Distinct Regions of RPB11 Are Required for Heterodimerization with RPB3 in Human and Yeast RNA Polymerase II Wagane J

Total Page:16

File Type:pdf, Size:1020Kb

Distinct Regions of RPB11 Are Required for Heterodimerization with RPB3 in Human and Yeast RNA Polymerase II Wagane J Distinct regions of RPB11 are required for heterodimerization with RPB3 in human and yeast RNA polymerase II Wagane J. Benga, Sylvie Grandemange, George V. Shpakovski, Elena K. Shematorova, Claude Kedinger, Marc Vigneron To cite this version: Wagane J. Benga, Sylvie Grandemange, George V. Shpakovski, Elena K. Shematorova, Claude Kedinger, et al.. Distinct regions of RPB11 are required for heterodimerization with RPB3 in hu- man and yeast RNA polymerase II. Nucleic Acids Research, Oxford University Press, 2005, 33 (11), pp.3582-3590. 10.1093/nar/gki672. hal-02981340 HAL Id: hal-02981340 https://hal.archives-ouvertes.fr/hal-02981340 Submitted on 27 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 3582–3590 Nucleic Acids Research, 2005, Vol. 33, No. 11 doi:10.1093/nar/gki672 Distinct regions of RPB11 are required for heterodimerization with RPB3 in human and yeast RNA polymerase II Wagane J. Benga, Sylvie Grandemange1, George V. Shpakovski2, Elena K. Shematorova2, Claude Kedinger and Marc Vigneron* Unite´ Mixte de Recherche 7100 CNRS–Universite´ Louis Pasteur, Ecole Supe´rieure de Biotechnologie de Strasbourg, Boulevard Se´bastien Brandt, BP 10413, 67412 Illkirch Cedex, France, 1Ge´ne´tique des Maladies Inflammatoires, Institut de Ge´ne´tique Humaine UPR 1142, CNRS. 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France and 2Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, GSP-7, 117997 Moscow, Russia Received April 20, 2005; Revised and Accepted June 7, 2005 ABSTRACT in the eubacterial model that its initial step is the formation of a homodimer of the alpha subunit (1). The eukaryotic counter- In Saccharomyces cerevisiae, RNA polymerase II part of this homodimer appears to be a heterodimer that com- assembly is probably initiated by the formation of prises, in the case of Saccharomyces cerevisiae, the subunits the RPB3–RPB11 heterodimer. RPB3 is encoded by a encoded by the RPB3 and RPB11 genes, henceforth referred to single copy gene in the yeast, mouse and human gen- as Sc3 and Sc11 subunits, respectively (2,3). omes. The RPB11 gene is also unique in yeast and In the yeast genome all RNAP II subunits, including Sc3 mouse, but in humans a gene family has been identi- and Sc11, are encoded by unique genes. While the mouse fied that potentially encodes several RPB11 proteins genome also contains single RPB3 and RPB11 genes, the differing mainly in their C-terminal regions. We com- situation is different in the human genome: in contrast to pared the abilities of both yeast and human proteins to the RPB3 gene (encoding subunit Hs3) which is unique, a heterodimerize. We show that the yeast RPB3/RPB11 family of RPB11 genes was identified [(4), Table 1]. In the present study we shall consider only two members of this gene heterodimer critically depends on the presence of the family, RPB11a and RPB11b. The RPB11a gene is the pre- C-terminal region of RPB11. In contrast, the human dominantly transcribed gene in all human cells and tissues heterodimer tolerates significant changes in RPB11 tested so far. Its unique transcript encodes the Hs11a protein C-terminus, allowing two human RPB11 variants to that is found in RNAP II from all cells analysed to date. The heterodimerize with the same efficiency with RPB3. In RPB11b gene yields several mRNAs resulting from alternative keepingwiththisobservation,theinteractionsbetween splicing processes, which can be detected ubiquitously in the conserved N-terminal ‘a-motifs’ is much more human cells as well. Whether these mRNAs are translated important for heterodimerization of the human sub- at all in vivo remains to be established (4). In this study, units than for those in yeast. These data indicate that we shall consider only the Hs11ba isoform, although other the heterodimerization interfaces have been modified isoforms have been described (see Table 1 and Discussion). during the course of evolution to allow a