Views of the NIH
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Copy Number Alterations of BCAS1 in Squamous Cell Carcinomas
The Korean Journal of Pathology 2011; 45: 271-275 DOI: 10.4132/KoreanJPathol.2011.45.3.271 Copy Number Alterations of BCAS1 in Squamous Cell Carcinomas Yu Im Kim · Ahwon Lee1 Background: Breast carcinoma amplified sequence 1 BCAS1( ), located in 20q13, is amplified and Jennifer Kim · Bum Hee Lee overexpressed in breast cancers. Even though BCAS1 is expected to be an oncogene candidate, Sung Hak Lee · Suk Woo Nam its contribution to tumorigenesis and copy number status in other malignancies is not reported. To elucidate the role of BCAS1 in squamous cell carcinomas, we investigated the copy number Sug Hyung Lee · Won Sang Park status and expression level of BCAS1 in several squamous cell carcinoma cell lines, normal kera- Nam Jin Yoo · Jung Young Lee tinocytes and primary tumors. Methods: We quantitated BCAS1 gene by real-time polymerase Sang Ho Kim · Su Young Kim chain reaction (PCR). Expression level of BCAS1 was measured by real-time reverse transcrip- tion-PCR and immunoblot. Results: Seven (88%) of 8 squamous cell carcinoma cell lines showed Departments of Pathology and 1Hospital copy number gain of BCAS1 with various degrees. BCAS1 gene in primary tumors (73%) also Pathology, The Catholic University of Korea showed copy number gain. However, expression level did not show a linear correlation with copy College of Medicine, Seoul, Korea number changes. Conclusions: We identified copy number gain of BCAS1 in squamous cell car- cinomas. Due to lack of linear correlation between copy numbers of BCAS1 and its expression Received: March 10, 2010 level, we could not confirm that the overexpression of BCAS1 is a common finding in squamous Accepted: May 24, 2011 cell carcinoma cell lines. -
Identification of the Binding Partners for Hspb2 and Cryab Reveals
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity. -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig. -
Comprehensive Array CGH of Normal Karyotype Myelodysplastic
Leukemia (2011) 25, 387–399 & 2011 Macmillan Publishers Limited All rights reserved 0887-6924/11 www.nature.com/leu LEADING ARTICLE Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance A Thiel1, M Beier1, D Ingenhag1, K Servan1, M Hein1, V Moeller1, B Betz1, B Hildebrandt1, C Evers1,3, U Germing2 and B Royer-Pokora1 1Institute of Human Genetics and Anthropology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany and 2Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Duesseldorf, Germany About 40% of patients with myelodysplastic syndromes (MDSs) 40–50% of MDS cases have a normal karyotype. MDS patients present with a normal karyotype, and they are facing different with a normal karyotype and low-risk clinical parameters are courses of disease. To advance the biological understanding often assigned into the IPSS low and intermediate-1 risk groups. and to find molecular prognostic markers, we performed a high- resolution oligonucleotide array study of 107 MDS patients In the absence of genetic or biological markers, prognostic (French American British) with a normal karyotype and clinical stratification of these patients is difficult. To better prognosticate follow-up through the Duesseldorf MDS registry. Recurrent these patients, new parameters to identify patients at higher risk hidden deletions overlapping with known cytogenetic aberra- are urgently needed. With the more recently introduced modern tions or sites of known tumor-associated genes were identi- technologies of whole-genome-wide surveys of genetic aberra- fied in 4q24 (TET2, 2x), 5q31.2 (2x), 7q22.1 (3x) and 21q22.12 tions, it is hoped that more insights into the biology of disease (RUNX1, 2x). -
Mouse Epb42 Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Epb42 Knockout Project (CRISPR/Cas9) Objective: To create a Epb42 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Epb42 gene (NCBI Reference Sequence: NM_013513 ; Ensembl: ENSMUSG00000023216 ) is located on Mouse chromosome 2. 13 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 13 (Transcript: ENSMUST00000102490). Exon 2~5 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygotes for a targeted null mutation exhibit erythrocytic abnormalities including mild spherocytosis, altered ion transport, and dehydration. Exon 2 starts from about 0.53% of the coding region. Exon 2~5 covers 31.07% of the coding region. The size of effective KO region: ~5547 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 13 Legends Exon of mouse Epb42 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1985 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1230 bp section downstream of Exon 5 is aligned with itself to determine if there are tandem repeats. -
