Information Infrastructure of the Russian Virtual Observatory (RVO) (Second Edition)

Total Page:16

File Type:pdf, Size:1020Kb

Information Infrastructure of the Russian Virtual Observatory (RVO) (Second Edition) RUSSIAN ACADEMY OF SCIENCES Institute of Informatics Problems Special Astrophysical Observatory IPI RAN SAO RAN Institute of Astronomy INASAN Information Infrastructure of the Russian Virtual Observatory (RVO) (Second edition) Briukhov D.O., Kalinichenko L.A., Zakharov V.N. (IPI RAN) Panchuk V.E., Vitkovsky V.V., Zhelenkova O.P. (SAO RAN) Dluzhnevskaya O.B., Malkov O.Yu., Kovaleva D.A. (INASAN) Moscow 2005 Briukhov D.O., Kalinichenko L.A., Zakharov V.N., Panchuk V.E., Vitkovsky V.V., Zhelenkova O.P., Dluzhnevskaya O.B., Malkov O.Yu., Kovaleva D.A. Information Infrastructure of the Russian Virtual Observatory (RVO). (Second edition). M.:IPI RAN, 2005. – 173 p. – ISBN 5-902030-12-9. This publication is the final report of the project supported by the Russian Foundation for Basic Research, grant № 04-07-90083, dedicated to the analysis of the Russian Virtual Observatory information infrastructure (RVOII) as one of the first steps in achieving the objectives of RVO. RVOII is aimed at representation of information in various problem domains of astronomy to support scientific research. The report also contains: analysis of different kinds of astronomical information resources; analysis of the modeling, technological and architectural recommendations of the IVOA; analysis of correspondence and sufficiency of the IVOA standards for the identified RVO activities; analysis of existing components that can be re-used for RVOII implementation. Based on the analysis performed, the information architecture of RVO has been defined. For specialists in astronomy and information technologies. Эта публикация представляет аванпроект информационной инфраструктуры Российской виртуальной обсерватории (РВОИИ), разработанный при поддержке Российского Фонда Фундаментальных Исследований, грант № 04-07-90083. РВОИИ ориентирована на представление информации в различных проблемных областях астрономии для поддержки научных исследований. Аванпроект содержит также: анализ разнообразных видов астрономических информационных ресурсов; анализ технологических и архитектурных рекомендаций IVOA; анализ соответствия и достаточности стандартов IVOA для различных видов деятельности РВО; анализ существующих компонентов, которые можно использовать при реализации РВОИИ. На основании проведенного анализа, разработана информационная архитектура РВО. Для специалистов в областях астрономии и информационных технологий. FOR FURTHER INFORMATION PLEASE CONTACT: Institute of Informatics Problems RAS 44-2 Vavilov str., Moscow, 119333, Russian Federation Tel. 7 095 3324933 E-mail: [email protected] ISBN 5-902030-12-9 © Institute of Informatics Problems RAS, 2005 3 Preface The first edition of the RVO Information Infrastructure (RVOII) project has been published in February 2005 as a result of joint effort of the Special Astrophysical Observatory of RAS (SAO RAS) and the Institute of Informatics Problems of RAS (IPI RAS) supported by the Russian Foundation for Basic Research (RFBR), grant № 04-07-90083. After distribution of limited number of the report copies it appeared that there is an interest of the International community to it. In particular, IVOA expressed an interest that an electronic copy of the report should be made publicly available. On the other hand, it revealed that it is strongly desirable to include the Centre of Astronomical Data (CAD) of the Institute of Astronomy of RAS (INASAN) into the group of the project participants taking into account the active role of CAD at the initial phase of formulating the RVO idea and representing RVO in IVOA as its member. It revealed also that in time of completing the RVOII report, CAD has prepared a separate document on the RVO project. After both documents were completed, their analysis has shown that the CAD document contains important considerations complementary to the first edition of the RVOII report. These observations motivated the three organizations (SAO RAS, INASAN and IPI RAS) to consolidate their efforts and to prepare the second edition of the report by inclusion into the first edition of the RVOII project of additional considerations from the CAD document. During this unification it was decided to exclude any specific organizational and planning issues the discussion of which will follow publishing of the second edition. Comparing to the first edition of the report, the second edition: • contains extended list of the Russian Astronomical Resources; it was decided also to move this list from the survey part of the report to the part where specific information on the RVOII project has been concentrated; • significantly extends a section of the report devoted to the Data Centre of INASAN; • is published as a joint work of three organizations – SAO RAS, INASAN and IPI RAS. 4 Table of contents 1 Introduction .............................................................................................. 8 2 Objectives of the RVO project................................................................ 10 3 Representation of problem domains in natural sciences in information systems ............................................................................................................. 13 4 World-wide Information Resources in Astronomy................................. 17 4.1 Optical surveys and catalogs......................................................... 17 4.2 Infrared and radio range surveys................................................... 20 4.3 Archives of observations............................................................... 21 4.3.1 Data centers .............................................................................. 23 4.4 Surveys and Robotic Telescopes................................................... 