recent diver- The structure of the yeast RNAP II has been solved at atomic resolution (2,5), and is widely considered as a repres- sification of the human RPB11 subunits that remains entative model for all eukaryotic RNAP IIs, including the compatible with heterodimerization with RPB3. human RNAP II. This assumption is supported not only by sequence homologies but also by the observation that a num- ber of human RNAP II subunits are indeed able to functionally INTRODUCTION replace their yeast counterparts (6,7). Nevertheless, the alpha- The assembly of the RNA polymerase II (RNAP II) multipro- like subunits Hs3 and Hs11a constitute a notable exception, tein complex is still poorly understood. It has been established since they cannot substitute for their yeast homologs (4). *To whom correspondence should be addressed. Tel: +33 3 90 24 47 82; Fax: +33 3 90 24 47 70; Email: [email protected] The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors Ó The Author 2005. Published by Oxford University Press. All rights reserved. The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact [email protected] Nucleic Acids Research, 2005, Vol. 33, No. 11 3583 Table 1. The human POLR2J gene family Gene Genbank accession No Chromosomal cDNA Genbank accession No location hRPB11a NC_000007 [101 679 870–101 674 430] 7q22 hRPB11a AA937330, X98433, X82385 hRPB11b NC_000007 [101 872 683–101 841 531] 7q22 hRPB11ba CR596358, CR614811, CR606303, AX405711, AJ277739 hRPB11bb AJ277740, R85011 hRPB11c NC_000007 [101 773 636–101 742 353] 7q22 hRPB11ca AJ277741 hRPB11cb AA306683 hRPB11cg AF468111 hRPB11d NC_000007 [43 799 592–43 768 503] 7p13 hRPB11dg BC017250, AL526460, AL554541 In an attempt to explain this lack of complementation, we The pGEN vector, a 2 mm origin-containing plasmid exhib- performed a detailed genetic analysis of the RPB3/RPB11 iting an expression cassette driven by a PGK promoter (6), was heterodimerization process both in human and yeast systems. used to insert the coding sequence of interest into a unique Among the various methods available, we chose the two- NheI restriction site. hybrid assay in S.cerevisiae, which should be optimal for The pCM vector, which exhibits a centromeric replication assaying Sc3 and Sc11 yeast proteins. The main limitation origin and an ADH1 promoter-driven expression cassette, was of this method is that fusion proteins have to be used instead used to insert the sequences of interest between unique XhoI of the endogenous subunits. It may be stressed, however, that and BamHI restriction sites [pCM185, (9)]. the yeast fusion proteins, LexA-Sc11 and VP16-Sc3, were Each wild-type RNAP II subunit coding sequence was found to be functional in vivo since they were able to restore modified by Taq polymerase-mediated amplification using viability to yeast deleted for these essential genes (strains appropriate primers, so as to be cloned either into the NheI YGVS-072 and D138-1d, respectively, see Supplementary site of pVP or pGEN, or between the XhoI and BamHI sites of Table 2), after chase of the balancer plasmid (data not pLex or pCM (see Supplementary Table 2). shown). Hence, we inferred that these proteins must be able to Deletion mutants were similarly obtained by Taq interact in a way closely mimicking the endogenous subunits. polymerase-mediated amplification, using the appropriate We show here that this ability to interact extends to homo- primers (see Supplementary Table 2). logous human subunits. Our analysis, however, is based on the Site directed mutagenesis of the various coding sequences comparison of effects of similar mutations affecting the pro- was performed by the Pfu-mediated amplification of plasmids, ducts of orthologous genes which are valid only if using the using mispaired oligonucleotide primers (Stratagen). same interaction assay. When analysing the results, one should Random mutagenesiswasperformed bytreatingpVPSc3and keep in mind that the levels of induced b-galactosidase activity pVP Hs3 plasmids with 40 mM hydroxylamin at 37C over- represent an indirect measurement of the efficiency of the night, before transforming Escherichia coli (DH5a strain). The heterodimer formation in vivo, which