Distinct Gene Expression Patterns in a Tamoxifen-Sensitive Human Mammary Carcinoma Xenograft and Its Tamoxifen-Resistant Subline Maca 3366/TAM

Total Page:16

File Type:pdf, Size:1020Kb

Distinct Gene Expression Patterns in a Tamoxifen-Sensitive Human Mammary Carcinoma Xenograft and Its Tamoxifen-Resistant Subline Maca 3366/TAM Molecular Cancer Therapeutics 151 Distinct gene expression patterns in a tamoxifen-sensitive human mammary carcinoma xenograft and its tamoxifen-resistant subline MaCa 3366/TAM Michael Becker,1 Anette Sommer,2 of acquired tamoxifen resistance. Finally, genes whose Jo¨rn R. Kra¨tzschmar,2 Henrik Seidel,2 expression profiles are distinctly changed between the Hans-Dieter Pohlenz,2 and Iduna Fichtner1 two xenograft lines will be further evaluated as potential targets for diagnostic or therapeutic approaches of 1 Max-Delbrueck-Center for Molecular Medicine, Experimental tamoxifen-resistant breast cancer. [Mol Cancer Ther Pharmacology, and 2Research Laboratories, Schering AG, Berlin, Germany 2005;4(1):151–68] Abstract Introduction The reasons why human mammary tumors become Breast cancer is the most common type of cancer in women resistant to tamoxifen therapy are mainly unknown. of the Western world. Due to advances in early detection Changes in gene expression may occur as cells acquire and treatment, breast cancer survival rates have increased resistance to antiestrogens. We therefore undertook a com- markedly over the past decades. After surgery, estrogen parative gene expression analysis of tamoxifen-sensitive receptor a (ERa)–positive breast cancer is usually treated and tamoxifen-resistant human breast cancer in vivo with endocrine therapy. Tamoxifen, a nonsteroidal anti- models using Affymetrix oligonucleotide arrays to analyze estrogen, also termed selective estrogen receptor modula- differential gene expression. Total RNAs from the tamox- tor, is the first-line therapy for premenopausal and, until ifen-sensitive patient-derived mammary carcinoma xeno- recently, also for postmenopausal hormone receptor– graft MaCa 3366 and the tamoxifen-resistant model MaCa positive women (1). For postmenopausal women, three 3366/TAM were hybridized to Affymetrix HuGeneFL and different aromatase inhibitors are now available that might to Hu95Av2 arrays. Pairwise comparisons and clustering replace tamoxifen as first-line therapy in the future. algorithms were applied to identify differentially expressed Tamoxifen is effective both as adjuvant therapy and for genes and patterns of gene expression. As revealed by advanced disease of hormone-responsive breast cancer and cluster analysis, the tamoxifen-sensitive and the tamoxi- can prevent breast cancer in high-risk patients (2). In many fen-resistant breast carcinomas differed regarding their cases, however, therapies fail and women die from gene expression pattern. More than 100 transcripts are recurrent, endocrine-resistant breast cancer. Prognosis of changed in abundance in MaCa 3366/TAM as compared hormone-dependent breast cancer as well as treatment with MaCa 3366. Among the genes that are differentially strategies are mainly determined by the presence of the expressed in the tamoxifen-resistant tumors, there are ERa and the progesterone receptor (PR). Two thirds of the several IFN-inducible and estrogen-responsive genes, and patients who present with breast cancer are ERa positive genes known to be involved in breast carcinogenesis. The (3). Treatment of estrogen-dependent breast cancer with an genes neuronatin (NNAT) and bone marrow stem cell antiestrogen like tamoxifen inhibits tumor growth. ERa- antigen 2 (BST2) were sharply up-regulated in MaCa and PR-positive breast cancer have a better response rate 3366/TAM. The differential expression of four genes than ERa- and PR-negative breast cancers (3). However, a (NNAT, BST2, IGFBP5, and BCAS1) was confirmed by large number of originally tamoxifen-sensitive tumors Taqman PCR. Our results provide the starting point for develop resistance after several months of treatment while deriving markers for tamoxifen resistance by differential still expressing the ERa (4). gene expression profiling in a human breast cancer model Antagonism of tamoxifen has been attributed to the antiestrogenic activity of tamoxifen in which the active metabolite of tamoxifen, 4-hydroxytamoxifen (4-OHT), competes with E2 for binding to the ERa. Activation of the transcriptional activation domain AF-2 of the ERa, but Received 8/18/04; revised 