Russian Space Probes Scientific Discoveries and Future Missions

Total Page:16

File Type:pdf, Size:1020Kb

Russian Space Probes Scientific Discoveries and Future Missions Russian Space Probes Scientific Discoveries and Future Missions Brian Harvey with Olga Zakutnyaya Russian Space Probes Scientific Discoveries and Future Missions Brian Harvey, FBIS Dr Olga Zakutnyaya 2 Rathdown Crescent Space Research Institute Terenure Russian Academy of Sciences Dublin 6W Profsoyuznaya 84/32 Ireland Moscow GSP-7 117997 Russia SPRINGER±PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason, M.B.E., B.Sc., M.Sc., Ph.D. ISBN 978-1-4419-8149-3 e-ISBN 978-1-4419-8150-9 DOI 10.1007/978-1-4419-8150-9 SpringerNew York Dordrecht Heidelberg London Library of Congress Control Number: 2011921111 # Springer Science+Business Media LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Cover design: Jim Wilkie Project copy editor: Christine Cressy Typesetting: BookEns, Royston, Herts., UK Printed on acid-free paper Springer is part of Springer Science + Business Media (www.springer.com) Contents Introduction by the authors ..................................... ix Acknowledgments ............................................ xi Glossary .................................................. xiii Terminological and translation notes ..............................xv Reference notes .............................................xvii List of tables ............................................... xix List of illustrations ......................................... xxiii List of figures .............................................xxvii 1 Early space science ........................................... 1 Space science by balloon....................................... 3 Scientific flights into the atmosphere: the Akademik series..............14 Scientific test flights with animals ................................20 The idea of a scientific Earth satellite .............................23 Scientific objectives of the first Earth satellites . ....................25 Key people .................................................25 Instead, Prosteishy Sputnik .....................................27 PS2......................................................29 Object D: the first large scientific satellite in orbit....................33 Early space science: what was learned? ............................37 References .................................................39 2 Deepening our understanding ....................................43 Following Sputnik: the MS series ................................43 Cosmos 5 and Starfish: introducing Yuri Galperin ...................48 Following Sputnik: Elektron ....................................55 Elektron feast ...............................................58 Introducing the Cosmos program ................................64 Dnepropetrovsky Sputnik (DS)..................................66 DS-U series ................................................76 Molecular oscillator in orbit ....................................79 vi Contents The great hunt for anti-matter 80 First astronomy and heliophysical missions 84 New geomagnetic map 85 Supplementary science 86 Nauka modules 91 Application satellites with scientific instruments 98 The third radiation belt 100 Intercosmos 102 Intercosmos solar missions 105 Intercosmos ionospheric missions 107 Intercosmos charged particle missions 109 Ionosfernaya Stantsiya and the Galperin missions 113 Proton: elusive cosmic rays 119 Specialized scientific missions: Energiya and Efir 127 Solar observatories: Prognoz 129 Relikt and Intershock 135 Early Soviet space science: what was learned? 139 References 140 Russian-language references 151 3 Revealing the Moon 153 First Cosmic Ship: discovery of the solar wind 153 Second Cosmic Ship: the lunar environment 157 Mapping the far side of the Moon 158 Soft-landing on the Moon 165 Orbiting the Moon 169 Mapping the Moon in detail: Luna and Zond 173 Recovering lunar samples 181 Luna 20: into the lunar highlands 186 Luna 24: the long view 187 Roving the Moon 191 Lunokhod 2: along the rim of Le Monnier 196 Revealing the Moon: what was learned? 201 References 203 Russian-language references 209 4 Unveiling Venus 211 First Venus probes 211 At last, signals from Venus 215 Descent into the clouds 221 At last, the surface of Venus 222 Photographing the surface 227 Strange atmosphere 233 Chemical laboratory on the surface 237 Mapping the surface of Venus 241 Contents vii Balloons into the atmosphere ..................................250 Finally, to Halley ...........................................255 Unveiling Venus: what was learned? .............................258 References ................................................260 5 The path to Mars ...........................................263 First Mars mission: Mars 1....................................265 The orbital science missions of Mars 2 and 3 . ...................270 Descent through Mars's atmosphere .............................277 Orbital science: observations from Mars 5 ........................281 Meeting with Phobos ........................................286 Science from Phobos.........................................290 Phobos postscript ...........................................294 The path to Mars: what was learned? ............................295 References ................................................297 6 Orbiting space stations .......................................301 Beginnings of space biology: Korabl Sputnik . ...................301 Space biology by cosmonauts ..................................308 Hitting the first walls of space biology: Cosmos 110 .................313 Space biology's lunar journey: the flight of the tortoises ..............315 Soyuz as a platform for space science ............................318 Weightlessness: a warning .....................................321 Salyut orbiting station .......................................324 Salyut science ..............................................327 Solo Soyuz science ..........................................330 Salyut 3 science.............................................331 Salyut 4 science.............................................332 Salyut 5 science: materials processing plant