cannot be formally resulting libraries consisted of 100 000 independent clones. correlated with an affinity constant. Individual clones were obtained after screening in yeast, and Our results provide the first direct evidence that this initial their sequences were determined after recovery by electropora- step in the RNAP II assembly process has significantly tion of the yeast extracts into the DH5a strain of E.coli. diverged, allowing the human RPB11 C-terminal domain to be diversified without affecting the stability of the complex, Two hybrids assay while the integrity of its yeast counterpart appears to be essen- tial. The new alleles of RPB11 genes present in the human The L40 yeast strain [ade2, trp1-901, leu2-3,112, his3D200, genome, therefore, encode proteins that potentially exhibit LYS2::(LexAop)4HIS3, URA3::(LexAop)8lacZ, (8)] was trans- human-specific functions within the RNAP II complex.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • The Human Isoform of RNA Polymerase II Subunit Hrpb11bα Specifically Interacts with Transcription Factor ATF4
    International Journal of Molecular Sciences Article The Human Isoform of RNA Polymerase II Subunit hRPB11bα Specifically Interacts with Transcription Factor ATF4 Sergey A. Proshkin 1,2, Elena K. Shematorova 1 and George V. Shpakovski 1,* 1 Laboratory of Mechanisms of Gene Expression, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; [email protected] (S.A.P.); [email protected] (E.K.S.) 2 Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-495-3306583; Fax: +7-495-3357103 Received: 25 November 2019; Accepted: 22 December 2019; Published: 24 December 2019 Abstract: Rpb11 subunit of RNA polymerase II of Eukaryotes is related to N-terminal domain of eubacterial α subunit and forms a complex with Rpb3 subunit analogous to prokaryotic α2 homodimer, which is involved in RNA polymerase assembly and promoter recognition. In humans, a POLR2J gene family has been identified that potentially encodes several hRPB11 proteins differing mainly in their short C-terminal regions. The functions of the different human specific isoforms are still mainly unknown. To further characterize the minor human specific isoform of RNA polymerase II subunit hRPB11bα, the only one from hRPB11 (POLR2J) homologues that can replace its yeast counterpart in vivo, we used it as bait in a yeast two-hybrid screening of a human fetal brain cDNA library. By this analysis and subsequent co-purification assay in vitro, we identified transcription factor ATF4 as a prominent partner of the minor RNA polymerase II (RNAP II) subunit hRPB11bα.
    [Show full text]
  • Molecular Signatures Differentiate Immune States in Type 1 Diabetes Families
    Page 1 of 65 Diabetes Molecular signatures differentiate immune states in Type 1 diabetes families Yi-Guang Chen1, Susanne M. Cabrera1, Shuang Jia1, Mary L. Kaldunski1, Joanna Kramer1, Sami Cheong2, Rhonda Geoffrey1, Mark F. Roethle1, Jeffrey E. Woodliff3, Carla J. Greenbaum4, Xujing Wang5, and Martin J. Hessner1 1The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin Milwaukee, WI 53226, USA. 2The Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. 3Flow Cytometry & Cell Separation Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA. 4Diabetes Research Program, Benaroya Research Institute, Seattle, WA, 98101, USA. 5Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD 20824, USA. Corresponding author: Martin J. Hessner, Ph.D., The Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA Tel: 011-1-414-955-4496; Fax: 011-1-414-955-6663; E-mail: [email protected]. Running title: Innate Inflammation in T1D Families Word count: 3999 Number of Tables: 1 Number of Figures: 7 1 For Peer Review Only Diabetes Publish Ahead of Print, published online April 23, 2014 Diabetes Page 2 of 65 ABSTRACT Mechanisms associated with Type 1 diabetes (T1D) development remain incompletely defined. Employing a sensitive array-based bioassay where patient plasma is used to induce transcriptional responses in healthy leukocytes, we previously reported disease-specific, partially IL-1 dependent, signatures associated with pre and recent onset (RO) T1D relative to unrelated healthy controls (uHC).