11/2/04; accepted 11/8/04. not AF-1, is prevented by 4-OHT because coactivators can a The costs of publication of this article were defrayed in part by the no longer bind to the antagonist-occupied ER (5). Clinical payment of page charges. This article must therefore be hereby marked manifestation of tamoxifen resistance is now often inter- advertisement in accordance with 18 U.S.C. Section 1734 solely to preted as a manifestation of increased tamoxifen agonism indicate this fact. and as a switch from tamoxifen-dependent growth inhibi- Note: M. Becker and A. Sommer contributed equally to this work. tion to growth stimulation (6, 7). The phenomenon of Requests for reprints: Michael Becker, Max-Delbrueck-Center for Molecular Medicine, Robert-Ro¨ssle-Strasse 10, D-13092 Berlin, Germany. Phone: 49- tamoxifen resistance is poorly understood and genetic 30-9406-2702; Fax: 49-30-9406-3823. E-mail: [email protected] mechanisms have been proposed, but mutations in the ERa Copyright C 2005 American Association for Cancer Research. are rare events in both patients with tamoxifen-resistant Mol Cancer Ther 2005;4(1). January 2005 Downloaded from mct.aacrjournals.org on September 23, 2021. © 2005 American Association for Cancer Research. 152 Gene Expression Analysis of Tamoxifen-Resistant Xenograft breast cancer and in various cell culture models of genes of tamoxifen resistance in a diagnostic or prognostic tamoxifen resistance (8, 9). In the MaCa 3366/TAM approach. By using clustering algorithms as well as xenograft model, mutations in the ERa ligand binding pairwise comparisons of sample groups, we focussed on domain were not identified (10, 11). Tamoxifen resistance those genes, which distinguish the tamoxifen-sensitive most likely is a multicausal phenomenon. A disturbance of from the tamoxifen-resistant phenotype. growth and survival pathways namely of growth factors, their receptors, extracellular proteins, proteases like kalli- krein 10, immediate-early genes, transcription factors, cell Materials and Methods cycle regulators, signal transduction molecules like Animal Experiment BCAR1/p130Cas, phosphorylation of the ERa by protein Animals. For the animal experiments, 50 female nude kinase A, and alterations in the uptake, retention, and mice (Bom: NMRI-nu/nu) per xenograft experiment, ages 4 metabolism of tamoxifen might all contribute to tamoxifen to 6 weeks and weighing 20 to 24 g, were used. Breeding resistance (12–18). Clues to the mechanisms of tamoxifen and keeping conditions have been described (38). All resistance could therefore be gained from an understanding animal experiments were done according to the United of the numerous effects that tamoxifen produces at the gene Kingdom Coordinating Committee on Cancer Research expression level. Guidelines for the Welfare of Animals in Experimental We decided to approach the question of tamoxifen Neoplasia and with the permission of the responsible local resistance in a xenograft system. Xenografts of human authorities (G V247/98). tumors resemble the clinical situation much more closely Tumor Transplantation. The s.c. transplantation of the than cell lines do (11). The xenograft tumor line MaCa tumor fragments (size, 4  4  4mm3) was done under 3366/TAM is one of the very few in vivo preclinical models Radenarkon anesthesia (40 mg/kg i.p. Etomidat, Asta in which antiestrogen resistance was induced in a clinically Medica, Frankfurt, Germany). The diameter of the tumors adapted manner. By direct transplantation of a ductal was measured once weekly using a caliper-like mechanical invasive carcinoma with moderate differentiation from a instrument and the tumor volume (V)wascalculated postmenopausal woman onto nude mice, the xenograft according to the empirical equation V = (length  width2)/2. tumor line MaCa 3366 was established (19). To study The median volumes of each group were normalized to the tamoxifen resistance in an in vivo model, the tamoxifen- initial tumor volume resulting in the relative tumor resistant xenograft tumor line MaCa 3366/TAM was volume. In all the experiments, tumor-bearing mice developed by treatment of the tamoxifen-sensitive parental received estradiol supplementation [estradiol valeriate human xenograft tumor MaCa 3366 with the antiestrogen (E2D), 0.5 mg/kg once/wk i.m.]