The Effects of Harmful Algal Blooms on Aquatic Organisms. Reviews In

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Harmful Algal Blooms on Aquatic Organisms. Reviews In This article was downloaded by:[California Digital Library -CDL (CRC journals only) Consortium] [California Digital Library -CDL (CRC journals only) Consortium] On: 21 February 2007 Access Details: [subscription number 758075943] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Reviews in Fisheries Science Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713610918 The Effects of Harmful Algal Blooms on Aquatic Organisms Jan H. Landsberg a a Florida Marine Research Institute, Florida Fish and Wildlife Conservation Commission, 100 Eighth Avenue Southeast, St. Petersburg, FL 33701. To link to this article: DOI: 10.1080/20026491051695 URL: http://dx.doi.org/10.1080/20026491051695 Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. © Taylor and Francis 2007 Volume 10 (Issue #2) 2002 EFFECTS OF ALGAL BLOOMS ON AQUATIC ORGANISMS Reviews in Fisheries Science, 10(2): 113–390 (2002) The Effects of Harmful Algal Blooms on Aquatic Organisms Jan H. Landsberg Florida Marine Research Institute, Florida Fish and Wildlife Conservation Commission, 100 Eighth Avenue Southeast, St. Petersburg, FL 33701 TABLE OF CONTENTS Downloaded By: [California Digital Library -CDL (CRC journals only) Consortium] At: 21:00 21 February 2007 Abstract ...................................................................................... 114 I. Introduction ............................................................................... 115 II. Harmful Algal Blooms .............................................................. 117 III. Routes of Exposure................................................................... 117 A. Direct Exposure .................................................................. 171 1. Intact Cells.................................................................... 171 a. Intracellular Toxins ............................................... 171 b. Extracellular Toxins (Exotoxins) or Exudates .... 173 c. Cell Surface Contact ............................................. 173 2. Lysed Cells ................................................................... 174 B. Indirect Exposure ............................................................... 174 1. Trophic Toxin Transfer, Bioaccumulation, Biomagnification .......................................................... 174 IV. Impacts ...................................................................................... 175 A. Acute ................................................................................... 175 B. Chronic ................................................................................ 176 C. Organisms and Habitats Affected ..................................... 176 V. Toxins and Harmful Mechanisms ............................................ 189 A. Saxitoxins ............................................................................ 191 B. Tetrodotoxin ....................................................................... 204 C. Spirolides............................................................................. 205 D. Brevetoxins ......................................................................... 205 E. Gymnodimine ..................................................................... 213 F. Okadaic acid and Derivatives (Dinophysistoxins) .......... 213 G. Pectenotoxins...................................................................... 216 H. Ciguatoxins ......................................................................... 217 I. Yessotoxins ......................................................................... 223 J. Azaspiracid .......................................................................... 224 K. Hemolysins.......................................................................... 225 1. Dinoflagellates.............................................................. 226 2. Prymnesiophytes .......................................................... 232 L. Domoic Acid ....................................................................... 237 M. Anatoxins ............................................................................ 241 1064-1262 /02/$.50 ©2002 by CRC Press LLC 113 LANDSBERG REVIEWS IN FISHERIES SCIENCE 1. Anatoxin-a .................................................................... 241 2. Anatoxin-a(s) ................................................................ 242 3. Homoanatoxin-a .......................................................... 243 N. Mueggelone ........................................................................ 243 O. Cylindrospermopsin ........................................................... 244 P. Microcystins ........................................................................ 245 Q. Nodularins ........................................................................... 253 R. Reactive Oxygen Species ................................................... 255 1. Chattonella spp............................................................ 256 2. Heterosigma akashiwo................................................. 256 3. Olisthodiscus luteus ..................................................... 257 S. Species with Multiple Toxins ............................................ 257 1. Dinoflagellates.............................................................. 258 Downloaded By: [California Digital Library -CDL (CRC journals only) Consortium] At: 21:00 21 February 2007 2. Cyanobacteria............................................................... 260 T. Species with Uncharacterized Toxins or Bioactive Compounds ......................................................................... 261 1. Dinoflagellates.............................................................. 