    [Show full text]
  • Download Special Issue
    BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data,JuliaTzu-YaWeng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Volume2014,ArticleID814092,3pages Evolution of Network Biomarkers from Early to Late Stage Bladder Cancer Samples,Yung-HaoWong, Cheng-Wei Li, and Bor-Sen Chen Volume 2014, Article ID 159078, 23 pages MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure,Kuei-FangLee, Yi-Cheng Chen, Paul Wei-Che Hsu, Ingrid Y. Liu, and Lawrence Shih-Hsin Wu Volume2014,ArticleID456323,10pages EXIA2: Web Server of Accurate and Rapid Protein Catalytic Residue Prediction, Chih-Hao Lu, Chin-Sheng
    [Show full text]
  • FAM46 Proteins Are Novel Eukaryotic Non-Canonical Poly(A) Polymerases Krzysztof Kuchta1,2,†, Anna Muszewska1,3,†, Lukasz Knizewski1, Kamil Steczkiewicz1, Lucjan S
    3534–3548 Nucleic Acids Research, 2016, Vol. 44, No. 8 Published online 7 April 2016 doi: 10.1093/nar/gkw222 FAM46 proteins are novel eukaryotic non-canonical poly(A) polymerases Krzysztof Kuchta1,2,†, Anna Muszewska1,3,†, Lukasz Knizewski1, Kamil Steczkiewicz1, Lucjan S. Wyrwicz4, Krzysztof Pawlowski5, Leszek Rychlewski6 and Krzysztof Ginalski1,* 1Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02–089 Warsaw, Poland, 2College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2C, 02–097 Warsaw, Poland, 3Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02–106 Warsaw, Poland, 4Laboratory of Bioinformatics and Biostatistics, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, WK Roentgena 5, 02–781 Warsaw, Poland, 5Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences, Nowoursynowska 166, 02–787 Warsaw, Poland and 6BioInfoBank Institute, Limanowskiego 24A, 60–744 Poznan, Poland Received December 16, 2015; Accepted March 22, 2016 ABSTRACT RNA metabolism in eukaryotes may guide their fur- ther functional studies. FAM46 proteins, encoded in all known animal genomes, belong to the nucleotidyltransferase (NTase) fold superfamily. All four human FAM46 paralogs (FAM46A, FAM46B, FAM46C, FAM46D) are INTRODUCTION thought to be involved in several diseases, with Proteins adopting the nucleotidyltransferase (NTase) fold FAM46C reported as a causal driver of multiple play crucial roles in various biological processes, such as myeloma; however, their exact functions remain un- RNA stabilization and degradation (e.g. RNA polyadenyla- known. By using a combination of various bioinfor- tion), RNA editing, DNA repair, intracellular signal trans- matics analyses (e.g.
    [Show full text]
  • The Neurodegenerative Diseases ALS and SMA Are Linked at The
    Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gky1093 The neurodegenerative diseases ALS and SMA are linked at the molecular level via the ASC-1 complex Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gky1093/5162471 by [email protected] on 06 November 2018 Binkai Chi, Jeremy D. O’Connell, Alexander D. Iocolano, Jordan A. Coady, Yong Yu, Jaya Gangopadhyay, Steven P. Gygi and Robin Reed* Department of Cell Biology, Harvard Medical School, 240 Longwood Ave. Boston MA 02115, USA Received July 17, 2018; Revised October 16, 2018; Editorial Decision October 18, 2018; Accepted October 19, 2018 ABSTRACT Fused in Sarcoma (FUS) and TAR DNA Binding Protein (TARDBP) (9–13). FUS is one of the three members of Understanding the molecular pathways disrupted in the structurally related FET (FUS, EWSR1 and TAF15) motor neuron diseases is urgently needed. Here, we family of RNA/DNA binding proteins (14). In addition to employed CRISPR knockout (KO) to investigate the the RNA/DNA binding domains, the FET proteins also functions of four ALS-causative RNA/DNA binding contain low-complexity domains, and these domains are proteins (FUS, EWSR1, TAF15 and MATR3) within the thought to be involved in ALS pathogenesis (5,15). In light RNAP II/U1 snRNP machinery. We found that each of of the discovery that mutations in FUS are ALS-causative, these structurally related proteins has distinct roles several groups carried out studies to determine whether the with FUS KO resulting in loss of U1 snRNP and the other two members of the FET family, TATA-Box Bind- SMN complex, EWSR1 KO causing dissociation of ing Protein Associated Factor 15 (TAF15) and EWS RNA the tRNA ligase complex, and TAF15 KO resulting in Binding Protein 1 (EWSR1), have a role in ALS.
