Parasitic Dinoflagellate Hematodinium Perezi Prevalence in Larval and Juvenile Blue Crabs Callinectes Sapidus from Coastal Bays of Virginia

Total Page:16

File Type:pdf, Size:1020Kb

Parasitic Dinoflagellate Hematodinium Perezi Prevalence in Larval and Juvenile Blue Crabs Callinectes Sapidus from Coastal Bays of Virginia W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 6-6-2019 Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia HJ Small Virginia Institute of Marine Science JP Huchin-Mian Virginia Institute of Marine Science KS Reece Virginia Institute of Marine Science KM Pagenkopp Lohan MJ Butler IV See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons, and the Parasitology Commons Recommended Citation Small, HJ; Huchin-Mian, JP; Reece, KS; Pagenkopp Lohan, KM; Butler, MJ IV; and Shields, JD, Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia (2019). Diseases of Aquatic Organisms, 134, 215-222. 10.3354/dao03371 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors HJ Small, JP Huchin-Mian, KS Reece, KM Pagenkopp Lohan, MJ Butler IV, and JD Shields This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/1428 Vol. 134: 215–222, 2019 DISEASES OF AQUATIC ORGANISMS Published online June 6 https://doi.org/10.3354/dao03371 Dis Aquat Org OPENPEN ACCESSCCESS Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia H. J. Small1,*, J. P. Huchin-Mian1,3, K. S. Reece1, K. M. Pagenkopp Lohan1,4, M. J. Butler IV2, J. D. Shields1 1Virginia Institute of Marine Science, William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA 2Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA 3Present address: Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico 4Present address: Marine Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA ABSTRACT: The parasitic dinoflagellate Hematodinium perezi infects the American blue crab Callinectes sapidus and other decapods along the Eastern seaboard and Gulf of Mexico coast of the USA. Large juvenile and adult blue crabs experience high mortality during seasonal out- breaks of H. perezi, but less is known about its presence in the early life history stages of this host. We determined the prevalence of H. perezi in megalopae and early benthic juvenile crabs from multiple locations along the Virginia portion of the Delmarva Peninsula. The DNA of H. perezi was not detected in any megalopae collected from several locations within the oceanic coastal bay complex in which H. perezi is found at high prevalence levels. However, prevalence levels were high in early benthic juveniles from 2 oceanic coastal embayments: South Bay and Cobb Bay. Prevalence levels were lower at locations within Chesapeake Bay, including Cherrystone Creek, Hungars Creek, and Pungoteague Creek. Sampling over different seasons and several consecu- tive years indicates that disease transmission occurs rapidly after megalopae settle in high-salinity bays along the Delmarva Peninsula during the late summer and fall. Infected juvenile crabs can overwinter with the parasite and, when subjected to increasing water temperatures in spring, infections progress rapidly, culminating in transmission to other crabs in late spring and early summer. In high-salinity embayments, H. perezi can reach high prevalence levels and may signif- icantly affect recruitment of juvenile blue crabs into the adult fishery. KEY WORDS: Dinoflagellate · Parasite · Crustacea · Endemic · Infection 1. INTRODUCTION USA. Fishing pressure and habitat loss contribute greatly to those declines, but disease and environmen- The blue crab Callinectes sapidus is an abundant, tal processes affecting blue crab populations have not highly mobile, benthic predator with a complex life been thoroughly researched, although both have con- history. The species is distributed from Nova Scotia tributed to declines and changes in population cycles (Canada) to Brazil (Williams 1984) and supports eco- in other crustacean fisheries (Shields 2012). In parti - nomically important fisheries along the Eastern cular, few studies have examined the effects of patho- seaboard and Gulf of Mexico coast of the USA. In the gens upon settlement of postlarvae or new recruits, yet last decade, however, there