community Board 11 July 2018 .................................................................. 6 8 Reports ................................................................................................... 13 8.1 Rangitāiki Community Board Activity Report to 31 July 2018 ................................................... 13 8.2 Request for Funding – Waterwheel Historical Trust ................................................................. -
Acidising Case Study – Kawerau Injection Wells
PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 ACIDISING CASE STUDY – KAWERAU INJECTION WELLS Yoong Wei Lim1, Malcolm Grant2, Kevin Brown3, Christine Siega1 and Farrell Siega1 1 Mighty River Power, 283 Vaughan Road, Rotorua, New Zealand 2 MAGAK, 208D Runciman Road, RD2 Pukekohe 2677 New Zealand 3 GEOKEM, P.O. Box 30-125, St Martins, Christchurch, New Zealand e-mail: 1 [email protected]; ABSTRACT Brine at the Kawerau Geothermal Limited (KGL) plant was injected into three injection wells (KA43, KA44 and PK4A). Since plant commissioning, the capacity of the wells declined to the point where well intervention was necessary to avoid loss of generation. Investigative work was initiated with multi-rate injection tests which found that the injection index of the wells had declined significantly to approximately half of pre-utilisation levels. Further geochemistry analysis identified that the most likely source of injectivity decline was scaling due to colloidal silica forming in the formation. KA44 and PK4A were acidised using a standard 10% hydrochloric acid pre-flush followed by a 10%:5% HF:HCL mud acid solution. A 2” coil tubing unit with a 5 hole 45º nozzle bottom hole assembly was used giving a maximum pump rate of 3.5 - 4.0 barrels per minute. Feedzones were acidised one at a time starting with the deeper zones. Post well injection tests identified that the acidising Figure 1: Location of the Kawerau Geothermal Field had recovered the injectivity of the deeper feedzones but the shallower feedzones remain blocked with Silica precipitation at Kawerau has been a concern scale. -
6118 NEW ZEALAND GAZETTE No. 228
6118 NEW ZEALAND GAZETTE No. 228 2. The Whakatane District Council's proposed classification of The Road Classification (New Plymouth City) the roads as set out in the Schedule is approved. Notice No. 1, 1987 3. The Road Classification (Whakatane District) Notice No. 1, Pursuant to Regulation 3 (8) of the Heavy Motor Vehicle 1987, signed the 9th day of November 1987*, issued pursuant Regulations 197 4 and a delegation from the Secretary for to Regulation 3 of the Heavy Motor Vehicle Regulations 1974, Transport, I, Carne Maurice Clissold, Chief Traffic Engineer, which relates to the roads described in the Schedule, is give the following notice: revoked. Notice Schedule 1. This notice may be cited as the Road Classification (New Whakatane District Plymouth City) Notice No. 1, 1987. Roads Classified in Class One. 2. The New Plymouth City Council's proposed classification of the roads as set out in the Schedule is approved. All roads within the urban areas of Whakatane, Edgecumbe, Matata, Ohope, Taneatua, Te Teko and Waimana. Schedule Arawa Road. Roads Classified in Class One Awaiti South Road: from Hallet Road to Matata Road. All roads or parts of roads under the control of New Plymouth City. Awakeri Road: from Awakeri to Edgecumbe. Signed at Wellington this 9th day of December 1987. East Bank Road: from No. 2 State Highway (Pokeno to Wellington via Gisborne) to Edgecumbe. C. M. CLISSOLD, Chief Traffic Engineer. Foster Road: from White Pine Bush Road to Grace Road. (MOT. 28/8/New Plymouth City) lnl940 Galatea Road: from No. 30 State Highway (Te Kuiti to Whakatane via Atiamuri) to Whirinaki Road. -
Kawerau Geothermal System Management Plan
KAWERAU GEOTHERMAL SYSTEM MANAGEMENT PLAN February 2018 Prepared in Collaboration with Executive Summary The Kawerau Geothermal System is located to the north-east of Kawerau within the Bay of Plenty Region, and partially underlies the township of Kawerau. It has been substantially developed for industrial purposes pursuant to resource consents granted by the Bay of Plenty Regional Council (BOPRC) under the Resource Management Act 1991 (RMA). This includes geothermal energy being used for electricity generation, industrial processes (direct heat) and cultural purposes. Bay of Plenty Regional Council has functions under Section 30 of the RMA for the management of geothermal resources. The Bay of Plenty Regional Policy Statement (RPS) requires the preparation of a System Management Plan (SMP) for the Kawerau Geothermal System as a key part of the way in which BOPRC intends to manage the Kawerau Geothermal System. This SMP has been prepared in collaboration with the four consent holders authorised to take more than 1,000 tonnes per day of geothermal fluid from the Kawerau Geothermal System, being: Mercury NZ Limited, Ngāti Tūwharetoa Geothermal Assets Limited, Geothermal Developments Ltd, and Te Ahi O Māui Partnership. Engagement has also been undertaken with tangata whenua and interested and potentially affected parties, including industrial operators using the geothermal resource. The purpose of this SMP is to ensure that the Kawerau Geothermal System is managed in a sustainable manner in accordance with the requirements of the RMA and the relevant policy and planning documents prepared under the RMA. The content anticipated in an SMP is set out in Policy GR7B of the RPS and includes objectives for its overall management and strategies to achieve the objectives The SMP is a non-statutory document and will be periodically reviewed and updated to ensure that it remains relevant and fit for purpose. -