    [Show full text]
  • AUCTSP: an Improved Biomarker Gene Pair Class Predictor Dimitri Kagaris1* , Alireza Khamesipour1 and Constantin T
    Kagaris et al. BMC Bioinformatics (2018) 19:244 https://doi.org/10.1186/s12859-018-2231-1 RESEARCH ARTICLE Open Access AUCTSP: an improved biomarker gene pair class predictor Dimitri Kagaris1* , Alireza Khamesipour1 and Constantin T. Yiannoutsos2 Abstract Background: The Top Scoring Pair (TSP) classifier, based on the concept of relative ranking reversals in the expressions of pairs of genes, has been proposed as a simple, accurate, and easily interpretable decision rule for classification and class prediction of gene expression profiles. The idea that differences in gene expression ranking are associated with presence or absence of disease is compelling and has strong biological plausibility. Nevertheless, the TSP formulation ignores significant available information which can improve classification accuracy and is vulnerable to selecting genes which do not have differential expression in the two conditions (“pivot" genes). Results: We introduce the AUCTSP classifier as an alternative rank-based estimator of the magnitude of the ranking reversals involved in the original TSP. The proposed estimator is based on the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) and as such, takes into account the separation of the entire distribution of gene expression levels in gene pairs under the conditions considered, as opposed to comparing gene rankings within individual subjects as in the original TSP formulation. Through extensive simulations and case studies involving classification in ovarian, leukemia, colon, breast and prostate cancers and diffuse large b-cell lymphoma, we show the superiority of the proposed approach in terms of improving classification accuracy, avoiding overfitting and being less prone to selecting non-informative (pivot) genes.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • Mouse Anti-Human POLR2J Monoclonal Antibody, Clone 2B21 (CABT-B11040) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Mouse anti-Human POLR2J monoclonal antibody, clone 2B21 (CABT-B11040) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Immunogen POLR2J (AAH24165, 1 a.a. ~ 118 a.a) full-length recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Isotype IgG1 Source/Host Mouse Species Reactivity Human Clone 2B21 Conjugate Unconjugated Applications WB,sELISA,ELISA Sequence Similarities MNAPPAFESFLLFEGEKKITINKDTKVPNACLFTINKEDHTLGNIIKSQLLKDPQVLFAGYKVPHPL EHKIIIRVQTTPDYSPQEAFTNAITDLISELSLLEERFRVAIKDKQEGIE* Format Liquid Size 100 μg Buffer In 1x PBS, pH 7.2 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. BACKGROUND Introduction This gene encodes a subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. The product of this gene exists as a heterodimer with another polymerase subunit; together they form a core subassembly unit of the polymerase. Two similar genes are located nearby on chromosome 7q22.1 and a pseudogene is found on chromosome 7p13. [provided by RefSeq, Jul 2008] Keywords POLR2J; polymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa; RPB11; RPB11A; RPB11m; hRPB14; POLR2J1; DNA-directed RNA polymerase II subunit RPB11-a; RNA 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved polymerase II subunit B11-a; RNA polymerase II 13.3 kDa subunit; DNA-directed RNA polymerase II subunit J-1; GENE INFORMATION