have been major declines pathogens are often most prevalent in and damaging in harvest yields of many blue crab fisheries in the to the early juvenile stages of crustaceans. © The authors 2019. Open Access under Creative Commons by *Corresponding author: [email protected] Attribution Licence. Use, distribution and reproduction are un - restricted. Authors and original publication must be credited. Publisher: Inter-Research · www.int-res.com 216 Dis Aquat Org 134: 215–222, 2019 The blue crab serves as a host for a variety of 2. MATERIALS AND METHODS pathogens, including viruses, bacteria, fungi, proto- zoa, helminths, and other crustaceans (Shields & 2.1. Collection and treatment of Overstreet 2007). Most pathogens cause little patho- experimental animals logical alteration to the host, but several have the capacity to cause serious disease and significantly In 2008 and 2009, juvenile blue crabs were affect host populations and their associated fisheries. obtained from colleagues studying the relationship For instance, the parasitic dinoflagellate Hemato- between submerged aquatic vegetation (SAV) cover dinium perezi causes widespread blue crab mortali- and juvenile crab density (Ralph et al. 2013). Crabs ties during annual seasonal outbreaks (Messick were collected from Cherrystone Creek and Hungars 1994, Messick & Shields 2000, Lee & Frischer 2004). Creek, 2 moderate-salinity (18−22 psu) locations on The parasite was first documented in blue crabs by the Chesapeake Bay side of the Delmarva Peninsula Newman & Johnson (1975) and was later shown to (Fig. 1), by suction sampling, transported to the Vir- have a broad distribution on the Eastern seaboard of ginia Institute of Marine Science (VIMS), and frozen the USA and Gulf of Mexico coast (Messick & Shields at −20°C. Samples were then thawed and sorted, and 2000, Pagenkopp Lohan et al. 2013). The parasite is individual crabs were measured (carapace width endemic in crabs living in areas of high salinity [CW] including epibranchial spines) prior to their (>20 psu), and infections are rarely found in waters preservation in 70% ethanol. In 2011 and 2012, early where salinity is below 18 psu (Newman & Johnson benthic juvenile crabs were collected from SAV habi- 1975, Messick & Sindermann 1992, Messick & tats in Cherrystone Creek and South Bay, a high- Shields 2000). The parasite also infects several other salinity (32− 34 psu) oceanic coastal embayment on crustacean species, including decapods and amphi - the Delmarva Peninsula. Crabs were captured using pods (Johnson 1986, Messick & Shields 2000, Shep- dip nets and immediately stored in coolers contain- pard et al. 2003, Pagenkopp Lohan et al. 2012). ing ambient seawater for transport to VIMS for H. perezi can be highly pathogenic in its blue crab assessment. Upon return to the laboratory, crabs host, with mortality rates up to 87% in naturally and were preserved whole in 95% ethanol. All subse- experimentally infected mature blue crabs (Messick & quent collections from SAV habitats (2014−2017) Shields 2000, Shields & Squyars 2000). Infections and were conducted in the same manner. Over this crab mortalities have historically been reported from period, crabs were also collected from Cobb Bay, large juvenile and adult crabs due to their ease of cap- which abuts South Bay. In fall 2016, juvenile crabs ture in commercial traps; few studies have examined were also collected from Pungoteague Creek and larval and early benthic juvenile stages. Messick Gwynn’s Island, 2 moderate-salinity locations (16− (1994) documented prevalence levels up to 100% in 18 psu) on the Chesapeake Bay side of the Delmarva early benthic juveniles sampled in 1992 and 1993 Peninsula and on the western shore of Chesapeake from coastal bays near Ocean City, Maryland, and Bay, respectively. At the laboratory, crabs were Franklin City, Virginia. Little is known about whether measured and assessed for obvious in juries prior to the parasite can infect larval stages. Sullivan et al. dissection. They were then bisected sagittally along (2016) and Sullivan & Neigel (2017) detected Hemato- the carapace length using a sterile razor blade on a dinium DNA associated with blue crab