Download Special Issue

Total Page:16

File Type:pdf, Size:1020Kb

Download Special Issue BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data,JuliaTzu-YaWeng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Volume2014,ArticleID814092,3pages Evolution of Network Biomarkers from Early to Late Stage Bladder Cancer Samples,Yung-HaoWong, Cheng-Wei Li, and Bor-Sen Chen Volume 2014, Article ID 159078, 23 pages MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure,Kuei-FangLee, Yi-Cheng Chen, Paul Wei-Che Hsu, Ingrid Y. Liu, and Lawrence Shih-Hsin Wu Volume2014,ArticleID456323,10pages EXIA2: Web Server of Accurate and Rapid Protein Catalytic Residue Prediction, Chih-Hao Lu, Chin-Sheng Yu, Yu-Tung Chien, and Shao-Wei Huang Volume 2014, Article ID 807839, 12 pages High-Throughput Functional Screening of Steroid Substrates with Wild-Type and Chimeric P450 Enzymes, Philippe Urban, Gilles Truan, and Denis Pompon Volume 2014, Article ID 764102, 11 pages Systematic Analysis of the Association between Gut Flora and Obesity through High-Throughput Sequencing and Bioinformatics Approaches, Chih-Min Chiu, Wei-Chih Huang, Shun-Long Weng, Han-Chi Tseng, Chao Liang, Wei-Chi Wang, Ting Yang, Tzu-Ling Yang, Chen-Tsung Weng, Tzu-Hao Chang, and Hsien-Da Huang Volume2014,ArticleID906168,10pages Studying the Complex Expression Dependences between Sets of Coexpressed Genes,MarioHuerta, Oriol Casanova, Roberto Barchino, Jose Flores, Enrique Querol, and Juan Cedano Volume 2014, Article ID 940821, 9 pages An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method, Evandro A. Marucci, Geraldo F. D. Zafalon, Julio C. Momente, Leandro A. Neves, Carlo R. Valencio,ˆ Alex R. Pinto, Adriano M. Cansian, Rogeria C. G. de Souza, Yang Shiyou, and JoseM.Machado´ Volume2014,ArticleID563016,6pages The Definition of a Prolonged Intensive Care Unit Stay for Spontaneous Intracerebral Hemorrhage Patients: An Application with National Health Insurance Research Database, Chien-Lung Chan, Hsien-Wei Ting, and Hsin-Tsung Huang Volume 2014, Article ID 891725, 9 pages Gonadal Transcriptome Analysis of Male and Female Olive Flounder (Paralichthys olivaceus), Zhaofei Fan, Feng You, Lijuan Wang, Shenda Weng, Zhihao Wu, Jinwei Hu, Yuxia Zou, Xungang Tan, and Peijun Zhang Volume2014,ArticleID291067,10pages MAVTgsa: An R Package for Gene Set (Enrichment) Analysis, Chih-Yi Chien, Ching-Wei Chang, Chen-An Tsai, and James J. Chen Volume2014,ArticleID346074,11pages Target Capture and Massive Sequencing of Genes Transcribed in Mytilus galloprovincialis, Umberto Rosani, Stefania Domeneghetti, Alberto Pallavicini, and Paola Venier Volume 2014, Article ID 538549, 9 pages Defining Loci in Restriction-Based Reduced Representation Genomic Data from Nonmodel Species: Sources of Bias and Diagnostics for Optimal Clustering, Daniel C. Ilut, Marie L. Nydam, and Matthew P. Hare Volume2014,ArticleID675158,9pages MPINet: Metabolite Pathway Identification via Coupling of Global Metabolite Network Structure and Metabolomic Profile, Feng Li, Yanjun Xu, Desi Shang, Haixiu Yang, Wei Liu, Junwei Han, Zeguo Sun, Qianlan Yao, Chunlong Zhang, Jiquan Ma, Fei Su, Li Feng, Xinrui Shi, Yunpeng Zhang, Jing Li, Qi Gu, XiaLi,andChunquanLi Volume 2014, Article ID 325697, 14 pages miRSeq: A User-Friendly Standalone Toolkit for Sequencing Quality Evaluation and miRNA Profiling, Cheng-Tsung Pan, Kuo-Wang Tsai, Tzu-Min Hung, Wei-Chen Lin, Chao-Yu Pan, Hong-Ren Yu, and Sung-Chou Li Volume 2014, Article ID 462135, 8 pages Ultrasonographic Fetal Growth Charts: An Informatic Approach by Quantitative Analysis of the Impact of Ethnicity on Diagnoses Based on a Preliminary Report on Salentinian Population, Andrea Tinelli, Mario Alessandro Bochicchio, Lucia Vaira, and Antonio Malvasi Volume 2014, Article ID 386124, 10 pages Large-Scale Investigation of Human TF-miRNA Relations Based on Coexpression Profiles, Chia-Hung Chien, Yi-Fan Chiang-Hsieh, Ann-Ping Tsou, Shun-Long Weng, Wen-Chi Chang, and Hsien-Da Huang Volume 2014, Article ID 623078, 8 pages A De Novo Genome Assembly Algorithm for Repeats and