. This supplementation tamoxifen during successive passaging over 2 years (10, 11). leads to physiologic levels of serum E2 (25-984 pg/mL) that MaCa 3366 and MaCa 3366/TAM are both ERa and PR are comparable to the human situation (25–600 pg/mL positive. In both xenograft tumor lines, the PR is inducible depending on the follicular phase). by E2 indicating that the ERa-dependent transcriptional Substances. The following substances were used: E2D regulation is still intact. (Jenapharm, Jena, Germany) and tamoxifen (Sigma, In recent years, several gene expression profiling studies Chemie GmbH, Taufkirchen, Germany). were performed to identify genes that are differentially Treatment Modalities. Two independent experiments expressed in human breast cancer which then allow to were done: All MaCa 3366 and MaCa 3366/TAM trans- classify tumors and to predict outcome (20–27). In in vitro planted animals received E2D (0.5 mg/kg) injections once a breast cancer cell culture models, the influence of estrogen week. The last passage of MaCa 3366/TAM before the start or antiestrogen treatment
Recommended publications
  • Copy Number Alterations of BCAS1 in Squamous Cell Carcinomas
    The Korean Journal of Pathology 2011; 45: 271-275 DOI: 10.4132/KoreanJPathol.2011.45.3.271 Copy Number Alterations of BCAS1 in Squamous Cell Carcinomas Yu Im Kim · Ahwon Lee1 Background: Breast carcinoma amplified sequence 1 BCAS1( ), located in 20q13, is amplified and Jennifer Kim · Bum Hee Lee overexpressed in breast cancers. Even though BCAS1 is expected to be an oncogene candidate, Sung Hak Lee · Suk Woo Nam its contribution to tumorigenesis and copy number status in other malignancies is not reported. To elucidate the role of BCAS1 in squamous cell carcinomas, we investigated the copy number Sug Hyung Lee · Won Sang Park status and expression level of BCAS1 in several squamous cell carcinoma cell lines, normal kera- Nam Jin Yoo · Jung Young Lee tinocytes and primary tumors. Methods: We quantitated BCAS1 gene by real-time polymerase Sang Ho Kim · Su Young Kim chain reaction (PCR). Expression level of BCAS1 was measured by real-time reverse transcrip- tion-PCR and immunoblot. Results: Seven (88%) of 8 squamous cell carcinoma cell lines showed Departments of Pathology and 1Hospital copy number gain of BCAS1 with various degrees. BCAS1 gene in primary tumors (73%) also Pathology, The Catholic University of Korea showed copy number gain. However, expression level did not show a linear correlation with copy College of Medicine, Seoul, Korea number changes. Conclusions: We identified copy number gain of BCAS1 in squamous cell car- cinomas. Due to lack of linear correlation between copy numbers of BCAS1 and its expression Received: March 10, 2010 level, we could not confirm that the overexpression of BCAS1 is a common finding in squamous Accepted: May 24, 2011 cell carcinoma cell lines.
    [Show full text]
  • ONCOPANEL (Popv3)
    ONCOPANEL (POPv3) TEST INFORMATION BACKGROUND: Somatic genetic alterations in oncogenes and tumor-suppressor genes contribute to the pathogenesis and evolution of human cancers. These alterations can provide prognostic and predictive information and stratify cancers for targeted therapeutic information. We classify these alterations into five tiers using the following guidelines: Tier 1: The alteration has well-established published evidence confirming clinical utility in this tumor type, in at least one of the following contexts: predicting response to treatment with an FDA-approved therapy; assessing prognosis; establishing a definitive diagnosis; or conferring an inherited increased risk of cancer to this patient and family. Tier 2: The alteration may have clinical utility in at least one of the following contexts: selection of an investigational therapy in clinical trials for this cancer type; limited evidence of prognostic association; supportive of a specific diagnosis; proven association of response to treatment with an FDA-approved therapy in a different type of cancer; or similar to a different mutation with a proven association with response to treatment with an FDA-approved therapyin this type of cancer. Tier 3: The alteration is of uncertain clinical utility, but may have a role as suggested by at least one of the following: demonstration of association with response to treatment in this cancer type in preclinical studies (e.g., in vitro studies or animal models); alteration in a biochemical pathway that has other known, therapeutically-targetable alterations; alteration in a highly conserved region of the protein predicted, in silico, to alter protein function; or selection of an investigational therapy for a different cancer type.