megalopae clean glass microslide. Half of the crab was placed collected from inshore locations in Louisiana, but their into Bouin’s solution and the other half was placed studies did not demonstrate whether the positive PCR into 95% ethanol for later processing. The dissection assays were associated with internal infections. smear was then stained with 0.3% neutral red in The purpose of the current study was to determine physiological saline and assessed for the presence of if megalopae had infections of H. perezi and to assess the parasite. the prevalence levels in early benthic juveniles from Megalopae were collected from several high-salin- both intermediate- and high-salinity locations along ity (28−34 psu) locations
Recommended publications
  • Evidence for Sperm Limitation in the Blue Crab, Callinectes Sapidus
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 3-2003 Evidence for sperm limitation in the blue crab, Callinectes sapidus AH Hines PR Jivoff PJ Bushmann J van Montfrans Virginia Institute of Marine Science et al Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Hines, AH; Jivoff, PR; Bushmann, PJ; van Montfrans, J; and al, et, Evidence for sperm limitation in the blue crab, Callinectes sapidus (2003). Bulletin of Marine Science, 72(2), 287-310. https://scholarworks.wm.edu/vimsarticles/1521 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BULLETIN OF MARINE SCIENCE, 72(2): 287±310, 2003 EVIDENCE FOR SPERM LIMITATION IN THE BLUE CRAB, CALLINECTES SAPIDUS Anson H. Hines, Paul R. Jivoff, Paul J. Bushmann, Jacques van Montfrans, Sherry A. Reed, Donna L. Wolcott and Thomas G. Wolcott ABSTRACT Reproductive success of female blue crabs may be limited by the amount of sperm received during the female's single, lifetime mating. Sperm must be stored in seminal receptacles until eggs are produced and fertilized months to years after mating. Further, intense ®shing pressure impacts male abundance, male size and population sex ratio, which affect ejaculate quantity. We measured temporal variation in seminal receptacle contents in relation to brood production for two stocks differing in both ®shing pressure on males and latitudinal effects on repro- ductive season: Chesapeake Bay, Maryland and Virginia, experienced intensive ®shing and relatively short reproductive season; and the Indian River Lagoon, Florida, experienced lower exploitation and longer reproductive season.
    [Show full text]
  • First Record of the Larvae of Tanner Crab Chionoecetes Bairdi in the Chukchi Sea: a Future Northward Expansion in the Title Arctic?
    First record of the larvae of tanner crab Chionoecetes bairdi in the Chukchi Sea: A future northward expansion in the Title Arctic? Author(s) Landeira, Jose M.; Matsuno, Kohei; Tanaka, Yuji; Yamaguchi, Atsushi Polar Science, 16, 86-89 Citation https://doi.org/10.1016/j.polar.2018.02.002 Issue Date 2018-06 Doc URL http://hdl.handle.net/2115/78322 © 2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license Rights https://creativecommons.org/licenses/by-nc-nd/4.0/ Rights(URL) https://creativecommons.org/licenses/by-nc-nd/4.0/ Type article (author version) File Information Polar Science 16_86-89.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 1 First record of the larvae of tanner crab Chionoecetes bairdi in the Chukchi Sea: a 2 future northward expansion in the Arctic? 3 Jose M. Landeiraa, *, Kohei Matsunob, Yuji Tanakaa, Atsushi Yamaguchib, c 4 aDepartment of Ocean Sciences, Tokyo University of Marine Science and Technology, 5 4-5-7 Konan, Minato, Tokyo 108-8477, Japan. 6 bLaboratory of Marine Biology, Graduate School of Fisheries Science, Hokkaido 7 University, 3-1-1 Minatomachi, Hakodate, Hokkaido 041-8611, Japan. 8 cArctic Research Center, Hokkaido University, Kita-21 Nishi-11 Kita-ku, Sapporo, 9 Japan 001-0021, Japan 10 *Corresponding author: [email protected] 11 Keywords: Global warming, Fishery, Larval transport, Distribution, Connectivity. 12 Abstract 13 In the Bering Sea, warming and reduction of summer sea-ice cover are driving 14 species ranges towards the Arctic. Tanner crab, Chionoecetes bairdi, is a commercially 15 important species in the SE Bering Sea with a northerly range margin in 62ºN.