Nonrepeats, Shuaibin Lian, Qingyan Li, Zhiming Dai, Qian Xiang, and Xianhua Dai Volume 2014, Article ID 736473, 16 pages Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction, Zheng Sun, Shihao Li, Fuhua Li, and Jianhai Xiang Volume 2014, Article ID 416543, 9 pages High-Dimensional Additive Hazards Regression for Oral Squamous Cell Carcinoma Using Microarray Data: A Comparative Study, Omid Hamidi, Lily Tapak, Aarefeh Jafarzadeh Kohneloo, and Majid Sadeghifar Volume 2014, Article ID 393280, 7 pages Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 814092, 3 pages http://dx.doi.org/10.1155/2014/814092 Editorial Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Julia Tzu-Ya Weng,1,2 Li-Ching Wu,3 Wen-Chi Chang,4 Tzu-Hao Chang,5 Tatsuya Akutsu,6 and Tzong-Yi Lee1,2 1 Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan 2Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan 320, Taiwan 3Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan 320, Taiwan 4Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan 5Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan 6Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan Correspondence should be addressed to Tzong-Yi Lee; [email protected] Received 2 October 2014; Accepted 2 October 2014; Published 28 December 2014 Copyright © 2014 Julia Tzu-Ya Weng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction massive sequencing approach to reduce whole genome sequencing cost and effort. However, inferences from With the advent of high-throughput technologies, molec- sequencing data rely heavily on careful experimental design, ular biology is experiencing a surge in both growth and as well as efficient detection and removal of artifacts. While scope. As the amount of experimental data increases, the analyzing restriction-based reduced representation genomic demand for the development of ways to analyze these results data, D. C. Ilut et al. demonstrated that, by setting an optimal also increases. For example, the next-generation sequencing clustering threshold, false homozygosity or heterozygosity (NGS) technology has generated various sequencing data. can be effectively minimized. Mass spectrometry- (MS-) based experiments are also widely With the advancement of genomic researches, the num- applied in proteomics studies. Rapidly advancing technolo- ber of sequences processed in comparative methods has gies have offered us the opportunities to examine the genome, grownimmensely.E.A.Maruccietal.developedaparallel transcriptome, and proteome in comprehensive ways. Yet, algorithm for multiple sequence similarities calculation using extracting meaningful information from this vast sea of data the k-mers counting method. Their tests showed that the and approaching biological problems from systems biology algorithm provides a very good scalability and a nearly perspective have become the Holy Grail in bioinformat- linear speedup. In “Adenovogenomeassemblyalgorithmfor ics. The main focus of this special issue is novelty: new repeats and nonrepeats,” Z. Dai et al. proposed a new genome ideas, original research findings, and practical applications assembly algorithm called the sliding window assembler that intend to answer biological questions through high- (SWA), which assembles repeats and nonrepeats by adopting throughput technologies. The papers in this special issue a new overlapping extension strategy to extend each seed and present methods and experiments that demonstrate novel implementing a compensational mechanism for low coverage platforms and systems and new bioinformatics tools and datasets. Results of their analysis on three datasets support the models, as well as new data-analytical methods for high- practicability and efficiency of SWAas a promising algorithm throughput biological data. for NGS data. In this special issue, U. Rosani et al. attempted to High-throughput technology holds great promises for the unravel the genome of Mytilus galloprovincialis,theMediter- efficient investigation of transcriptomes, but the enormous ranean mussel, through a target capture and high-throughput amount of gene expression data