261 2. Diatoms ........................................................................ 271 3. Raphidophytes ............................................................. 273 4. Prymnesiophytes .......................................................... 273 5. Cyanobacteria............................................................... 275 U. Harmful Species that Cause Mechanical Damage ............. 278 1. Diatoms ........................................................................ 278 2. Silicoflagellates ............................................................. 280 3. Pelagophytes ................................................................ 280 V. Harmful Species and Water Quality ................................... 282 1. Dinoflagellates.............................................................. 282 2. Diatoms ........................................................................ 285 W. Suspected Species with Unidentified Mechanisms........... 285 1. Dinoflagellates.............................................................. 285 2. Ciliates .......................................................................... 287 VI. HABs as Potential Vectors for Pathogens and Stressors in Disease ...................................................................................... 288 A. HABs as Potential Vectors ................................................. 288 B. HABs as Stressors in Disease ............................................ 289 VII. Parasites and Pathogens ........................................................... 292 VIII. Conclusions ............................................................................... 294 Acknowledgments ..................................................................... 295 References.................................................................................. 295 ABSTRACT: This review provides an in-depth survey of the recorded incidences in aquatic organisms of mortality and disease events suspected or known to be caused by microalgal or ciliate blooms, their biotoxins, or their harmful mechanisms. Some 200 species of dinoflagellates, diatoms, raphidophytes, prymnesiophytes, silicoflagellates, cilliates, and cyanobacteria are currently known to be, suspected to be, or have the potential to be toxic or harmful to a wide spectrum of organisms. This review summarizes the current information on toxic or harmful microalgal species that affect aquatic organisms (and, when relevant, those that affect terrestrial organisms, including humans), provides an updated list of such species, cites pertinent case 114 Volume 10 (Issue #2) 2002 EFFECTS OF ALGAL BLOOMS ON AQUATIC ORGANISMS histories, and includes relevant information on harmful or toxic species from freshwater, brackish, and marine ecosystems. It is hoped that this review will provide documentation and reference material suitable
Recommended publications
  • Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
    Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Diseases Affecting Finfish
    Diseases Affecting Finfish Legislation Ireland's Exotic / Disease Name Acronym Health Susceptible Species Vector Species Non-Exotic Listed National Status Disease Measures Bighead carp (Aristichthys nobilis), goldfish (Carassius auratus), crucian carp (C. carassius), Epizootic Declared Rainbow trout (Oncorhynchus mykiss), redfin common carp and koi carp (Cyprinus carpio), silver carp (Hypophtalmichthys molitrix), Haematopoietic EHN Exotic * Disease-Free perch (Percha fluviatilis) Chub (Leuciscus spp), Roach (Rutilus rutilus), Rudd (Scardinius erythrophthalmus), tench Necrosis (Tinca tinca) Beluga (Huso huso), Danube sturgeon (Acipenser gueldenstaedtii), Sterlet sturgeon (Acipenser ruthenus), Starry sturgeon (Acipenser stellatus), Sturgeon (Acipenser sturio), Siberian Sturgeon (Acipenser Baerii), Bighead carp (Aristichthys nobilis), goldfish (Carassius auratus), Crucian carp (C. carassius), common carp and koi carp (Cyprinus carpio), silver carp (Hypophtalmichthys molitrix), Chub (Leuciscus spp), Roach (Rutilus rutilus), Rudd (Scardinius erythrophthalmus), tench (Tinca tinca) Herring (Cupea spp.), whitefish (Coregonus sp.), North African catfish (Clarias gariepinus), Northern pike (Esox lucius) Catfish (Ictalurus pike (Esox Lucius), haddock (Gadus aeglefinus), spp.), Black bullhead (Ameiurus melas), Channel catfish (Ictalurus punctatus), Pangas Pacific cod (G. macrocephalus), Atlantic cod (G. catfish (Pangasius pangasius), Pike perch (Sander lucioperca), Wels catfish (Silurus glanis) morhua), Pacific salmon (Onchorhynchus spp.), Viral
    [Show full text]
  • Parasitic Dinoflagellate Hematodinium Perezi Prevalence in Larval and Juvenile Blue Crabs Callinectes Sapidus from Coastal Bays of Virginia
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 6-6-2019 Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia HJ Small Virginia Institute of Marine Science JP Huchin-Mian Virginia Institute of Marine Science KS Reece Virginia Institute of Marine Science KM Pagenkopp Lohan MJ Butler IV See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons, and the Parasitology Commons Recommended Citation Small, HJ; Huchin-Mian, JP; Reece, KS; Pagenkopp Lohan, KM; Butler, MJ IV; and Shields, JD, Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia (2019). Diseases of Aquatic Organisms, 134, 215-222. 10.3354/dao03371 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors HJ Small, JP Huchin-Mian, KS Reece, KM Pagenkopp Lohan, MJ Butler IV, and JD Shields This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/1428 Vol. 134: 215–222, 2019 DISEASES OF AQUATIC ORGANISMS Published online June 6 https://doi.org/10.3354/dao03371 Dis Aquat Org OPENPEN ACCESSCCESS Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia H. J. Small1,*, J. P. Huchin-Mian1,3, K.