    [Show full text]
  • Dietary Chemoprevention Studies in Preclinical Models of Prostate Cancer: Bioactive Lipids and Vitamin D
    Dietary Chemoprevention Studies in Preclinical Models of Prostate Cancer: Bioactive Lipids and Vitamin D. Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Justin Bruce Smolinski, B.S. Ohio State University Nutrition (OSUN) Graduate Program The Ohio State University 2010 Dissertation Committee: Professor Steven K. Clinton, Advisor Professor Charles L. Brooks Professor Kichoon Lee Professor Mark L. Failla i Copyright by Justin Bruce Smolinski 2010 ii ABSTRACT Epidemiological evidence suggests that prostate cancer can be modulated by diet. Data exists that implicate both bioactive lipids and the vitamin D/ calcium axis in prostate cancer pathogenesis. These data suggest that bioactive lipids such as omega-3 fatty acids protect against prostate cancer, whereas omega-6 fatty acids promote prostate cancer. Population studies also indicate that a diet high in vitamin D decreases prostate cancer risk while calcium increases risk for prostate cancer, possibly by lowering circulating levels of protective vitamin D. In contrast, recent epidemiological studies indicate that vitamin D does not protect against prostate cancer, indicating that the role of vitamin D and calcium in this disease process is far from established. Importantly, crucial animal experiments are lacking that may serve to provide mechanistic data for the roles of these nutrients. The objective of the first study conducted in this dissertation was to evaluate and compare prostate carcinogenesis in murine models that utilize the SV40 Tag transformation system- TRAMP and Apt121/Rbf. These are commonly used models in prostate cancer chemoprevention studies. We characterized these models with respect to time to tumor development, tumor size and metastasis.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Views of the NIH
    CLINICAL EPIDEMIOLOGY www.jasn.org Genetic Variants Associated with Circulating Fibroblast Growth Factor 23 Cassianne Robinson-Cohen ,1 Traci M. Bartz,2 Dongbing Lai,3 T. Alp Ikizler,1 Munro Peacock,4 Erik A. Imel,4 Erin D. Michos,5 Tatiana M. Foroud,3 Kristina Akesson,6,7 Kent D. Taylor,8 Linnea Malmgren,6,7 Kunihiro Matsushita,5,9,10 Maria Nethander,11 Joel Eriksson,12 Claes Ohlsson,12 Daniel Mellström,12 Myles Wolf,13 Osten Ljunggren,14 Fiona McGuigan,6,7 Jerome I. Rotter,8 Magnus Karlsson,6,7 Michael J. Econs,3,4 Joachim H. Ix,15,16 Pamela L. Lutsey,17 Bruce M. Psaty,18,19 Ian H. de Boer ,20 and Bryan R. Kestenbaum 20 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Fibroblast growth factor 23 (FGF23), a bone-derived hormone that regulates phosphorus and vitamin D metabolism, contributes to the pathogenesis of mineral and bone disorders in CKD and is an emerging cardiovascular risk factor. Central elements of FGF23 regulation remain incompletely under- stood; genetic variation may help explain interindividual differences. Methods We performed a meta-analysis of genome-wide association studies of circulating FGF23 con- centrations among 16,624 participants of European ancestry from seven cohort studies, excluding par- ticipants with eGFR,30 ml/min per 1.73 m2 to focus on FGF23 under normal conditions. We evaluated the association of single-nucleotide polymorphisms (SNPs) with natural log–transformed FGF23 concentra- tion, adjusted for age, sex, study site, and principal components of ancestry.
    [Show full text]
  • Pdf Sub-Classification of Patients with a Molecular Alteration Provides Better Response [57]
    Theranostics 2021, Vol. 11, Issue 12 5759 Ivyspring International Publisher Theranostics 2021; 11(12): 5759-5777. doi: 10.7150/thno.57659 Research Paper Homeobox B5 promotes metastasis and poor prognosis in Hepatocellular Carcinoma, via FGFR4 and CXCL1 upregulation Qin He1, Wenjie Huang2, Danfei Liu1, Tongyue Zhang1, Yijun Wang1, Xiaoyu Ji1, Meng Xie1, Mengyu Sun1, Dean Tian1, Mei Liu1, Limin Xia1 1. Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China. 2. Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China. Corresponding author: Dr. Limin Xia, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; Phone: 86 27 6937 8507; Fax: 86 27 8366 2832; E-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2020.12.29; Accepted: 2021.03.17; Published: 2021.03.31 Abstract Background: Since metastasis remains the main reason for HCC-associated death, a better understanding of molecular mechanism underlying HCC metastasis is urgently needed.