    [Show full text]
  • Identifying Therapeutic Vulnerabilities in Cancers Driven by the Oncogenic Transcription Factor STAT3
    Identifying Therapeutic Vulnerabilities in Cancers Driven by the Oncogenic Transcription Factor STAT3 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Heppler, Lisa Nicole. 2019. Identifying Therapeutic Vulnerabilities in Cancers Driven by the Oncogenic Transcription Factor STAT3. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42013162 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! "#$%&'()'%*!+,$-./$0&'1!203%$-.4'3'&'$5!'%!6.%1$-5!7-'8$%!4)!&,$!9%1:*$%'1! +-.%51-'/&':%!;.1&:-!<+=+>! ! ! =!#'55$-&.&':%!/-$5$%&$#! 4)! ?'5.!@'1:3$!A$//3$-! &:! +,$!7'8'5':%!:(!B$#'1.3!<1'$%1$5! '%!/.-&'.3!(03('33C$%&!:(!&,$!-$D0'-$C$%&5! (:-!&,$!#$*-$$!:(! 7:1&:-!:(!E,'3:5:/,)! '%!&,$!504F$1&!:(! G':3:*'1.3!.%#!G':C$#'1.3!<1'$%1$5! ! ! ! A.-8.-#!H%'8$-5'&)! 6.C4-'#*$I!B.55.1,05$&&5! =0*05&!JKLM! ! ! ! ! ! ! ! ! ! ! ! N!JKLM!?'5.!@'1:3$!A$//3$-! =33!-'*,&5!-$5$-8$#O! ! 7'55$-&.&':%!=#8'5:-P!7.8'#!=O!;-.%Q!! ! ! ! ! !!!?'5.!@'1:3$!A$//3$-! ! "#$%&'()'%*!+,$-./$0&'1!203%$-.4'3'&'$5!'%!6.%1$-5!7-'8$%!4)!&,$!9%1:*$%'1! +-.%51-'/&':%!;.1&:-!<+=+>! ! "#$%&'(%! 6.%1$-!'5!1,.-.1&$-'R$#!4)!.4$--.%&!*$%$!$S/-$55':%!/.&&$-%5!&,.&!.3&$-!1$3303.-!(0%1&':%O! <01,!.3&$-.&':%5!.-$!1:CC:%3)!1.05$#!4)!&,$!'%.//-:/-'.&$!.1&'8.&':%!:(!&-.%51-'/&':%!(.1&:-5O!"%!
    [Show full text]
  • DF6617-POLR2C Antibody
    Affinity Biosciences website:www.affbiotech.com order:[email protected] POLR2C Antibody Cat.#: DF6617 Concn.: 1mg/ml Mol.Wt.: 31kDa Size: 100ul,200ul Source: Rabbit Clonality: Polyclonal Application: WB 1:500-1:2000, IHC 1:50-1:200, ELISA(peptide) 1:20000-1:40000 *The optimal dilutions should be determined by the end user. Reactivity: Human,Mouse,Rat Purification: The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific). Specificity: POLR2C Antibody detects endogenous levels of total POLR2C. Immunogen: A synthesized peptide derived from human POLR2C, corresponding to a region within the internal amino acids. Uniprot: P19387 Description: This gene encodes the third largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. The product of this gene contains a cysteine rich region and exists as a heterodimer with another polymerase subunit, POLR2J. These two subunits form a core subassembly unit of the polymerase. A pseudogene has been identified on chromosome 21. Storage Condition and Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM Buffer: NaCl, 0.02% sodium azide and 50% glycerol.Store at -20 °C.Stable for 12 months from date of receipt. Western blot analysis of HeLa whole cell lysates, using POLR2C Antibody. The lane on the left was treated with the antigen-specific peptide. 1 / 2 Affinity Biosciences website:www.affbiotech.com order:[email protected] DF6617 at 1/100 staining Rat brain tissue by IHC-P. The sample was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The sample was then blocked and incubated with the primary antibody at 4°C overnight.
    [Show full text]