25 5 Analysis of Projects of Virtual Observatories......................................... 28 5.1 NVO.............................................................................................. 28 5.2 EURO-VO..................................................................................... 32 5.3 AstroGrid ...................................................................................... 37 5.4 IVOA............................................................................................. 40 6 Information Infrastructure Forming Standards ....................................... 42 6.1 OAI Protocol for Metadata Harvesting ......................................... 42 6.2 Web Services................................................................................. 43 6.3 Grid ............................................................................................... 43 6.4 OGSA-DAI Architecture............................................................... 45 6.5 WSRF............................................................................................ 47 7 Classes of astrophysical problems for VO.............................................. 48 7.1 Class of problems solvable applying database search technique... 48 7.2 Classes of general problems for VO.............................................. 51 7.3 Theoretical research and VO......................................................... 55 7.4 Co-existence of theoretical and observational archives and services in VO ....................................................................................................... 58 8 Virtual observatory architecture according to IVOA.............................. 63 8.1 VO architecture overview ............................................................. 64 8.2 Data Modeling............................................................................... 66 8.2.1 A unified domain model for astronomy, for use in the Virtual Observatory ............................................................................................ 66 8.2.2 Data model for quantity............................................................ 68 8.2.3 IVOA Observation data model................................................. 68 5 8.2.4 Simple Spectral Data Model .....................................................69 8.2.5 Simulation Data Model.............................................................69 8.3 Unified Content Descriptors (UCD)..............................................70 8.4 Metadata Registries for VO...........................................................71 8.4.1 Resource Metadata for the Virtual Observatory .......................71 8.4.2 IVOA Metadata Registry Interface...........................................73 8.5 VOTable Format Definition ..........................................................74 8.6 Data Access Layer.........................................................................74 8.6.1 DAL Architecture .....................................................................74 8.6.2 Simple Image Access Protocol Specification ...........................76 8.6.3 Simple Spectral Access Specification.......................................77 8.7 IVOA Query Language..................................................................78 8.7.1 IVOA SkyNode Interface .........................................................78 8.7.2 Astronomical Data Query Language (ADQL)..........................79 8.7.3 VO Query Language.................................................................81 9 Russian Astronomical Resources ............................................................82 9.1 Special Astrophysical Observatory of RAS (SAO RAS) ..............83 9.2 Sternberg Astronomical Institute of the Moscow State University (SAI MSU)...................................................................................................85
Recommended publications
  • Хроники / Ikichronicles / 1965–2015
    ХРОНIKIИКИCHRONICLES 1965–2015 50 ЛЕТ ИНСТИТУТА КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ Президент академии Academician артиллерийских наук, Anatoly A. Blagonravov, академик анатолий President of the Academy аркадьевич Благонравов of Artillery Sciences «теоретик Academician «Главный конструктор» Academician Sergey P. Korolev, КОСМОНАВТИКИ», Mstislav V. Keldysh, космической техники, “Chief Designer” for rocket президент академии “Theoretician академик сергей Павлович technology наук СССР, академик of Cosmonautics”, королёв Мстислав всеволодович President of the Academy келдыш of Sciences of the USSR Академическая наука была тесно связа- Academic science has been closely associ- на с ракетостроением с самого начала работ ated with space rocket technology from the first по созданию ракетно-космической техники. day when rocket science was created. In the Осенью 1948 года испытываются первые от- autumn of 1948 the first Soviet controlled bal- ечественные комплексы с управляемыми listic missile systems were tested, and in 1949 баллистическими ракетами, и уже в 1949 году scientists began to use them to explore the upper Заместитель с их помощью учёные приступили к изуче- atmosphere. In 1951 systematic biomedical re- председателя нию верхних слоёв атмосферы. В 1951 году search began that involved high-altitude rockets. специальной комиссии при начинаются систематические медико-био- S. P. Korolev supervises the experiments back to Президиуме ан СССР логические исследования на базе высотных back with an outstanding Soviet expert in me- по «объекту Д» — искусственному ракет. Руководит экспериментами вместе chanics, president of the Academy of Artillery спутнику Земли — с С. П. Королёвым крупнейший отечествен- Sciences, future director of the Institute of Me- Михаил клавдиевич тихонравов ный специалист в области механики, прези- chanical Engineering (Academy of Sciences Mikhail K. Tikhonravov, дент Академии артиллерийских наук, в даль- of the USSR), academician A.
