Хроники / Ikichronicles / 1965–2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples. -
Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966 Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D. -
Numerical Estimation of Lunar X-Ray Emission for X-Ray Spectrometer Onboard SELENE
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Earth Planets Space, 60, 283–292, 2008 Numerical estimation of lunar X-ray emission for X-ray spectrometer onboard SELENE Kazunori Ogawa1,2, Tatsuaki Okada1, Kei Shirai1, and Manabu Kato1 1Department of Planetary Science, Instutute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan 2Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan (Received April 21, 2007; Revised September 10, 2007; Accepted October 22, 2007; Online published April 9, 2008) We conducted a numerical estimation of lunar X-ray spectra, which is applicable for lunar X-ray fluorescence observations using an X-ray spectrometer (XRS) onboard the SELENE orbiter, with an improved simulation model. We investigated the integration times of measurements for six elements (Mg, Al, Si, Ca, Ti, and Fe) to achieve signal-to-background ratio of over 10 under various solar conditions. The results of these calculations indicate that expected along-the-track spatial resolutions of a single orbital path for Mg, Al and Si will be <90 km and 20 km under normal and active Sun conditions, respectively. Ca, Ti and Fe will be also detectable with a spatial resolution of 20 km during the periods active solar flares over M1 class happen to occur. Key words: Lunar X-ray, numerical simulation, X-ray spectrometer, XRS, SELENE. 1. Introduction one of which is SELENE (Okada et al., 2002; Kato et al., An X-ray fluorescence spectrometer (XRS) has been de- 2007). -
Observational Cosmology - 30H Course 218.163.109.230 Et Al
Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity. -
ILWS Report 137 Moon
Returning to the Moon Heritage issues raised by the Google Lunar X Prize Dirk HR Spennemann Guy Murphy Returning to the Moon Heritage issues raised by the Google Lunar X Prize Dirk HR Spennemann Guy Murphy Albury February 2020 © 2011, revised 2020. All rights reserved by the authors. The contents of this publication are copyright in all countries subscribing to the Berne Convention. No parts of this report may be reproduced in any form or by any means, electronic or mechanical, in existence or to be invented, including photocopying, recording or by any information storage and retrieval system, without the written permission of the authors, except where permitted by law. Preferred citation of this Report Spennemann, Dirk HR & Murphy, Guy (2020). Returning to the Moon. Heritage issues raised by the Google Lunar X Prize. Institute for Land, Water and Society Report nº 137. Albury, NSW: Institute for Land, Water and Society, Charles Sturt University. iv, 35 pp ISBN 978-1-86-467370-8 Disclaimer The views expressed in this report are solely the authors’ and do not necessarily reflect the views of Charles Sturt University. Contact Associate Professor Dirk HR Spennemann, MA, PhD, MICOMOS, APF Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury NSW 2640, Australia. email: [email protected] Spennemann & Murphy (2020) Returning to the Moon: Heritage Issues Raised by the Google Lunar X Prize Page ii CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 2 2. HUMAN ARTEFACTS ON THE MOON 3 What Have These Missions Left BehinD? 4 Impactor Missions 10 Lander Missions 11 Rover Missions 11 Sample Return Missions 11 Human Missions 11 The Lunar Environment & ImpLications for Artefact Preservation 13 Decay caused by ascent module 15 Decay by solar radiation 15 Human Interference 16 3. -
The Moon As a Laboratory for Biological Contamination Research