    [Show full text]
  • First Record of the Larvae of Tanner Crab Chionoecetes Bairdi in the Chukchi T Sea: a Future Northward Expansion in the Arctic?
    Polar Science 16 (2018) 86–89 Contents lists available at ScienceDirect Polar Science journal homepage: www.elsevier.com/locate/polar First record of the larvae of tanner crab Chionoecetes bairdi in the Chukchi T Sea: A future northward expansion in the Arctic? ∗ Jose M. Landeiraa, , Kohei Matsunob, Yuji Tanakaa, Atsushi Yamaguchib,c a Department of Ocean Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan b Laboratory of Marine Biology, Graduate School of Fisheries Science, Hokkaido University, 3-1-1 Minatomachi, Hakodate, Hokkaido 041-8611, Japan c Arctic Research Center, Hokkaido University, Kita-21 Nishi-11 Kita-ku, Sapporo, 001-0021, Japan ARTICLE INFO ABSTRACT Keywords: In the Bering Sea, warming and reduction of summer sea-ice cover are driving species ranges towards the Arctic. Global warming Tanner crab, Chionoecetes bairdi, is a commercially important species in the SE Bering Sea with a northerly range Fishery margin in 62ºN. In this paper, using plankton samples collected in the Pacific sub-Arctic/Arctic sector during Larval transport summer, we report for the first time the presence of larval stages (zoea II) of C. bairdi far from its northern limit Distribution of the distribution, in the south of St. Lawrence Island during 1991, and even crossing the Bering Strait into the Connectivity Chukchi Sea during 1992. We suggest that the long planktonic phase (3–5 months), in combination with the oceanographic circulation, may facilitate eventual long-distance transport. 1. Introduction the outer continental shelf of the Bering Sea, at depths > 100 m, and far north as 62ºN (Fig.
    [Show full text]
  • ABSTRACT Dinoflagellate Parasites in the Hematodinium Genus Have
    ABSTRACT Title of Document: DEVELOPMENT, VALIDATION AND APPLICATION OF A QUANTITATIVE POLYMERASE CHAIN REACTION ASSAY TO ASSESS ENVIRONMENTAL SAMPLES FOR HEMATODINIUM PEREZI PREVALENCE Ammar W. Hanif, MS, 2012 Directed By: Assistant Professor Eric J. Schott, Institute of Marine and Environmental Technology, University of Maryland Center of Environmental Science Associate Professor Rosemary Jagus, Co- advisor, Institute of Marine and Environmental Technology, University of Maryland Center of Environmental Science Dinoflagellate parasites in the Hematodinium genus have emerged as important pathogens of economically important crustaceans worldwide, causing significant economic losses to fisheries and aquaculture. An understanding of the routes of infection in blue crab (Callinectes sapidus) populations would be facilitated by an improved knowledge of environmental reservoirs. A previously used PCR assay, based on small subunit rRNA sequences, lacked the specificity needed for Hematodinium perezi detection of environmental samples. Therefore a quantitative PCR assay based on the internal transcribed spacer 2 (ITS2) region of H. perezi rRNA genes was developed, validated, and applied to examine temporal and spatial incidences of environmental reservoirs in Delmarva coastal bays. H. perezi was detected in sediment and water in several Delmarva coastal bays, as well as the host, C. sapidus. Results suggest the existence of localized sediment reservoirs in areas where hydrological and geophysical features allow for the formation of cell deposits. DEVELOPMENT, VALIDATION, AND APPLICATION OF A QUANTITATIVE POLYMERASE CHAIN REACTION ASSAY TO ASSESS HEMATODINIUM PEREZI PREVALENCE IN ENVIRONMENTAL SAMPLES By Ammar W. Hanif Thesis submitted to the Faculty of the Graduate School of the University of Maryland College Park, in partial fulfillment of the requirements for the degree of Master of Science 2012 Advisory committee: Professor Eric J.