    [Show full text]
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • The Search For
    THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE Proceedings of an NRAO Workshop held at the National Radio Astronomy Observatory Green Bank, West Virginia May 20, 21, 22, 1985 1960 1985 Honoring the 25th Anniversary of Project OZMA Edited by K. I. Kellermann and G. A. Seielstad THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE Proceedings of an NRAO Workshop held at the National Radio Astronomy Observatory Green Bank, West Virginia May 20, 21, 22, 1985 Edited by K. I. Kellermann and GL A. Seielstad Workshop Na 11 Distributed by: National Radio Astronomy Observatory P.O. Box 2 Green Bank, WV 24944-0002 USA The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with the National Science Foundation. Copyright © 1986 NRAO/AUI. All Rights Reserved. CONTENTS Page I. KEYNOTE ADDRESS Life in Space and Humanity on Earth . Sebastian von Hoeimer 3 II. HISTORICAL PERSPECTIVE Project OZMA Frank D. Drake 17 Project OZMA - How It Really Was J. Fred Crews 27 Evolution of Our Thoughts on the Best Strategy for SETI Michael D. Papagiannis 31 III. SEARCH STRATEGIES The Search for Biomolecules in Space Lewis E. Snyder 39 Mutual Help in SETI's David H. Frisch 51 A Symbiotic SETI Search Thomas M. Bania 61 Should the Search be Made Optically? John J. Broderiok 67 A Search for SETI Targets Jane L. Russell 69 A Milky Way Search Strategy for Extra¬ terrestrial Intelligence .... Woodruff T. Sullivan, III 75 IV. CURRENT PROGRAMS SETI Observations Worldwide Jill C. Tarter 79 Ultra-Narrowband SETI at Harvard/Smithsonian . Paul Horowitz 99 The NASA SETI Program: An Overview Bernard M.
    [Show full text]
  • Arxiv:Astro-Ph/0610887 V1 30 Oct 2006 Words
    1 Key words. binaries: close — pulsars: general — stars: neutron — X-rays: binaries arXiv:astro-ph/0610887 v1 30 Oct 2006 Astronomy & Astrophysics manuscript no. Kudr October 31, 2006 (DOI: will be inserted by hand later) Transient pulsar dynamics in hard x-rays: Prognoz 9 and GRIF ”Mir” space experiments data M.I. Kudryavtsev1, S.I. Svertilov2, and V.V. Bogomolov2 1 Space Research Institute, Russian Academy of Science, Profsoyuznaya st. 84/32, Moscow 117810, Russia e-mail: [email protected] 2 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Vorob’evy Gory, Moscow 119899, Russia e-mail: [email protected] Abstract. The long-term observations of the Galactic Centre as well as the Galactic anti-Centre regions in hard X-rays (10-300 keV) were made in experi- ments on board Prognoz-9 satellite and ”Mir” orbital station (GRIF experiment). Some transient pulsars including A0535+262, GS1722-36, 4U1145-619, A1118- 615, EXO2030+37, Sct X-1, SAX J2103.5+4545, IGR 16320-4751, IGR 16465- 4507 were observed. The pulsation flux components of A0535+26 and GS1722-36 X-ray emission were revealed at significant level. For other observed pulsars the upper limits of pulsation intensity were obtained. The mean pulsation profiles of A0535+26 in different energy ranges as well as the energy spectra were obtained at different stages of outburst decreasing. The pulsation intensity-period behavior does not contradict the well-known correlation between spin-up rate and X-ray flux, while the stable character of the energy spectrum power index indicates on the absence of thermal component.