The Moon As a Laboratory for Biological Contamina8on Research Jason P. Dworkin1, Daniel P. Glavin1, Mark Lupisella1, David R. Williams1, Gerhard Kminek2, and John D. Rummel3 1NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 2European Space AgenCy, Noordwijk, The Netherlands 3SETI InsQtute, Mountain View, CA 94043, USA Introduction Catalog of Lunar Artifacts Some Apollo Sites Spacecraft Landing Type Landing Date Latitude, Longitude Ref. The Moon provides a high fidelity test-bed to prepare for the Luna 2 Impact 14 September 1959 29.1 N, 0 E a Ranger 4 Impact 26 April 1962 15.5 S, 130.7 W b The microbial analysis of exploration of Mars, Europa, Enceladus, etc. Ranger 6 Impact 2 February 1964 9.39 N, 21.48 E c the Surveyor 3 camera Ranger 7 Impact 31 July 1964 10.63 S, 20.68 W c returned by Apollo 12 is Much of our knowledge of planetary protection and contamination Ranger 8 Impact 20 February 1965 2.64 N, 24.79 E c flawed. We can do better. Ranger 9 Impact 24 March 1965 12.83 S, 2.39 W c science are based on models, brief and small experiments, or Luna 5 Impact 12 May 1965 31 S, 8 W b measurements in low Earth orbit. Luna 7 Impact 7 October 1965 9 N, 49 W b Luna 8 Impact 6 December 1965 9.1 N, 63.3 W b Experiments on the Moon could be piggybacked on human Luna 9 Soft Landing 3 February 1966 7.13 N, 64.37 W b Surveyor 1 Soft Landing 2 June 1966 2.47 S, 43.34 W c exploration or use the debris from past missions to test and Luna 10 Impact Unknown (1966) Unknown d expand our current understanding to reduce the cost and/or risk Luna 11 Impact Unknown (1966) Unknown d Surveyor 2 Impact 23 September 1966 5.5 N, 12.0 W b of future missions to restricted destinations in the solar system. -
Cartography for Lunar Exploration: 2006 Status and Planned Missions
CARTOGRAPHY FOR LUNAR EXPLORATION: 2006 STATUS AND PLANNED MISSIONS R.L. Kirk, B.A. Archinal, L.R. Gaddis, and M.R. Rosiek U.S. Geological Survey, Flagstaff, AZ 86001, USA - [email protected] Commission IV, WG IV/7 KEY WORDS: Photogrammetry, Cartography, Geodesy, Extra-terrestrial, Exploration, Space, Moon, History, Future ABSTRACT: The initial spacecraft exploration of the Moon in the 1960s–70s yielded extensive data, primarily in the form of film and television images, that were used to produce a large number of hardcopy maps by conventional techniques. A second era of exploration, beginning in the early 1990s, has produced digital data including global multispectral imagery and altimetry, from which a new generation of digital map products tied to a rapidly evolving global control network has been made. Efforts are also underway to scan the earlier hardcopy maps for online distribution and to digitize the film images themselves so that modern processing techniques can be used to make high-resolution digital terrain models (DTMs) and image mosaics consistent with the current global control. The pace of lunar exploration is about to accelerate dramatically, with as many of seven new missions planned for the current decade. These missions, of which the most important for cartography are SMART-1 (Europe), SELENE (Japan), Chang'E-1 (China), Chandrayaan-1 (India), and Lunar Reconnaissance Orbiter (USA), will return a volume of data exceeding that of all previous lunar and planetary missions combined. Framing and scanner camera images, including multispectral and stereo data, hyperspectral images, synthetic aperture radar (SAR) images, and laser altimetry will all be collected, including, in most cases, multiple datasets of each type. -
The Search For
THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE Proceedings of an NRAO Workshop held at the National Radio Astronomy Observatory Green Bank, West Virginia May 20, 21, 22, 1985 1960 1985 Honoring the 25th Anniversary of Project OZMA Edited by K. I. Kellermann and G. A. Seielstad THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE Proceedings of an NRAO Workshop held at the National Radio Astronomy Observatory Green Bank, West Virginia May 20, 21, 22, 1985 Edited by K. I. Kellermann and GL A. Seielstad Workshop Na 11 Distributed by: National Radio Astronomy Observatory P.O. Box 2 Green Bank, WV 24944-0002 USA The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with the National Science Foundation. Copyright © 1986 NRAO/AUI. All Rights Reserved. CONTENTS Page I. KEYNOTE ADDRESS Life in Space and Humanity on Earth . Sebastian von Hoeimer 3 II. HISTORICAL PERSPECTIVE Project OZMA Frank D. Drake 17 Project OZMA - How It Really Was J. Fred Crews 27 Evolution of Our Thoughts on the Best Strategy for SETI Michael D. Papagiannis 31 III. SEARCH STRATEGIES The Search for Biomolecules in Space Lewis E. Snyder 39 Mutual Help in SETI's David H. Frisch 51 A Symbiotic SETI Search Thomas M. Bania 61 Should the Search be Made Optically? John J. Broderiok 67 A Search for SETI Targets Jane L. Russell 69 A Milky Way Search Strategy for Extra¬ terrestrial Intelligence .... Woodruff T. Sullivan, III 75 IV. CURRENT PROGRAMS SETI Observations Worldwide Jill C. Tarter 79 Ultra-Narrowband SETI at Harvard/Smithsonian . Paul Horowitz 99 The NASA SETI Program: An Overview Bernard M. -
Arxiv:Astro-Ph/0610887 V1 30 Oct 2006 Words
1 Key words. binaries: close — pulsars: general — stars: neutron — X-rays: binaries arXiv:astro-ph/0610887 v1 30 Oct 2006 Astronomy & Astrophysics manuscript no. Kudr October 31, 2006 (DOI: will be inserted by hand later) Transient pulsar dynamics in hard x-rays: Prognoz 9 and GRIF ”Mir” space experiments data M.I. Kudryavtsev1, S.I. Svertilov2, and V.V. Bogomolov2 1 Space Research Institute, Russian Academy of Science, Profsoyuznaya st. 84/32, Moscow 117810, Russia e-mail: [email protected] 2 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Vorob’evy Gory, Moscow 119899, Russia e-mail: [email protected] Abstract. The long-term observations of the Galactic Centre as well as the Galactic anti-Centre regions in hard X-rays (10-300 keV) were made in experi- ments on board Prognoz-9 satellite and ”Mir” orbital station (GRIF experiment). Some transient pulsars including A0535+262, GS1722-36, 4U1145-619, A1118- 615, EXO2030+37, Sct X-1, SAX J2103.5+4545, IGR 16320-4751, IGR 16465- 4507 were observed. The pulsation flux components of A0535+26 and GS1722-36 X-ray emission were revealed at significant level. For other observed pulsars the upper limits of pulsation intensity were obtained. The mean pulsation profiles of A0535+26 in different energy ranges as well as the energy spectra were obtained at different stages of outburst decreasing. The pulsation intensity-period behavior does not contradict the well-known correlation between spin-up rate and X-ray flux, while the stable character of the energy spectrum power index indicates on the absence of thermal component. -
Voyager Dans L'espace
Extrait de la publication ’aventure spatiale ne date pas Ld’hier. Tout a commencé avec un pigeon et des feux d’artifice avant que la Seconde Guerre mondiale puis la Guerre froide n’ouvrent l’âge des fusées et n’offrent à l’humanité de réaliser son vieux rêve : aller dans l’espace. L’espace est à la fois proche – cent kilomètres à peine au-dessus de nous – et presque hors de portée. En effet, ce sont cent kilomètres qu’il faut parcourir verticalement, en bravant la loi de la gravité. Quand s’arracher du sol quelques secondes n’est déjà pas une mince affaire, le quitter complètement est un défi, relevé depuis quelques décennies seulement. Aujourd’hui, alors qu’aller fureter dans le Système solaire paraît presque banal, chaque départ de lanceur reste un véritable exploit technologique et humain. Le livre de Yaël Nazé explique quels innom- brables problèmes il faut résoudre pour se lancer dans cette aventure : comment choisir la bonne route dans un univers où tout est en mouvement et où les lignes droites n’existent pas ? Pourquoi faut-il décoller à un moment, pas à un autre ? Quel est le prix de la conquête spatiale ? Quels en sont les risques pour les hommes et les machines ? Et d’ailleurs… pourquoi aller dans l’espace ? Un guide passionnant pour tous les amoureux de l’astronautique et des étoiles. Spécialiste des étoiles massives, récompensée plusieurs fois pour ses actions de vulgarisation scientifique, Yaël Nazé est astrophysicienne FNRS au « Liège Space Research Institute » de l’Université de Liège. JEU DISPONIBLE SUR LA VERSION PAPIER. -