    [Show full text]
  • Akashiwo Sanguinea
    Ocean ORIGINAL ARTICLE and Coastal http://doi.org/10.1590/2675-2824069.20-004hmdja Research ISSN 2675-2824 Phytoplankton community in a tropical estuarine gradient after an exceptional harmful bloom of Akashiwo sanguinea (Dinophyceae) in the Todos os Santos Bay Helen Michelle de Jesus Affe1,2,* , Lorena Pedreira Conceição3,4 , Diogo Souza Bezerra Rocha5 , Luis Antônio de Oliveira Proença6 , José Marcos de Castro Nunes3,4 1 Universidade do Estado do Rio de Janeiro - Faculdade de Oceanografia (Bloco E - 900, Pavilhão João Lyra Filho, 4º andar, sala 4018, R. São Francisco Xavier, 524 - Maracanã - 20550-000 - Rio de Janeiro - RJ - Brazil) 2 Instituto Nacional de Pesquisas Espaciais/INPE - Rede Clima - Sub-rede Oceanos (Av. dos Astronautas, 1758. Jd. da Granja -12227-010 - São José dos Campos - SP - Brazil) 3 Universidade Estadual de Feira de Santana - Departamento de Ciências Biológicas - Programa de Pós-graduação em Botânica (Av. Transnordestina s/n - Novo Horizonte - 44036-900 - Feira de Santana - BA - Brazil) 4 Universidade Federal da Bahia - Instituto de Biologia - Laboratório de Algas Marinhas (Rua Barão de Jeremoabo, 668 - Campus de Ondina 40170-115 - Salvador - BA - Brazil) 5 Instituto Internacional para Sustentabilidade - (Estr. Dona Castorina, 124 - Jardim Botânico - 22460-320 - Rio de Janeiro - RJ - Brazil) 6 Instituto Federal de Santa Catarina (Av. Ver. Abrahão João Francisco, 3899 - Ressacada, Itajaí - 88307-303 - SC - Brazil) * Corresponding author: [email protected] ABSTRAct The objective of this study was to evaluate variations in the composition and abundance of the phytoplankton community after an exceptional harmful bloom of Akashiwo sanguinea that occurred in Todos os Santos Bay (BTS) in early March, 2007.
    [Show full text]
  • Argopecten Irradians*
    MARINE ECOLOGY PROGRESS SERIES I Vol. 74: 47-59, 1991 Published July 18 Mar. Ecol. Prog. Ser. The eelgrass canopy: an above-bottom refuge from benthic predators for juvenile bay scallops Argopecten irradians* David G.Pohle, V. Monica Bricelj8*,Zaul Garcia-Esquivel Marine Sciences Research Center, State University of New York, Stony Brook, New York 11794-5000, USA ABSTRACT: Juvenile bay scallops Argopecten irradians commonly attach to shoots of eelgrass Zostera marina using byssal threads. Although this behavior has long been recognized, its adaptive value is poorly understood. This study examined (1) the size-specif~cnature of scallop attachment on eelgrass, and (2) the possible role of vertical attachment in providing refuge from benthic predators. Laboratory experiments using artificial eelgrass showed strong, inverse relationships between scallop size (over the range 6 to 20 mm) and several measures of attachment performance (percent attachment, rate of attachment, and height-above-bottom attained). Field experiments in which 10 to 15 mm scallops were tethered to natural eelgrass in Lake Montauk, Long Island, New York (USA), demonstrated a dramatic, highly significant enhancement of scallop survival at greater heights of attachment. Scallops tethered at 20 to 35 cm above bottom experienced > 59 O/O survival over 4 d, compared to < l1 O/O sunrival near the sediment surface. A similar pattern was observed in laboratory tethering experiments using trans- planted natural eelgrass and 3 crab predators common in mid-Atlantic embayments: Carcinus maenas, Libinia dubia, and Dyspanopeus sayi. The refuge value of vertical attachment was found, however, to be less with D. sayi than with the other predators tested, since individuals of ths species climbed eelgrass to feed on scallops in the upper canopy.