Recommended publications
  • Molecular Cytogenetic Analysis for TFE3 Rearrangement In
    Modern Pathology (2014) 27, 113–127 & 2014 USCAP, Inc. All rights reserved 0893-3952/14 $32.00 113 Molecular cytogenetic analysis for TFE3 rearrangement in Xp11.2 renal cell carcinoma and alveolar soft part sarcoma: validation and clinical experience with 75 cases Jennelle C Hodge, Kathryn E Pearce, Xiaoke Wang, Anne E Wiktor, Andre M Oliveira and Patricia T Greipp Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA Renal cell carcinoma with TFE3 rearrangement at Xp11.2 is a distinct subtype manifesting an indolent clinical course in children, with recent reports suggesting a more aggressive entity in adults. This subtype is morphologically heterogeneous and can be misclassified as clear cell or papillary renal cell carcinoma. TFE3 is also rearranged in alveolar soft part sarcoma. To aid in diagnosis, a break-apart strategy fluorescence in situ hybridization (FISH) probe set specific for TFE3 rearrangement and a reflex dual-color, single-fusion strategy probe set involving the most common TFE3 partner gene, ASPSCR1, were validated on formalin-fixed, paraffin- embedded tissues from nine alveolar soft part sarcoma, two suspected Xp11.2 renal cell carcinoma, and nine tumors in the differential diagnosis. The impact of tissue cut artifact was reduced through inclusion of a chromosome X centromere control probe. Analysis of the UOK-109 renal carcinoma cell line confirmed the break-apart TFE3 probe set can distinguish the subtle TFE3/NONO fusion-associated inversion of chromosome X. Subsequent extensive clinical experience was gained through analysis of 75 cases with an indication of Xp11.2 renal cell carcinoma (n ¼ 54), alveolar soft part sarcoma (n ¼ 13), perivascular epithelioid cell neoplasms (n ¼ 2), chordoma (n ¼ 1), or unspecified (n ¼ 5).
    [Show full text]
  • Methylation of the Homeobox Gene, HOPX, Is Frequently Detected in Poorly Differentiated Colorectal Cancer
    ANTICANCER RESEARCH 31: 2889-2892 (2011) Methylation of the Homeobox Gene, HOPX, Is Frequently Detected in Poorly Differentiated Colorectal Cancer YOSHIKUNI HARADA, KAZUHIRO KIJIMA, KAZUKI SHINMURA, MAKIKO SAKATA, KAZUMA SAKURABA, KAZUAKI YOKOMIZO, YOUHEI KITAMURA, ATSUSHI SHIRAHATA, TETSUHIRO GOTO, HIROKI MIZUKAMI, MITSUO SAITO, GAKU KIGAWA, HIROSHI NEMOTO and KENJI HIBI Gastroenterological Surgery, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama 227-8501, Japan Abstract. Background: Homeodomein only protein x pathogenesis of colorectal cancer (4-8). It is also known that (HOPX) gene methylation has frequently been detected in gene promoter hypermethylation is involved in the cancer tissues. The methylation status of the HOPX gene in development and progression of cancer (9). An investigation colorectal cancer was examined and compared to the of genetic changes is important in order to clarify the clinocopathological findings. Materials and Methods: tumorigenic pathway of colorectal cancer (10). Eighty-nine tumor samples and corresponding normal tissues The homeodomain only protein x (HOPX) gene, also were obtained from colorectal cancer patients who known as NECC1 (not expressed in choriocarcinoma clone underwent surgery at our hospital. The methylation status of 1), LAGY (lung cancer-associated gene Y), and OB1 (odd the HOPX gene in these samples was examined by homeobox 1 protein), was initially identified as an essential quantitative methylation-specific PCR (qMSP). Subsequently, gene for the modulation of cardiac growth and development the clinicopathological findings were correlated with the (11). Three spliced transcript variants, HOPX-α, HOPX-β methylation status of the HOPX gene. Results: HOPX gene and HOPX-γ, encode the same protein, which contains a methylation was found in 46 (52%) out of the 89 colorectal putative homeodomain motif that acts as an adapter protein carcinomas, suggesting that it was frequently observed in to mediate transcriptional repression (12).