Distinct Gene Expression Patterns in a Tamoxifen-Sensitive Human Mammary Carcinoma Xenograft and Its Tamoxifen-Resistant Subline Maca 3366/TAM
Molecular Cancer Therapeutics 151 Distinct gene expression patterns in a tamoxifen-sensitive human mammary carcinoma xenograft and its tamoxifen-resistant subline MaCa 3366/TAM Michael Becker,1 Anette Sommer,2 of acquired tamoxifen resistance. Finally, genes whose Jo¨rn R. Kra¨tzschmar,2 Henrik Seidel,2 expression profiles are distinctly changed between the Hans-Dieter Pohlenz,2 and Iduna Fichtner1 two xenograft lines will be further evaluated as potential targets for diagnostic or therapeutic approaches of 1 Max-Delbrueck-Center for Molecular Medicine, Experimental tamoxifen-resistant breast cancer. [Mol Cancer Ther Pharmacology, and 2Research Laboratories, Schering AG, Berlin, Germany 2005;4(1):151–68] Abstract Introduction The reasons why human mammary tumors become Breast cancer is the most common type of cancer in women resistant to tamoxifen therapy are mainly unknown. of the Western world. Due to advances in early detection Changes in gene expression may occur as cells acquire and treatment, breast cancer survival rates have increased resistance to antiestrogens. We therefore undertook a com- markedly over the past decades. After surgery, estrogen parative gene expression analysis of tamoxifen-sensitive receptor a (ERa)–positive breast cancer is usually treated and tamoxifen-resistant human breast cancer in vivo with endocrine therapy. Tamoxifen, a nonsteroidal anti- models using Affymetrix oligonucleotide arrays to analyze estrogen, also termed selective estrogen receptor modula- differential gene expression. Total RNAs from the tamox- tor, is the first-line therapy for premenopausal and, until ifen-sensitive patient-derived mammary carcinoma xeno- recently, also for postmenopausal hormone receptor– graft MaCa 3366 and the tamoxifen-resistant model MaCa positive women (1). -
Research2007herschkowitzetvolume Al
Open Access Research2007HerschkowitzetVolume al. 8, Issue 5, Article R76 Identification of conserved gene expression features between comment murine mammary carcinoma models and human breast tumors Jason I Herschkowitz¤*†, Karl Simin¤‡, Victor J Weigman§, Igor Mikaelian¶, Jerry Usary*¥, Zhiyuan Hu*¥, Karen E Rasmussen*¥, Laundette P Jones#, Shahin Assefnia#, Subhashini Chandrasekharan¥, Michael G Backlund†, Yuzhi Yin#, Andrey I Khramtsov**, Roy Bastein††, John Quackenbush††, Robert I Glazer#, Powel H Brown‡‡, Jeffrey E Green§§, Levy Kopelovich, reviews Priscilla A Furth#, Juan P Palazzo, Olufunmilayo I Olopade, Philip S Bernard††, Gary A Churchill¶, Terry Van Dyke*¥ and Charles M Perou*¥ Addresses: *Lineberger Comprehensive Cancer Center. †Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. ‡Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA. reports §Department of Biology and Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. ¶The Jackson Laboratory, Bar Harbor, ME 04609, USA. ¥Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. #Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA. **Department of Pathology, University of Chicago, Chicago, IL 60637, USA. ††Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA. ‡‡Baylor College of Medicine, Houston, TX 77030, USA. §§Transgenic Oncogenesis Group, Laboratory of Cancer Biology and Genetics. Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, MD 20892, USA. Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA. Section of Hematology/Oncology, Department of Medicine, Committees on Genetics and Cancer Biology, University of Chicago, Chicago, IL 60637, USA. -
Repurposing of Modified Alpidem and Propoxyphene to Cure AURKA, BCAS1, GNAS and MLH1 Gene Mutations in Colorectal Cancer
ing: Op gn en si A e c D c g e Munir et al., Drug Des 2017, 6:1 s u r s D Drug Designing: Open Access DOI: 10.4172/2169-0138.1000141 ISSN: 2169-0138 Research Article Open Access Repurposing of Modified Alpidem and Propoxyphene to Cure AURKA, BCAS1, GNAS and MLH1 Gene Mutations in Colorectal Cancer Anum Munir1-3*, Shumaila Azam1-3, Sartaj Ali3, Azhar Mehmood1,3, Abbas Hussain Shah5, M Saad Khan2, Rabbiah Manzoor2,4, Maria Sana2, Shakeel Ahmed Mufti2 and Sahar Fazal2 1Bioinformatics International Research Club, Abbottabad, Pakistan 2Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan 3Department of Bioinformatics, Government Post Graduate College Mandian, Abbottabad, Pakistan 4Department of Medical Sciences, Wah Medical College, Wah Cantt, Pakistan 5Department of Botany, Government Post Graduate College Mansehra, Pakistan Abstract Background: Colorectal cancer is a varied illness with an expected heritability of 25–30%. Many CRC disorders occur because of solid family history, a high penetrance of the infection, and developing various tumors at an early age. A few novel genes are recognized that shows associations with CRC, such as AURKA, BCAS1, GNAS and MLH1. Material and methods: In this research work FDA rejected Alpidem and Propoxyphene were selected. Drugs were changed on the basis of side effects; modified drugs were docked with AURKA, BCAS1, GNAS and MLH1 proteins and QSAR analysis was performed. Results: Docked and QSAR results demonstrated the better interaction of both modified Alpidem and Propoxyphene along with proteins of CRC causing genes. The toxicity value and side-effects of modified Alpidem and modified Propoxyphene are less than original drugs. -