    [Show full text]
  • Chionoecetes Bairdi)
    MARKETABILITY TESTING OF TANNER CRAB (CHIONOECETES BAIRDI) INFECTED WITH THE BITTER CRAB DINOFLAGELLATE (HEMATODINIUM SP) by Ken Imamura and Doug Woodby Regional Information Report1 No. 1J94-01 Alaska Department of Fish and Game Commercial Fisheries Management and Development Division P.O. Box 240020 Douglas, Alaska 99824-0020 January 1994 1 The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Commercial Fisheries Management and Development Division. AUTHORS Ken Imamura is Assistant Shellfish Biologist in Region I for the Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, P.O. Box 240020, Douglas, AK 99824 Doug Woodby is the Region I Shellfish Biometrician for the Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, P.O. Box 240020, Douglas, AK 99824 ACKNOWLEDGEMENTS The authors would like to thank the following people for their cooperation and assistance in the collection and analysis of the data presented in this document.
    [Show full text]
  • Potential Impacts to Snow Crab (Chionoecetes Opilio) in Warming Waters of the Bering Sea and ​ ​ Possible Management Solutions
    Potential Impacts to Snow Crab (Chionoecetes opilio) in Warming Waters of the Bering Sea and ​ ​ Possible Management Solutions Captain: Zoey Kriegmont Laurie Balstad Sienna Hanna Tomás Mesa-Mueller McLain Sidmore Team: Get Nauti Juneau-Douglas High School 10014 Crazy Horse Drive Juneau, AK 99801 Primary Contact: Zoey Kriegmont [email protected] Coaches: Megan Behnke & Katharine Nalven [email protected] [email protected] “This paper was written as part of the Alaska Ocean Sciences Bowl high school competition. The conclusions in this report are solely those of the student authors.” Abstract The climate of the Bering Sea is both extremely variable, and altering as result of climate change.Water temperatures are increasing and the ice sheets are melting causing great alterations to the ecosystem and the species living in the Bering Sea. One such species dependent on this volatile environment is the snow crab (Chionoecetes opilio), which represents one of the most valuable fisheries in Alaska. Management of ​ ​ this species has been extremely difficult due to complex migration patterns and often unstable populations. These have resulted in frequent crashes of the fishery that have proved detrimental to communities reliant on the species. The niche of the snow crab within the larger Bering Sea ecosystem, and its reliance on the volatile environmental conditions in the region will be explored as well as possible effects of warming temperatures on their movements and populations examined. In this paper, we consider the importance of the snow crab both to the Bering Sea and to the larger worldwide economy as well as explore different management plans that have been utilized worldwide and their comparative effectiveness.
    [Show full text]
  • 11 Shields FISH 98(1)
    139 Abstract.–On the eastern seaboard of Mortality and hematology of blue crabs, the United States, populations of the blue crab, Callinectes sapidus, experi- Callinectes sapidus, experimentally infected ence recurring outbreaks of a parasitic dinoflagellate, Hematodinium perezi. with the parasitic dinoflagellate Epizootics fulminate in summer and autumn causing mortalities in high- Hematodinium perezi* salinity embayments and estuaries. In laboratory studies, we experimentally investigated host mortality due to the Jeffrey D. Shields disease, assessed differential hemato- Christopher M. Squyars logical changes in infected crabs, and Department of Environmental Sciences examined proliferation of the parasite. Virginia Institute of Marine Science Mature, overwintering, nonovigerous The College of William and Mary female crabs were injected with 103 or P.O. Box 1346, Gloucester Point, VA 23602, USA 105 cells of H. perezi. Mortalities began E-mail address (for J. D. Shields): [email protected] 14 d after infection, with a median time to death of 30.3 ±1.5 d (SE). Sub- sequent mortality rates were greater than 86% in infected crabs. A relative risk model indicated that infected crabs were seven to eight times more likely to Hematodinium perezi is a parasitic larger, riverine (“bayside”) fishery; die than controls and that decreases in total hemocyte densities covaried signif- dinoflagellate that proliferates in it appears most detrimental to the icantly with mortality. Hemocyte densi- the hemolymph of several crab spe- coastal (“seaside”) crab fisheries. ties declined precipitously (mean=48%) cies. In the blue crab, Callinectes Outbreaks of infestation by Hema- within 3 d of infection and exhibited sapidus, H. perezi is highly patho- todinium spp.