    [Show full text]
  • Functional Parsing of Driver Mutations in the Colorectal Cancer Genome Reveals Numerous Suppressors of Anchorage-Independent
    Supplementary information Functional parsing of driver mutations in the colorectal cancer genome reveals numerous suppressors of anchorage-independent growth Ugur Eskiocak1, Sang Bum Kim1, Peter Ly1, Andres I. Roig1, Sebastian Biglione1, Kakajan Komurov2, Crystal Cornelius1, Woodring E. Wright1, Michael A. White1, and Jerry W. Shay1. 1Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039. 2Department of Systems Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77054. Supplementary Figure S1. K-rasV12 expressing cells are resistant to p53 induced apoptosis. Whole-cell extracts from immortalized K-rasV12 or p53 down regulated HCECs were immunoblotted with p53 and its down-stream effectors after 10 Gy gamma-radiation. ! Supplementary Figure S2. Quantitative validation of selected shRNAs for their ability to enhance soft-agar growth of immortalized shTP53 expressing HCECs. Each bar represents 8 data points (quadruplicates from two separate experiments). Arrows denote shRNAs that failed to enhance anchorage-independent growth in a statistically significant manner. Enhancement for all other shRNAs were significant (two tailed Studentʼs t-test, compared to none, mean ± s.e.m., P<0.05)." ! Supplementary Figure S3. Ability of shRNAs to knockdown expression was demonstrated by A, immunoblotting for K-ras or B-E, Quantitative RT-PCR for ERICH1, PTPRU, SLC22A15 and SLC44A4 48 hours after transfection into 293FT cells. Two out of 23 tested shRNAs did not provide any knockdown. " ! Supplementary Figure S4. shRNAs against A, PTEN and B, NF1 do not enhance soft agar growth in HCECs without oncogenic manipulations (Student!s t-test, compared to none, mean ± s.e.m., ns= non-significant).
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • PRODUCT SPECIFICATION Prest Antigen GTF2E2 Product Datasheet
    PrEST Antigen GTF2E2 Product Datasheet PrEST Antigen PRODUCT SPECIFICATION Product Name PrEST Antigen GTF2E2 Product Number APrEST89212 Gene Description general transcription factor IIE, polypeptide 2, beta 34kDa Alternative Gene FE, TF2E2, TFIIE-B Names Corresponding Anti-GTF2E2 (HPA004816) Antibodies Description Recombinant protein fragment of Human GTF2E2 Amino Acid Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: LLEDIEEALPNSQKAVKALGDQILFVNRPDKKKILFFNDKSCQFSVDEEF QKLWRSVTVDSMDEEKIEEYLKRQGISSMQESGPKKVAPIQRRKKPASQK KRRFKTHNEHLAGVLKDYSDITSSK Fusion Tag N-terminal His6ABP (ABP = Albumin Binding Protein derived from Streptococcal Protein G) Expression Host E. coli Purification IMAC purification Predicted MW 32 kDa including tags Usage Suitable as control in WB and preadsorption assays using indicated corresponding antibodies. Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Unit Size 100 µl Concentration Lot dependent Storage Upon delivery store at -20°C. Avoid repeated freeze/thaw cycles. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • S1 Supplemental Materials Supplemental Methods Supplemental Figure 1. Immune Phenotype of Mcd19 Targeted CAR T and Dose Titratio