The DNA Sequence and Comparative Analysis of Human Chromosome 20
articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M. -
Downloaded from Here
bioRxiv preprint doi: https://doi.org/10.1101/017566; this version posted November 19, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Testing for ancient selection using cross-population allele 2 frequency differentiation 1;∗ 3 Fernando Racimo 4 1 Department of Integrative Biology, University of California, Berkeley, CA, USA 5 ∗ E-mail: [email protected] 6 1 Abstract 7 A powerful way to detect selection in a population is by modeling local allele frequency changes in a 8 particular region of the genome under scenarios of selection and neutrality, and finding which model is 9 most compatible with the data. Chen et al. [2010] developed a composite likelihood method called XP- 10 CLR that uses an outgroup population to detect departures from neutrality which could be compatible 11 with hard or soft sweeps, at linked sites near a beneficial allele. However, this method is most sensitive 12 to recent selection and may miss selective events that happened a long time ago. To overcome this, 13 we developed an extension of XP-CLR that jointly models the behavior of a selected allele in a three- 14 population tree. Our method - called 3P-CLR - outperforms XP-CLR when testing for selection that 15 occurred before two populations split from each other, and can distinguish between those events and 16 events that occurred specifically in each of the populations after the split. -
Download Special Issue
BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data,JuliaTzu-YaWeng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Volume2014,ArticleID814092,3pages Evolution of Network Biomarkers from Early to Late Stage Bladder Cancer Samples,Yung-HaoWong, Cheng-Wei Li, and Bor-Sen Chen Volume 2014, Article ID 159078, 23 pages MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure,Kuei-FangLee, Yi-Cheng Chen, Paul Wei-Che Hsu, Ingrid Y. Liu, and Lawrence Shih-Hsin Wu Volume2014,ArticleID456323,10pages EXIA2: Web Server of Accurate and Rapid Protein Catalytic Residue Prediction, Chih-Hao Lu, Chin-Sheng -
Genomic Profiling of a Large Set of Diverse Pediatric Cancers Identifies Known and Novel Mutations Across Tumor Spectra
Published OnlineFirst January 9, 2017; DOI: 10.1158/0008-5472.CAN-16-1106 Cancer Therapeutics, Targets, and Chemical Biology Research Genomic Profiling of a Large Set of Diverse Pediatric Cancers Identifies Known and Novel Mutations across Tumor Spectra Juliann Chmielecki1, Mark Bailey1, Jie He1, Julia Elvin1, Jo-Anne Vergilio1, Shakti Ramkis- soon1, James Suh1, Garrett M. Frampton1, James X. Sun1, Samantha Morley1, Daniel Spritz1, Siraj Ali1, Laurie Gay1, Rachel L. Erlich1, Jeffrey S. Ross1,2, Joana Buxhaku1, Hilary Davies1, Vinny Faso1, Alexis Germain1, Blair Glanville1, Vincent A. Miller1, Philip J. Stephens1, Katherine A. Janeway3,4, John M. Maris5, Soheil Meshinchi6,Trevor J. Pugh7, Jack F. Shern8, and Doron Lipson1 Abstract Pediatric cancers are generally characterized by low muta- (BEND5–ALK) and an astrocytoma (PPP1CB–ALK), novel BRAF tional burden and few recurrently mutated genes. Recent stud- fusions in an astrocytoma (BCAS1–BRAF) and a ganglioglioma ies suggest that genomic alterations may help guide treatment (TMEM106B–BRAF), and a novel PAX3–GLI2 fusion in a rhab- decisions and clinical trial selection. Here, we describe genomic domyosarcoma. Previously characterized ALK, NTRK1,and profiles from 1,215 pediatric tumors representing sarcomas, PAX3 fusions were observed in unexpected malignancies, chal- extracranial embryonal tumors, brain tumors, hematologic lenging the "disease-specific" alterations paradigm. Finally, we malignancies, carcinomas, and gonadal tumors. Comparable identified recurrent variants of unknown significance in MLL3 published datasets identified similar frequencies of clinically and PRSS1 predictedtohavefunctionalimpact.Datafrom relevant alterations, validating this dataset as biologically rel- these 1,215 tumors are publicly available for discovery and evant. We identified novel ALK fusions in a neuroblastoma validation.