    [Show full text]
  • Estimating Natural Mortality and Egg Production of Snow Crab Chionoecetes Opilio Adult Females
    Vol. 18: 261–270, 2013 AQUATIC BIOLOGY Published online June 26 doi: 10.3354/ab00513 Aquat Biol Estimating natural mortality and egg production of snow crab Chionoecetes opilio adult females Hilaire Drouineau1,2,*, Bernard Sainte-Marie1, Daniel Duplisea1 1Pêches et Océans Canada, Institut Maurice-Lamontagne, 850 route de la Mer, C.P. 1000 Mont-Joli, Québec G5H3Z4, Canada 2Present address: Irstea, UREPBX, 50 avenue de Verdun, 33 612 CESTAS Cedex, France ABSTRACT: The natural mortality rate is a key parameter in ecology and fisheries, but it may be difficult to estimate as it is highly variable and often confounded with other factors such as fishing mortality and migration. This is especially true for crustaceans in general, as age determination is problematic, and for snow crabs Chionoecetes opilio in particular because density-dependent pro- cesses may lead to highly variable mortality rates across life history stages. In this context, we developed an original method to estimate the natural mortality rate of adult (i.e. terminally molted) female snow crab, and its consequences on egg production. This new method relies on shell condition, carapace width and abundance of adult females and was applied to a time series (1991–2012) of annual trawl survey data for a snow crab population in the Gulf of St. Lawrence, eastern Canada. Two natural mortality estimates were provided by the method depending on 2 distinct assumptions about the survey. Both estimates (0.66 and 0.78 yr−1) were high compared to previous estimates for snow crab. These values imply that female life expectancy after terminal molt was short and that primiparous females (first-time spawners) contributed a large share (at least 81%) of the total number of eggs produced by the case-study population over the period 1992 to 2010.
    [Show full text]
  • A Review of the Impact of Diseases on Crab and Lobster Fisheries
    A Review Of The Impact Of Diseases On Crab And Lobster Fisheries Jeffrey D. Shields Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA 23062 Abstract Diseases are a natural component of crustacean populations. Background levels of various agents are expected in fished populations, and there is good reason to establish baseline levels of pathogens in exploited fisheries before they become a problem. Such baselines are often difficult to fund or publish; nonetheless, outbreaks are an integral feature of heavily exploited populations. Mortalities or other problems can arise when an outbreak occurs, and all too often the underlying causes of an outbreak are poorly understood. A variety of stressors can lead to outbreaks of disease or contribute to their severity. Pollution, poor water quality, hypoxia, temperature extremes, overexploitation have all been implicated in various outbreaks. This review focuses on epidemic diseases of commercially important crabs and lobsters as well as a few examples of other disease issues in crustaceans that are ecologically important, but not of commercial significance. Key words: pathogens, crustaceans, mortality, Carcinonemertes, PaV1, overfishing, Rhizo- cephala, Paramoeba Introduction Pathogens cause direct and indirect losses to fish were thought to contain presumptive crustacean fisheries. Direct losses are obvi- toxins (Magnien 2001). At the time, the ous, resulting in morbidity or mortality to scare threatened the commercial fishing in- the fished species, but they can be difficult dustry of Chesapeake Bay because consum- to assess. However, mortality events can be ers did not purchase fish from the region. widespread and can even damage the socio- economics of impacted fishing communities, Direct losses are most visible to the fishery such as the lobster mortality event in Long because the outcome is usually morbidity or Island Sound during 1999 (Pearce and mortality to the targeted component of the Balcom 2005).