    [Show full text]
  • Voyager Dans L'espace
    Extrait de la publication ’aventure spatiale ne date pas Ld’hier. Tout a commencé avec un pigeon et des feux d’artifice avant que la Seconde Guerre mondiale puis la Guerre froide n’ouvrent l’âge des fusées et n’offrent à l’humanité de réaliser son vieux rêve : aller dans l’espace. L’espace est à la fois proche – cent kilomètres à peine au-dessus de nous – et presque hors de portée. En effet, ce sont cent kilomètres qu’il faut parcourir verticalement, en bravant la loi de la gravité. Quand s’arracher du sol quelques secondes n’est déjà pas une mince affaire, le quitter complètement est un défi, relevé depuis quelques décennies seulement. Aujourd’hui, alors qu’aller fureter dans le Système solaire paraît presque banal, chaque départ de lanceur reste un véritable exploit technologique et humain. Le livre de Yaël Nazé explique quels innom- brables problèmes il faut résoudre pour se lancer dans cette aventure : comment choisir la bonne route dans un univers où tout est en mouvement et où les lignes droites n’existent pas ? Pourquoi faut-il décoller à un moment, pas à un autre ? Quel est le prix de la conquête spatiale ? Quels en sont les risques pour les hommes et les machines ? Et d’ailleurs… pourquoi aller dans l’espace ? Un guide passionnant pour tous les amoureux de l’astronautique et des étoiles. Spécialiste des étoiles massives, récompensée plusieurs fois pour ses actions de vulgarisation scientifique, Yaël Nazé est astrophysicienne FNRS au « Liège Space Research Institute » de l’Université de Liège. JEU DISPONIBLE SUR LA VERSION PAPIER.
    [Show full text]
  • Cosmic Ray Investigation in Stratosphere and Space: Some Results from Instruments on Russian Satellites and Balloons
    Cosmic Ray investigation in stratosphere and space: some results from instruments on Russian satellites and balloons. Yu. I. Logachev (1), L.L. Lazutin (1) and K. Kudela (2) 1 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia. 2 Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia (IEP SAS) Abstract. Selected activities with the aim to describe cosmic ray fluxes and to contribute the understanding of the mechanisms behind, over long time period with using the space research tools in the former USSR and in Russia, are reviewed, and some of the results obtained are listed. Selection is connected with the institutes where the authors are working. Thus it has to be assumed as a partial review on the wide topic. 1. Some milestones until mid of the last century. Investigation of cosmic rays began in 1900-1901, i.e. more than 100 years ago. First ten years the reserchers did not know they study cosmic rays. All began from the time of measurements of conductivity of various gases including the air, when there was observed some "residual" ionization, i.e. a weak “dark current” observed even without ionising sources. First publications of those experiments relate to period 1900-1901 [1]. One of the first researchers of “dark current” was Ch. Wilson, well known as the inventor of Wilson chamber (1912), which was widely used for studies of various types of radiation, including also cosmic rays. Later, in 1927, Ch. Wilson for this finding was awarded the Nobel Prize. Due to those experiments it became clear that at sea level always exists some not large but strongly penetrating radiation (that was observed also in strongly screened chambers).
    [Show full text]
  • NASA-TM-112507 OBSERVATIONS of 4U 1700-37 with BATSE ABSTRACT the Eclipsing Binary X-Ray Source 4U 1700-37 Has Been Continually
    NASA-TM-112507 THE ASTROPHYSICAL JOURNAL, 459:259-270, 1996 March l ,¢_ 1996 The American Astronomical Society. All rights reserved• Printed in US.A. OBSERVATIONS OF 4U 1700-37 WITH BATSE B. C. RUBIN, 1 M. H. FINGER, 1'2 B. A. HARMON, W. S. PACIESAS, 3 G. J. FISHMAN, R. B. WILSON, C. A. WILSON, M. N. BROCK, M. S. BRIGGS, 3 AND G. N. PENDLETON 3 NASA/Marshall Space Flight Center, Huntsville, AL 35812 AND L. R. COMINSKY AND M. S. ROBERTS 4 Department of Physics and Astronomy, Sonoma State University, Rohnert Park, CA 94928 Received 1995 June 7: accepted 1995 September 5 ABSTRACT The eclipsing binary X-ray source 4U 1700-37 has been continually monitored by the BATSE experi- ment on the Compton Gamma Ray Observatory since the spring of 1991. Using source measurements at times of Earth occultation, we observe an average (uneclipsed) flux of 0.23 crab in the 20-120 keV band. The flux is highly variable, with occasional flaring behavior on timescales from hundreds of seconds to several hours and intensities as bright as 1 crab. The uneclipsed spectrum is well represented by an opti- cally thin thermal bremsstrahlung model with a temperature of 25 keV independent of source intensity or orbital phase. An upper limit of 4% on the pulse fraction has been obtained for pulse periods between 2 and 700 s. Average orbital light curves from almost 1000 days of occultation measurements have been constructed. These profiles are used to measure (1) the eclipse semiangle, 0E = 28.°6 ___2°.1 in the 20-120 keV band, and (2) the decrease in orbital period, I)/P = -(3.3 + 0.6) x 10 -6 yr 1.