    Supplemental Materials Supplemental Methods Supplemental Figure 1. Immune phenotype of mCD19 targeted CAR T and dose titration of in vivo efficacy. Supplemental Figure 2. Gene expression of fluorescent-protein tagged CAR T cells. Supplemental Figure 3. Fluorescent protein tagged CAR T cells function similarly to non-tagged counterparts. Supplemental Figure 4. Transduction efficiency and immune phenotype of mCD19 targeted CAR T cells for survival study (Figure 2D). Supplemental Figure 5. Transduction efficiency and immune phenotype of CAR T cells used in irradiated CAR T study (Fig. 3B-C). Supplemental Figure 6. Differential gene expression of CD4+ m19-humBBz CAR T cells. Supplemental Figure 7. CAR expression and CD4/CD8 subsets of human CD19 targeted CAR T cells for Figure 5E-G. Supplemental Figure 8. Transduction efficiency and immune phenotype of mCD19 targeted wild type (WT) and TRAF1-/- CAR T cells used for in vivo study (Figure 6D). Supplemental Figure 9. Mutated m19-musBBz CAR T cells have increased NF-κB signaling, improved cytokine production, anti-apoptosis, and in vivo function. Supplemental Figure 10. TRAF and CAR co-expression in human CD19-targeted CAR T cells. Supplemental Figure 11. TRAF2 over-expressed h19BBz CAR T cells show similar in vivo efficacy to h19BBz CAR T cells in an aggressive leukemia model. S1 Supplemental Table 1. Probesets increased in m19z and m1928z vs m19-musBBz CAR T cells. Supplemental Table 2. Probesets increased in m19-musBBz vs m19z and m1928z CAR T cells. Supplemental Table 3. Probesets differentially expressed in m19z vs m19-musBBz CAR T cells. Supplemental Table 4. Probesets differentially expressed in m1928z vs m19-musBBz CAR T cells.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Supplementary Figure S4
    18DCIS 18IDC Supplementary FigureS4 22DCIS 22IDC C D B A E (0.77) (0.78) 16DCIS 14DCIS 28DCIS 16IDC 28IDC (0.43) (0.49) 0 ADAMTS12 (p.E1469K) 14IDC ERBB2, LASP1,CDK12( CCNE1 ( NUTM2B SDHC,FCGR2B,PBX1,TPR( CD1D, B4GALT3, BCL9, FLG,NUP21OL,TPM3,TDRD10,RIT1,LMNA,PRCC,NTRK1 0 ADAMTS16 (p.E67K) (0.67) (0.89) (0.54) 0 ARHGEF38 (p.P179Hfs*29) 0 ATG9B (p.P823S) (0.68) (1.0) ARID5B, CCDC6 CCNE1, TSHZ3,CEP89 CREB3L2,TRIM24 BRAF, EGFR (7p11); 0 ABRACL (p.R35H) 0 CATSPER1 (p.P152H) 0 ADAMTS18 (p.Y799C) 19q12 0 CCDC88C (p.X1371_splice) (0) 0 ADRA1A (p.P327L) (10q22.3) 0 CCNF (p.D637N) −4 −2 −4 −2 0 AKAP4 (p.G454A) 0 CDYL (p.Y353Lfs*5) −4 −2 Log2 Ratio Log2 Ratio −4 −2 Log2 Ratio Log2 Ratio 0 2 4 0 2 4 0 ARID2 (p.R1068H) 0 COL27A1 (p.G646E) 0 2 4 0 2 4 2 EDRF1 (p.E521K) 0 ARPP21 (p.P791L) ) 0 DDX11 (p.E78K) 2 GPR101, p.A174V 0 ARPP21 (p.P791T) 0 DMGDH (p.W606C) 5 ANP32B, p.G237S 16IDC (Ploidy:2.01) 16DCIS (Ploidy:2.02) 14IDC (Ploidy:2.01) 14DCIS (Ploidy:2.9) -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 -3 -2 -1 Log Ratio Log Ratio Log Ratio Log Ratio 12DCIS 0 ASPM (p.S222T) Log Ratio Log Ratio 0 FMN2 (p.G941A) 20 1 2 3 2 0 1 2 3 2 ERBB3 (p.D297Y) 2 0 1 2 3 20 1 2 3 0 ATRX (p.L1276I) 20 1 2 3 2 0 1 2 3 0 GALNT18 (p.F92L) 2 MAPK4, p.H147Y 0 GALNTL6 (p.E236K) 5 C11orf1, p.Y53C (10q21.2); 0 ATRX (p.R1401W) PIK3CA, p.H1047R 28IDC (Ploidy:2.0) 28DCIS (Ploidy:2.0) 22IDC (Ploidy:3.7) 22DCIS (Ploidy:4.1) 18IDC (Ploidy:3.9) 18DCIS (Ploidy:2.3) 17q12 0 HCFC1 (p.S2025C) 2 LCMT1 (p.S34A) 0 ATXN7L2 (p.X453_splice) SPEN, p.P677Lfs*13 CBFB 1 2 3 4 5 6 7 8 9 10 11
    [Show full text]