    [Show full text]
  • Prevalence of Blue Crab (Callinectes Sapidus) Diseases, Parasites, And
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2014 Prevalence of Blue Crab (Callinectes sapidus) Diseases, Parasites, and Symbionts in Louisiana Holly Rogers Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Environmental Sciences Commons Recommended Citation Rogers, Holly, "Prevalence of Blue Crab (Callinectes sapidus) Diseases, Parasites, and Symbionts in Louisiana" (2014). LSU Master's Theses. 3071. https://digitalcommons.lsu.edu/gradschool_theses/3071 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. PREVALENCE OF BLUE CRAB (CALLINECTES SAPIDUS) DISEASES, PARASITES, AND SYMBIONTS IN LOUISIANA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Renewable Natural Resources by Holly A. Rogers B.S., University of Cincinnati, 2011 August 2014 ACKNOWLEDGMENTS I would like to thank my major professor, Dr. Julie Anderson, for selecting me for this assistantship and research project and for teaching more than I ever wanted to know about blue crabs. I would also like to thank Dr. Bill Kelso for his advice and instruction, particularly on scientific writing. I owe thanks to Dr. John Hawke for his guidance on crab and aquatic diseases and Dr. Sabrina Taylor for her helpful PCR advice.
    [Show full text]
  • 6.2.5 Infection with Hematodinium Ted Meyers
    6.2.5 Hematodiniasis - 1 6.2.5 Infection with Hematodinium Ted Meyers Alaska Department of Fish and Game, Commercial Fisheries Division Juneau Fish Pathology Laboratory P.O. Box 115526 Juneau, AK 99811-5526 A. Name of Disease and Etiological Agent Hematodiniasis occurs in a wide range of crustaceans from many genera and results from a systemic infection of hemolymph and hemal spaces by parasitic dinoflagellates of the genus Hematodinium (superphylum Alveolata, order Syndinida, family Syndiniceae). The type species is H. perezi, morphologically described from shore crab (Carcinus maenas) and harbor crab (Portunas (Liocarcinus) depurator) (Chatton and Poisson 1931) from the English Channel coastline of France. A second Hematodinium species was described as H. australis (based entirely on different morphological characteristics) from the Australian sand crab (Portunus pelagicus) (Hudson and Shields 1994). Without molecular sequence data to allow comparative determination of the number of species or strains that might be infecting various crustacean hosts there has been an emergence of numerous Hematodinium and Hematodinium-like descriptions in the literature. These have been based on dinoflagellate-specific morphological features that cannot discriminate among species or strains and may also be somewhat plastic depending on environmental or host factors. Later sequencing of the partial small subunit ribosomal DNA (SSU rDNA) gene and internal transcribed spacer (ITS1) region of Hematodinium and Hematodinium-like dinoflagellates suggested there are three species (Hudson and Adlard 1996). A more recent similar comparison of the same sequences from the re-discovered type species H. perezi with other publicly available sequences indicated there are three distinct H. perezi genotypes (I, II, III (Small et al.
    [Show full text]
  • Generating Genomic Resources for Two Crustacean Species and Their Application to the Study of White Spot Disease
    Generating genomic resources for two crustacean species and their application to the study of White Spot Disease Submitted by Bas Verbruggen To the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences, September 2016 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ……………………………………(Bas Verbruggen) Abstract Over the last decades the crustacean aquaculture sector has been steadily growing, in order to meet global demands for its products. A major hurdle for further growth of the industry is the prevalence of viral disease epidemics that are facilitated by the intense culture conditions. A devastating virus impacting on the sector is the White Spot Syndrome Virus (WSSV), responsible for over US $ 10 billion in losses in shrimp production and trade. The Pathogenicity of WSSV is high, reaching 100 % mortality within 3-10 days in penaeid shrimps. In contrast, the European shore crab Carcinus maenas has been shown to be relatively resistant to WSSV. Uncovering the basis of this resistance could help inform on the development of strategies to mitigate the WSSV threat. C. maenas has been used widely in studies on ecotoxicology and host-pathogen interactions. However, like most aquatic crustaceans, the genomic resources available for this species are limited, impairing experimentation.
    [Show full text]