    [Show full text]
  • A Catalogue of X-Ray Sources in the Sky Region Between Δ = −73 And
    Publ. Astron. Soc. Aust., 1999, 16, 175–205. A Catalogue of X-ray Sources in the Sky Region between = 73 and = +27 M. T. Meliani Instituto Nacional de Pesquisas Espaciais, INPE, Divis˜ao de Astrofsica, CP 515, S. Jose dos Campos-SP, 12201–970 Brazil [email protected] Received 1998 November 23, accepted 1999 April 20 Abstract: This Catalogue lists coordinates, X-ray uxes in dierent energy ranges, magnitudes and colour indices, optical counterparts, orbital periods of binaries, pulsar periods and other characteristics of 226 X-ray sources (HMXBs, LMXBs, pulsars and galaxies) between = 73 and = +27. Keywords: catalogues — X-ray sources: stars, galaxies — stars: binaries, pulsars 1 Introduction 2 The Catalogue The Catalogue lists 226 selected X-ray emitting The Catalogue contents are explained below. The objects with declinations between 73 references cited are listed in numerical and alpha- +27. The information was obtained principally betical order at the end. The Catalogue is available from the technical literature published from 1992 to electronically from the electronic version of Publi- May 1998. Some recently discovered sources, such cations of the Astronomical Society of Australia at as RXTE 1550–56 and RXTE 2123–058, have also http://www.atnf.csiro.au/pasa/16 2/meliani/. been included. The layout of the Catalogue follows First column: The source name related with the standard format used in Bradt & McClintock its sky location in epoch 1950 (B) and/or 2000 (1985) and van Paradijs (1995). However, the (J). The conventional format is hhmmddd, where coordinates for both B1950 and J2000 have been hh and mm indicate the hour and minute of right included, as have the X-ray uxes in six dierent ascension and ddd indicates the declination.
    [Show full text]
  • Russian Space Probes Scientific Discoveries and Future Missions
    Russian Space Probes Scientific Discoveries and Future Missions Brian Harvey with Olga Zakutnyaya Russian Space Probes Scientific Discoveries and Future Missions Brian Harvey, FBIS Dr Olga Zakutnyaya 2 Rathdown Crescent Space Research Institute Terenure Russian Academy of Sciences Dublin 6W Profsoyuznaya 84/32 Ireland Moscow GSP-7 117997 Russia SPRINGER±PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason, M.B.E., B.Sc., M.Sc., Ph.D. ISBN 978-1-4419-8149-3 e-ISBN 978-1-4419-8150-9 DOI 10.1007/978-1-4419-8150-9 SpringerNew York Dordrecht Heidelberg London Library of Congress Control Number: 2011921111 # Springer Science+Business Media LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Cover design: Jim Wilkie Project copy editor: Christine Cressy Typesetting: BookEns, Royston, Herts., UK Printed on acid-free paper Springer is part of Springer Science + Business Media (www.springer.com) Contents Introduction by the authors ....................................