Cosmic Ray Investigation in Stratosphere and Space: Some Results from Instruments on Russian Satellites and Balloons
Cosmic Ray investigation in stratosphere and space: some results from instruments on Russian satellites and balloons. Yu. I. Logachev (1), L.L. Lazutin (1) and K. Kudela (2) 1 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia. 2 Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia (IEP SAS) Abstract. Selected activities with the aim to describe cosmic ray fluxes and to contribute the understanding of the mechanisms behind, over long time period with using the space research tools in the former USSR and in Russia, are reviewed, and some of the results obtained are listed. Selection is connected with the institutes where the authors are working. Thus it has to be assumed as a partial review on the wide topic. 1. Some milestones until mid of the last century. Investigation of cosmic rays began in 1900-1901, i.e. more than 100 years ago. First ten years the reserchers did not know they study cosmic rays. All began from the time of measurements of conductivity of various gases including the air, when there was observed some "residual" ionization, i.e. a weak “dark current” observed even without ionising sources. First publications of those experiments relate to period 1900-1901 [1]. One of the first researchers of “dark current” was Ch. Wilson, well known as the inventor of Wilson chamber (1912), which was widely used for studies of various types of radiation, including also cosmic rays. Later, in 1927, Ch. Wilson for this finding was awarded the Nobel Prize. Due to those experiments it became clear that at sea level always exists some not large but strongly penetrating radiation (that was observed also in strongly screened chambers). -
NASA-TM-112507 OBSERVATIONS of 4U 1700-37 with BATSE ABSTRACT the Eclipsing Binary X-Ray Source 4U 1700-37 Has Been Continually
NASA-TM-112507 THE ASTROPHYSICAL JOURNAL, 459:259-270, 1996 March l ,¢_ 1996 The American Astronomical Society. All rights reserved• Printed in US.A. OBSERVATIONS OF 4U 1700-37 WITH BATSE B. C. RUBIN, 1 M. H. FINGER, 1'2 B. A. HARMON, W. S. PACIESAS, 3 G. J. FISHMAN, R. B. WILSON, C. A. WILSON, M. N. BROCK, M. S. BRIGGS, 3 AND G. N. PENDLETON 3 NASA/Marshall Space Flight Center, Huntsville, AL 35812 AND L. R. COMINSKY AND M. S. ROBERTS 4 Department of Physics and Astronomy, Sonoma State University, Rohnert Park, CA 94928 Received 1995 June 7: accepted 1995 September 5 ABSTRACT The eclipsing binary X-ray source 4U 1700-37 has been continually monitored by the BATSE experi- ment on the Compton Gamma Ray Observatory since the spring of 1991. Using source measurements at times of Earth occultation, we observe an average (uneclipsed) flux of 0.23 crab in the 20-120 keV band. The flux is highly variable, with occasional flaring behavior on timescales from hundreds of seconds to several hours and intensities as bright as 1 crab. The uneclipsed spectrum is well represented by an opti- cally thin thermal bremsstrahlung model with a temperature of 25 keV independent of source intensity or orbital phase. An upper limit of 4% on the pulse fraction has been obtained for pulse periods between 2 and 700 s. Average orbital light curves from almost 1000 days of occultation measurements have been constructed. These profiles are used to measure (1) the eclipse semiangle, 0E = 28.°6 ___2°.1 in the 20-120 keV band, and (2) the decrease in orbital period, I)/P = -(3.3 + 0.6) x 10 -6 yr 1.