    [Show full text]
  • Old Data and Friends Improve with Age: Advancements with the Updated Tools of Genenetwork
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445383; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Old data and friends improve with age: Advancements with the updated tools of GeneNetwork Alisha Chunduri1, David G. Ashbrook2 1Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India 2Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA Abstract Understanding gene-by-environment interactions is important across biology, particularly behaviour. Families of isogenic strains are excellently placed, as the same genome can be tested in multiple environments. The BXD’s recent expansion to 140 strains makes them the largest family of murine isogenic genomes, and therefore give great power to detect QTL. Indefinite reproducible genometypes can be leveraged; old data can be reanalysed with emerging tools to produce novel biological insights. To highlight the importance of reanalyses, we obtained drug- and behavioural-phenotypes from Philip et al. 2010, and reanalysed their data with new genotypes from sequencing, and new models (GEMMA and R/qtl2). We discover QTL on chromosomes 3, 5, 9, 11, and 14, not found in the original study. We narrowed down the candidate genes based on their ability to alter gene expression and/or protein function, using cis-eQTL analysis, and variants predicted to be deleterious. Co-expression analysis (‘gene friends’) and human PheWAS were used to further narrow candidates.
    [Show full text]
  • Rap-3971 Alveolar Soft Part Sarcoma Chromosome
    DATA SHEET Alveolar Soft Part Sarcoma Chromosome Region, Candidate 1 Human Item Number rAP-3971 Synonyms ASPCR1, ASPL, ASPS, RCC17, TUG, UBXD9, UBXN9, Tether containing UBX domain for GLUT4, Alveo- lar soft part sarcoma chromosomal region candidate gene 1 protein, Alveolar soft part sarcoma locus, Re- nal papillary cell carcinoma protein 17, UBX domain-containin Description ASPSCR1 Human Recombinant produced in E. coli is a single polypeptide chain containing 576 amino acids (1-553) and having a molecular mass of 62.6kDa. ASPSCR1 is fused to a 23 amino acid His-tag at N- terminus & purified by proprietary chromatographic techniques. Uniprot Accesion Number Q9BZE9 Amino Acid Sequence MGSSHHHHHH SSGLVPRGSH MGSMAAPAGG GGSAVSVLAP NGRRHTVKVT PSTVLLQVLE DTCRRQDFNP CEYDLKFQRS VLDLSLQWRF ANLPNNAKLE MVPASRSREG PENMVRIALQ LDDGS- RLQDS FCSGQTLWEL LSHFPQIREC LQHPGGATPV CVYTRDEVTG EAALRGTTLQ SLGLTGGSAT IRFVMKCYDP VGKTPGSLGS SASAGQAAAS APLPLESGEL SRGDLSRPED ADTSGPCCEH TQEKQSTRAP AAAPFVPFSG GGQRLGGPPG PTRPLTSSSA KLPKSLSSPG GPSKPKKSKS GQDPQQEQEQ ERERDPQQEQ ERERPVDREP VDREPVVCHP DLEERLQAWP AELPDEFFEL Source Escherichia Coli. Physical Appearance Sterile Filtered clear solution. Store at 4°C if entire vial will be used within 2-4 weeks. Store, frozen at -20°C and Stability for longer periods of time. For long term storage it is recommended to add a carrier protein (0.1% HSA or BSA).Avoid multiple freeze-thaw cycles. Formulation and Purity The ASPSCR1 solution (0.25mg/ml) contains 20mM Tris-HCl buffer (pH 8.0), 0.15M NaCl, 10% glycerol and 1mM DTT. Greater than 85% as determined by SDS-PAGE. Application Solubility Biological Activity Shipping Format and Condition Lyophilized powder at room temperature. Optimal dilutions should be determined by each laboratory for each application.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • Analysis and Characterisation of the Mouse Hic2 Gene