    [Show full text]
  • Gamma Ray Burst Origin and Their Afterglow: Story of a Discovery and More 3
    IL NUOVO CIMENTO Vol. ?, N. ? ? Gamma Ray Burst origin and their afterglow: story of a discovery and more Enrico Costa(1) and Filippo Frontera(2) (1) INAF, IASF, Rome, Italy (2) University of Ferrara, Physics Department, Via Saragat, 1, 44100 Ferrara, Italy Summary. — In this paper we review the story of the BeppoSAX discovery of the Gamma Ray Burst afterglow and their cosmological distance, starting from their first detection with Vela satellites and from the efforts done before BeppoSAX . We also discuss the consequences of the BeppoSAX discovery, the issues left open by BeppoSAX , the progress done up to now and its perspectives. PACS 95.85.Nv – PACS . – 95.85.Pw. PACS 98.70.Rz – PACS . – 98.80.Es. 1. – Introduction Gamma Ray Bursts (GRBs) are the most fascinating events in the Universe. They are sudden bright flashes of gamma–ray radiation of celestial origin, with variable duration from milliseconds to several hundreds of seconds. In rare cases time duration up to thousands of seconds has been observed. Most of the emission is made of photons with arXiv:1107.1661v2 [astro-ph.HE] 22 Dec 2011 energies from several keV to tens of MeV and above. With the current instrumentation their observed occurrence rate is 2–3 per day over the entire sky. Their arrival time is impredictable as it is impredictable their arrival direction. When they are on, their brightness overcomes any other celestial gamma-ray source. They were discovered by chance at the end the 60s with the American Vela spy satellites, devoted to monitor the compliance of the Soviet Union and other nuclear-capable states with the 1963 ”Partial Test Ban Treaty”.
    [Show full text]
  • Soviet Scientific Space Program: Gaining Prestige
    1 Dirtttorale of 9- b ®~t!J{ \ . Intelligence ~t ~ '? ~- I ~I:'d.~~~L .... _ :. ~ ~ ~- ! ¢ ;J ~ .1.: .. 2C _...... - .... _. Soviet Scientific ~no ~c. Proaro 1m • • _.!!:" ___ -- -~-----· ··- Gaining Prestige A Research Paper CIA SPECIAL COLLH:TIONS RELE.t\SBAS SANmZED I 2000 I . 0rv-o '&x:ret SWt~X Januor" '0Rif Q,pj !~!~!!!:~~~ ~";t..u·~"-S or Methods Involved (WNINTEL) National Security Unauthorized Disclosure Information Subject to Criminal Sanctions Dis.stmination Concrol NOFORN(NF) Not rclca~bk to forcien nationals Abbrcria clons NOCONTRACT (NC) Not rcleau.ble to contractors or oontra.ctorfconsultants ORCON(Qq Dissemination and e.c.tnction of information controlled byoric:inator REL.. _____T_hi_s_in_r,or,.rru_tion has been authorized for release to... WN WN I NTEL-lnlelli~tence sources or mel hods involved A microfiche. copy of this docu­ Classified~ ment is availabJc from OIR/ Declassify: OADR DLB (482-7177); printed copies Derived from multip:c sources from CPASfiMC(482·520J: or A I M request 10 u~erid t::PASIMCl. Rerulu rcccipl of Dl reports can be uu.ne:'d lhrou~th CPAS/IMC. All material on I hi~ page is Unclas~ified. Directorate of Intelligence Soviet Scientific Space Program: Gaining Prestige A Research Paper This paper was prepared by t~~ Office of Scientific and We<>p"'1 Ru,e.<-r-ch ~ Comments and oueri~elcome and may.,W: .· directed t• OSWRI- R~'"'·'~ Blank Soviet Scientific Space Program: Gaining Prestige~ Summary The USSR has numerous, diverse, and, in many cases, ambitious scientific Itt/ormation awJi/Oblt' space missions planned for launch through the end of the century.
    [Show full text]
  • SPACETUG: Roles of MATE-CON and Traditional Design Methods LAI PD
    LAI PD Meeting 10/7/03 SPACETUG: Dr. Hugh McManus Roles of Metis Design MATE-CON and Traditional Design Methods Space Tugs • A vehicle or vehicles that can – Observe in situ – Change the orbit of – Eliminate (clean debris) – Retrieve – Otherwise interact with objects in orbit. Potentially, an important national asset Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 2 Problem and opportunity • Single-use missions for such a vehicle tend to be economically or physically infeasible • Little work on the potential for a general-purpose vehicle and some of the key challenges associated with it • Recognized difficulties include: – Unfriendly orbital dynamics and environment – Vehicle complexity – Market uncertainty A new look at the problem: Exploring the Architectural Tradespace with MATE-CON AND defining point designs with more traditional mission analyses Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 3 MATE: Developing A Trade Space Mission Attributes Concept Define Design • Understand the Vector Mission • Create a list of Develop System “Attributes” Model • Interview the Customer Calculate • Create Utility Curves Utility Estimate • Develop the design Cost vector and system model • Evaluate the potential Architecture Architectures Trade Space Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts
    [Show full text]