Kawerau AS and Other Blocks
r RECEIVED CLADMIN lq '4. I ~ .,.... r<)l..-- ,.....,..-._ ................ 1 Kawerau AS and other blocks by Sharyn Green This report was commissioned by the Waitangi Tribunal for the claim by JH Fox for Tuwharetoa Te Atua Reretahi Trust Board relating to Te Wai U 0 Tuwharetoa (Wai 21) Any conclusions drawn or opinions expressed are those of the author Introduction My name is Sharyn Green (N gati Maniapoto) and I am employed as a researcher for the Waitangi Tribunal. I have produced research reports for the Waitangi Tribunal on Wai 247, 248, and 238. I have a law degree from the University of Otago in Dunedin and I am an admitted barrister and solicitor of the court as of October 1992. I completed some Maori studies papers while at the University of Otago and tutored Maori language for the department for three years. I was commissioned by the tribunal to produce this report in May 1992. This report concerns an ancillary claim to Wai 62. Wai 62 was lodged with the Waitangi Tribunal by John Henry Fox, Beverly Adlam, and William Savage of the iwi Tuwharetoa ki Kawerau, in 1988. That claim concerns lands confiscated by the Crown pursuant to legislation in the 1860s following the New Zealand wars.1 This ancillary claim to Wai 62 concerns Tasman Pulp and Paper Mill Ltd (Tasman) creating part of an effluent treatment system on land where the rangatira Tuwharetoa had a pa, and features other sites considered significant by Ngati Tuwharetoa. This report is confined to discussing the establishment of this system. -
Putauaki Mt Resistivity Survey
Proceedings 24* New Zealand Geothermal Workshop 2002 PUTAUAKI MT RESISTIVITY SURVEY C.J.BROMLEY Institute of Geological Nuclear Sciences, Taupo, N.Z. SUMMARY - New magnetotelluric resistivity soundings, supplemented by Schlumberger traversing measurements, have been collected in the vicinity of Putauaki (Mt Edgecumbe) to investigate the southern and eastern extent of the Kawerau Geothermal Field. They show that this field is associated with a large area of low resistivity totalling about Approximately 50% of this area is administered by the Putauaki and Te Tahuna Putauaki Trusts, and only a small portion has been tested with exploration drill holes. The volcanic peak of Putauaki itself yrs old) is on the southern boundary of the field. An association is inferred between the magma body feeding this vent and the heat source for the geothermal system yrs old). An area of particularly low resistivities ohm-m at lkm depth) and cold geothermal gas vents geothermometry is located near the centre of the revised low resistivity anomaly, about 1.4 east of the hottest existing Kawerau geothermal wells From this data, a geothermal hydrological model is inferred: a deep upflow, with associated intense hydrothermal alteration, occurs on faults centered beneath the gas vents, and supplies lateral flows to the northwest into the area of present production at Kawerau, as well as to the northeast. 1. INTRODUCTION normal step faults cause this drop in basement depth towards the centre of the Whakatane Fluids from the Kawerau Geothermal Field have Graben (Nairn, 1986). However, Wood and been utilised for process steam (up to 300 Brathwaite (1999) show that the most likely and electricity production (up to by the orientation of local basement faults, based on Tasman Pulp and Paper Mill since 1957 contours of basement elevations in Kawerau (Bloomer, 1997). -
Aspects of the Chronology, Structure and Thermal History of the Kawerau Geothermal Field
Aspects of the Chronology, Structure and Thermal History of the Kawerau Geothermal Field By Sarah Dawn Milicich A thesis submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Geology Victoria University of Wellington School of Geography, Environment and Earth Sciences Wellington, New Zealand 2013 ii „It is what it is‟ id est quod est J.L. Wooden (pers. comm. 2010) iii iv ABSTRACT The development and management of high-temperature geothermal resources for electrical power generation requires accurate knowledge of the local geological conditions, particularly where they impact on the hydrology of the resource. This study is an integrated programme of work designed to develop new perspectives on the geological and structural framework of the Kawerau geothermal resource as a sound basis for field management. Although the geological approaches and techniques utilised in this study have previously been used, their application to an integrated study of a geothermal system in New Zealand has not been previously undertaken. Correlating volcanic and sedimentary stratigraphy in geothermal areas in New Zealand can be challenging due to similarities in lithology and the destruction of distinctive chemical, mineralogical and textural characteristic by hydrothermal alteration. A means to overcoming these issues is to utilise dating to correlate the stratigraphy. Zircons are resistant to the effects of typical hydrothermal conditions and were dated using SIMS techniques (SHRIMP-RG) to retrieve U–Pb ages on zircons. These age data were then used to correlate units across the field, in part aided by correlations to material that had previously been dated from fresh rock by 40Ar/39Ar techniques, and used to redefine the stratigraphic framework for the area.