on orbit .................336 Salyut 6 science.............................................339 Salyut 7 science.............................................347 Mir science ................................................352 International Space Station (ISS) science..........................360 Orbiting space stations: what was learned? ........................365 References ................................................368 7 Later Soviet space science: the observatories........................375 Astronomical science: Astron, Kvant, Granat, and Gamma ...........375 Great observatories: Astron ...................................376 Great observatories: Kvant ....................................380 Granat and the great annihilator ...............................383 The last great observatory: Gamma .............................389 Integral: the great attractor....................................391 Intercosmos: introducing the second phase ........................393 The Ellipse and Magik missions ................................393 viii Contents The Ionozond missions .......................................397 The Priroda and Bulgaria 1300 missions ..........................402 The Aktivny and APEX missions ...............................405 The Oval mission ...........................................409 Aureole 3 .................................................412 The search for fireballs: Prognoz M (Interball) . ...................414 Interball: the magnetosphere remodeled ..........................420 Atmospheric science from sounding rockets: Vertikal ................424 Smaller sounding rocket programs ..............................427 Solar science: Koronas .......................................432 Small specialized satellites: Pion and Kompass . ...................437 Biological science: Bion.......................................440 Materials science: Foton ......................................449 Later Soviet space science: what was learned? . ...................453 References ................................................455 Russian-language references ...................................464 8 Perspectives, past and future ...................................467 Decline of science during the transition...........................467 Spektr observatories .........................................468 Lunar ``Polygons''...........................................471 Phobos sample return ........................................472 Space science in the federal space plan, 2006±2015 ..................476 Historical overview ..........................................478 The Keldysh ascendancy ......................................480 The emergence of IKI........................................482 Key institutes and personalities
Recommended publications
  • Pushing the Limits of the Coronagraphic Occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph
    Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes Bin Ren Glenn Schneider John H. Debes, Bin Ren, Glenn Schneider, “Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph,” J. Astron. Telesc. Instrum. Syst. 5(3), 035003 (2019), doi: 10.1117/1.JATIS.5.3.035003. Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 02 Jul 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Journal of Astronomical Telescopes, Instruments, and Systems 5(3), 035003 (Jul–Sep 2019) Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes,a,* Bin Ren,b,c and Glenn Schneiderd aSpace Telescope Science Institute, AURA for ESA, Baltimore, Maryland, United States bJohns Hopkins University, Department of Physics and Astronomy, Baltimore, Maryland, United States cJohns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, Maryland, United States dUniversity of Arizona, Steward Observatory and the Department of Astronomy, Tucson Arizona, United States Abstract. The Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) contains the only currently operating coronagraph in space that is not trained on the Sun. In an era of extreme-adaptive- optics-fed coronagraphs, and with the possibility of future space-based coronagraphs, we re-evaluate the con- trast performance of the STIS CCD camera. The 50CORON aperture consists of a series of occulting wedges and bars, including the recently commissioned BAR5 occulter. We discuss the latest procedures in obtaining high-contrast imaging of circumstellar disks and faint point sources with STIS.
    [Show full text]
  • The Start of the Manned Space Race by Andrew J
    The Start of the Manned Space Race by Andrew J. LePage November 1998 Introduction of Sputnik 1 and 2 in October and November of 1957 changed everything. At the same time NACA and the USAF were studying manned spaceflight (see The Beginnings of The first Sputnik launches were to affect the manned America's Man in Space Program in the October space program in several ways. The impact the 1998 issue of SpaceViews), comparable efforts were launch of Sputnik 1 had on the West led Soviet quietly taking place independently in the Soviet Primer Nikita Khrushchev to exploit space missions Union . As with virtually every other aspect of the for their propaganda value. Development of more Soviet Union's early space program, Chief Designer advanced and spectacular missions like the manned Sergei P. Korolev and his OKB-1 (Experimental satellite program were immediately approved and Design Bureau No. 1) lead the way. All during the placed on the fast track. Also at the insistence of 1950s when Korolev and his colleague, Mikhail K. Khrushchev, Sputnik 2 was launched with a dog on Tikhonravov of NII-4 (Scientific Research Institute board. While thermal control problems marred the No. 4), were pushing their original Earth satellite mission, it did demonstrate that weightlessness would proposal, it also included plans to send probes to the not be a major hazard for a human (see Sputnik 2: Moon and men into orbit. When the satellite The First Animal in Space in the November 1997 proposal was finally adopted by the Soviet issue of SpaceViews). As a result, Korolev scrapped government on January 30, 1956, the lunar probe and his initial, more conservative approach and moved manned satellite projects were also given the green ahead with a much more aggressive plan.