    [Show full text]
  • Nucleotide Amino Acid Size (Nt) #Orfs Marnavirus Heterosigma Akashiwo Heterosigma Akashiwo RNA Heterosigma Lang Et Al
    Supplementary Table 1: Summary of information for all viruses falling within the seven Marnaviridae genera in our analyses. Accession Genome Genus Species Virus name Strain Abbreviation Source Country Reference Nucleotide Amino acid Size (nt) #ORFs Marnavirus Heterosigma akashiwo Heterosigma akashiwo RNA Heterosigma Lang et al. , 2004; HaRNAV AY337486 AAP97137 8587 One Canada RNA virus 1 virus akashiwo Tai et al. , 2003 Marine single- ASG92540 Moniruzzaman et Classification pending Q sR OV 020 KY286100 9290 Two celled USA ASG92541 al ., 2017 eukaryotes Marine single- Moniruzzaman et Classification pending Q sR OV 041 KY286101 ASG92542 9328 One celled USA al ., 2017 eukaryotes APG78557 Classification pending Wenzhou picorna-like virus 13 WZSBei69459 KX884360 9458 One Bivalve China Shi et al ., 2016 APG78557 Classification pending Changjiang picorna-like virus 2 CJLX30436 KX884547 APG79001 7171 One Crayfish China Shi et al ., 2016 Beihai picorna-like virus 57 BHHQ57630 KX883356 APG76773 8518 One Tunicate China Shi et al ., 2016 Classification pending Beihai picorna-like virus 57 BHJP51916 KX883380 APG76812 8518 One Tunicate China Shi et al ., 2016 Marine single- ASG92530 Moniruzzaman et Classification pending N OV 137 KY130494 7746 Two celled USA ASG92531 al ., 2017 eukaryotes Hubei picorna-like virus 7 WHSF7327 KX884284 APG78434 9614 One Pill worm China Shi et al ., 2016 Classification pending Hubei picorna-like virus 7 WHCC111241 KX884268 APG78407 7945 One Insect China Shi et al ., 2016 Sanxia atyid shrimp virus 2 WHCCII13331 KX884278 APG78424 10445 One Insect China Shi et al ., 2016 Classification pending Freshwater atyid Sanxia atyid shrimp virus 2 SXXX37884 KX883708 APG77465 10400 One China Shi et al ., 2016 shrimp Labyrnavirus Aurantiochytrium single Aurantiochytrium single stranded BAE47143 Aurantiochytriu AuRNAV AB193726 9035 Three4 Japan Takao et al.
    [Show full text]
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • Mote Marine Laboratory Red Tide Studies
    MOTE MARINE LABORATORY RED TIDE STUDIES FINAL REPORT FL DEP Contract MR 042 July 11, 1994 - June 30, 1995 Submitted To: Dr. Karen Steidinger Florida Marine Research Institute FL DEPARTMENT OF ENVIRONMENTAL PROTECTION 100 Eighth Street South East St. Petersburg, FL 33701-3093 Submitted By: Dr. Richard H. Pierce Director of Research MOTE MARINE LABORATORY 1600 Thompson Parkway Sarasota, FL 34236 Mote Marine Laboratory Technical Report No. 429 June 20, 1995 This document is printed on recycled paper Suggested reference Pierce RH. 1995. Mote Marine Red Tide Studies July 11, 1994 - June 30, 1995. Florida Department of Environmental Pro- tection. Contract no MR 042. Mote Marine Lab- oratory Technical Report no 429. 64 p. Available from: Mote Marine Laboratory Library. TABLE OF CONTENTS I. SUMMARY. 1 II. CULTURE MAINTENANCE AND GROWTH STUDIES . 1 Ill. ECOLOGICAL INTERACTION STUDIES . 2 A. Brevetoxin Ingestion in Black Seabass B. Evaluation of Food Carriers C. First Long Term (14 Day) Clam Exposure With Depuration (2/6/95) D. Second Long Term (14 Day) Clam Exposure (3/21/95) IV. RED TIDE FIELD STUDIES . 24 A. 1994 Red Tide Bloom (9/16/94 - 1/4/95) B. Red Tide Bloom (4/13/94 - 6/16/95) C. Red Tide Pigment D. Bacteriological Studies E. Brevetoxin Analysis in Marine Organisms Exposed to Sublethal Levels of the 1994 Natural Red Tide Bloom V. REFERENCES . 61 Tables Table 1. Monthly Combined Production and Use of Laboratory C. breve Culture. ....... 2 Table 2. Brevetoxin Concentration in Brevetoxin Spiked Shrimp and in Black Seabass Muscle Tissue and Digestive Tract Following Ingestion of the Shrimp ...............