    Aus dem Institut für Entwicklungsgenetik des GSF-Forschungszentrums für Umwelt und Gesundheit, GmbH Direktor: Prof. Dr. Wolfgang Wurst Anfertigung unter der Leitung von Prof. Dr. Jochen Graw Vorgelegt über den Lehrstuhl für Molekulare Tierzucht und Biotechnologie Der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Vorstand: Prof. Dr. Eckhard Wolf Untersuchung und Charakterisierung des Hic2-Gens der Maus Inaugural-Dissertation Zur Erlangung der tiermedizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München von Aleksandra Terzic aus Sarajevo/Bosnia und Herzegowina München 2004 II Aus dem Institut für Entwicklungsgenetik des GSF-Forschungszentrums für Umwelt und Gesundheit, GmbH Direktor: Prof. Dr. Wolfgang Wurst Anfertigung unter der Leitung von Prof. Dr. Jochen Graw Vorgelegt über den Lehrstuhl für Molekulare Tierzucht und Biotechnologie Der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Vorstand: Prof. Dr. Eckhard Wolf Analysis and characterisation of the mouse Hic2 gene Inaugural-Dissertation Zur Erlangung der tiermedizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München von Aleksandra Terzic aus Sarajevo/Bosnia und Herzegowina München 2004 III Gedruckt mit Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Dekan: Univ.-Prof. Dr. A.Stolle Referent: Univ.-Prof. Dr. E. Wolf Korreferent: Univ.-Prof. Dr. K. Heinritzi Tag der Promotion: 13. Februar 2004 IV List of contents 1 INTRODUCTION.............................................................................................................1
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Views of the NIH
    CLINICAL EPIDEMIOLOGY www.jasn.org Genetic Variants Associated with Circulating Fibroblast Growth Factor 23 Cassianne Robinson-Cohen ,1 Traci M. Bartz,2 Dongbing Lai,3 T. Alp Ikizler,1 Munro Peacock,4 Erik A. Imel,4 Erin D. Michos,5 Tatiana M. Foroud,3 Kristina Akesson,6,7 Kent D. Taylor,8 Linnea Malmgren,6,7 Kunihiro Matsushita,5,9,10 Maria Nethander,11 Joel Eriksson,12 Claes Ohlsson,12 Daniel Mellström,12 Myles Wolf,13 Osten Ljunggren,14 Fiona McGuigan,6,7 Jerome I. Rotter,8 Magnus Karlsson,6,7 Michael J. Econs,3,4 Joachim H. Ix,15,16 Pamela L. Lutsey,17 Bruce M. Psaty,18,19 Ian H. de Boer ,20 and Bryan R. Kestenbaum 20 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Fibroblast growth factor 23 (FGF23), a bone-derived hormone that regulates phosphorus and vitamin D metabolism, contributes to the pathogenesis of mineral and bone disorders in CKD and is an emerging cardiovascular risk factor. Central elements of FGF23 regulation remain incompletely under- stood; genetic variation may help explain interindividual differences. Methods We performed a meta-analysis of genome-wide association studies of circulating FGF23 con- centrations among 16,624 participants of European ancestry from seven cohort studies, excluding par- ticipants with eGFR,30 ml/min per 1.73 m2 to focus on FGF23 under normal conditions. We evaluated the association of single-nucleotide polymorphisms (SNPs) with natural log–transformed FGF23 concentra- tion, adjusted for age, sex, study site, and principal components of ancestry.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Sequences, Annotation and Single Nucleotide Polymorphism of The
    Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 6-2008 Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat Naoya Yuhki National Cancer Institute at Frederick James C. Mullikin National Human Genome Research Institute Thomas W. Beck National Cancer Institute at Frederick Robert M. Stephens National Cancer Institute at Frederick Stephen J. O'Brien National Cancer Institute at Frederick, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Genetics and Genomics Commons, and the Zoology Commons NSUWorks Citation Yuhki, Naoya; James C. Mullikin; Thomas W. Beck; Robert M. Stephens; and Stephen J. O'Brien. 2008. "Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat." PLoS ONE 7, (3 e2674): 1-17. https://nsuworks.nova.edu/cnso_bio_facarticles/773 This Article is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat Naoya Yuhki1*, James C. Mullikin2, Thomas Beck3, Robert Stephens4, Stephen J. O’Brien1 1 Laboratory of Genomic Diversity, National Cancer Institute at Frederick, Frederick, Maryland,
    [Show full text]