    [Show full text]
  • Determination of the Abundance and Population Structure of Buccinum Undatum in North Wales
    Determination of the Abundance and Population Structure of Buccinum undatum in North Wales Zara Turtle Marine Environmental Protection MSc Redacted version September 2014 School of Ocean Sciences Bangor University Bangor University Bangor Gwynedd Wales LL57 2DG Declaration This work has not previously been accepted in substance for any degree and is not being currently submitted for any degree. This dissertation is being submitted in partial fulfilment of the requirement of the M.Sc. in Marine Environmental Protection. The dissertation is the result of my own independent work / investigation, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references and a bibliography is appended. I hereby give consent for my dissertation, if accepted, to be made available for photocopying and for inter-library loan, and the title and summary to be made available to outside organisations. Signed: Date: 12/09/2014 i Determination of the Abundance and Population Structure of Buccinum undatum in North Wales Zara Turtle Abstract A mark-recapture study and fisheries data analysis for the common whelk, Buccinum undatum, was undertaken for catches on a commercial fishing vessel operating from The fishing location, north Wales, from June-July 2014. Laboratory experiments were conducted on B.undatum to investigate tag retention rates and behavioural responses after being exposed to a number of treatments. Thick rubber bands were found to have a 100 % tag retention rate after four months. Riddling, tagging and air exposure do not affect the behavioural responses of B.undatum. The mark-recapture study was used to estimate population size and movement. 4007 whelks were tagged with thick rubber bands over three tagging events.
    [Show full text]
  • Reported Siphonostomatoid Copepods Parasitic on Marine Fishes of Southern Africa
    REPORTED SIPHONOSTOMATOID COPEPODS PARASITIC ON MARINE FISHES OF SOUTHERN AFRICA BY SUSAN M. DIPPENAAR1) School of Molecular and Life Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa ABSTRACT Worldwide there are more than 12000 species of copepods known, of which 4224 are symbiotic. Most of the symbiotic species belong to two orders, Poecilostomatoida (1771 species) and Siphonos- tomatoida (1840 species). The order Siphonostomatoida currently consists of 40 families that are mostly marine and infect invertebrates as well as vertebrates. In a report on the status of the marine biodiversity of South Africa, parasitic invertebrates were highlighted as taxa about which very little is known. A list was compiled of all the records of siphonostomatoids of marine fishes from southern African waters (from northern Angola along the Atlantic Ocean to northern Mozambique along the Indian Ocean, including the west coast of Madagascar and the Mozambique channel). Quite a few controversial reports exist that are discussed. The number of species recorded from southern African waters comprises a mere 9% of the known species. RÉSUMÉ Dans le monde, il y a plus de 12000 espèces de Copépodes connus, dont 4224 sont des symbiotes. La plupart de ces espèces symbiotes appartiennent à deux ordres, les Poecilostomatoida (1771 espèces) et les Siphonostomatoida (1840 espèces). L’ordre des Siphonostomatoida comprend actuellement 40 familles, qui sont pour la plupart marines, et qui infectent des invertébrés aussi bien que des vertébrés. Dans un rapport sur l’état de la biodiversité marine en Afrique du Sud, les invertébrés parasites ont été remarqués comme étant très peu connus.
    [Show full text]
  • Assessing the Potential for Range Expansion of the Red Tide Algae Karenia Brevis
    Nova Southeastern University NSUWorks All HCAS Student Capstones, Theses, and Dissertations HCAS Student Theses and Dissertations 8-7-2020 Assessing the Potential for Range Expansion of the Red Tide Algae Karenia brevis Edward W. Young Follow this and additional works at: https://nsuworks.nova.edu/hcas_etd_all Part of the Marine Biology Commons Share Feedback About This Item NSUWorks Citation Edward W. Young. 2020. Assessing the Potential for Range Expansion of the Red Tide Algae Karenia brevis. Capstone. Nova Southeastern University. Retrieved from NSUWorks, . (13) https://nsuworks.nova.edu/hcas_etd_all/13. This Capstone is brought to you by the HCAS Student Theses and Dissertations at NSUWorks. It has been accepted for inclusion in All HCAS Student Capstones, Theses, and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Capstone of Edward W. Young Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Marine Science Nova Southeastern University Halmos College of Arts and Sciences August 2020 Approved: Capstone Committee Major Professor: D. Abigail Renegar, Ph.D. Committee Member: Robert Smith, Ph.D. This capstone is available at NSUWorks: https://nsuworks.nova.edu/hcas_etd_all/13 Nova Southeastern Univeristy Halmos College of Arts and Sciences Assessing the Potential for Range Expansion of the Red Tide Algae Karenia brevis By Edward William Young Submitted to the Faculty of Halmos College of Arts and Sciences in partial fulfillment of the requirements for the degree of Masters of Science with a specialty in: Marine Biology Nova Southeastern University September 8th, 2020 1 Table of Contents 1.
    [Show full text]