    [Show full text]
  • Detection of Large-Scale X-Ray Bubbles in the Milky Way Halo
    Detection of large-scale X-ray bubbles in the Milky Way halo P. Predehl1†, R. A. Sunyaev2,3†, W. Becker1,4, H. Brunner1, R. Burenin2, A. Bykov5, A. Cherepashchuk6, N. Chugai7, E. Churazov2,3†, V. Doroshenko8, N. Eismont2, M. Freyberg1, M. Gilfanov2,3†, F. Haberl1, I. Khabibullin2,3, R. Krivonos2, C. Maitra1, P. Medvedev2, A. Merloni1†, K. Nandra1†, V. Nazarov2, M. Pavlinsky2, G. Ponti1,9, J. S. Sanders1, M. Sasaki10, S. Sazonov2, A. W. Strong1 & J. Wilms10 1Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany. 2Space Research Institute of the Russian Academy of Sciences, Moscow, Russia. 3Max-Planck-Institut für Astrophysik, Garching, Germany. 4Max-Planck-Institut für Radioastronomie, Bonn, Germany. 5Ioffe Institute, St Petersburg, Russia. 6M. V. Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute, Moscow, Russia. 7Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia. 8Institut für Astronomie und Astrophysik, Tübingen, Germany. 9INAF-Osservatorio Astronomico di Brera, Merate, Italy. 10Dr. Karl-Remeis-Sternwarte Bamberg and ECAP, Universität Erlangen-Nürnberg, Bamberg, Germany. †e-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] The halo of the Milky Way provides a laboratory to study the properties of the shocked hot gas that is predicted by models of galaxy formation. There is observational evidence of energy injection into the halo from past activity in the nucleus of the Milky Way1–4; however, the origin of this energy (star formation or supermassive-black-hole activity) is uncertain, and the causal connection between nuclear structures and large-scale features has not been established unequivocally.
    [Show full text]
  • Imagining Outer Space Also by Alexander C
    Imagining Outer Space Also by Alexander C. T. Geppert FLEETING CITIES Imperial Expositions in Fin-de-Siècle Europe Co-Edited EUROPEAN EGO-HISTORIES Historiography and the Self, 1970–2000 ORTE DES OKKULTEN ESPOSIZIONI IN EUROPA TRA OTTO E NOVECENTO Spazi, organizzazione, rappresentazioni ORTSGESPRÄCHE Raum und Kommunikation im 19. und 20. Jahrhundert NEW DANGEROUS LIAISONS Discourses on Europe and Love in the Twentieth Century WUNDER Poetik und Politik des Staunens im 20. Jahrhundert Imagining Outer Space European Astroculture in the Twentieth Century Edited by Alexander C. T. Geppert Emmy Noether Research Group Director Freie Universität Berlin Editorial matter, selection and introduction © Alexander C. T. Geppert 2012 Chapter 6 (by Michael J. Neufeld) © the Smithsonian Institution 2012 All remaining chapters © their respective authors 2012 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2012 by PALGRAVE MACMILLAN Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.
    [Show full text]
  • Observations of Comet IRAS-Araki-Alcock (1983D) at La Silla T
    - 12 the visual by 1.3 mag). Like for the other SOor variables we M explain this particular finding by the very high mass loss (M = Bol 5 6.10- M0 yr-') during outburst. The variations in the visual are caused by bolometric flux redistribution in the envelope whilst -10 the bolometric luminosity remains practically constant. The location of R127 in the Hertzsprung-Russell diagram together with the other two known SOor variables of the LMC -B are shown in fig. 8. We note that Walborn classified R127 as an Of or alterna­ tively as a late WN-type star. This indicates that the star is a late Of star evolving right now towards a WN star. Since we have -6 detected an SOor-type outburst of this star we conclude that this transition is not a smooth one but is instead accompanied '.8 '.6 4.0 3.6 by the occasional ejection of dense envelopes. Fig. 8: Location of the newly discovered S Dar variable R 127 in the References Hertzsprung-Russell diagram in comparison with the other two estab­ lished SOor variables of the LMG. Also included in the figure is the Conti, P. S.: 1976, Mem. Soc. Roy. Sei. Liege 9,193. upper envelope of known stellar absolute bolometric magnitudes as Dunean, J. C.: 1922, Publ. Astron. Soc. Pacific 34, 290. derived byHumphreys andDavidson (1979). The approximateposition Hubble, E., Sandage, A.: 1953, Astrophys. J. 118, 353. o( the late WN-type stars is also given. Humphreys, R. M., Davidson, K.: 1979, Astrophys. J. 232,409. Lamers, H.
    [Show full text]
  • World Space Observatory %Uf02d Ultraviolet Remains Very Relevant
    WORLD SPACE OBSERVATORY-ULTRAVIOLET Boris Shustov, Ana Inés Gómez de Castro, Mikhail Sachkov UV observatories aperture pointing mode , Å OAO-2 1968.12 - 1973.01 20 sp is 1000-4250 TD-1A 1972.03 - 1974.05 28 s is 1350-2800+ OAO-3 1972.08 - 1981.02 80 p s 900-3150 ANS 1974.08 - 1977.06 22 p s 1500-3300+ IUE 1978.01 - 1996.09 45 p s 1150-3200 ASTRON 1983.03 - 1989.06 80 p s 1100-3500+ EXOSAT 1983.05 - 1986. 2x30 p is 250+ ROSAT 1990.06 - 1999.02 84 sp i 60- 200+ HST 1990.04 - 240 p isp 1150-10000 EUVE 1992.06 - 2001.01 12 sp is 70- 760 ALEXIS 1993.04 - 2005.04 35 s i 130- 186 MSX 1996.04 - 2003 50 s i 1100-9000+ FUSE 1999.06 - 2007.07 39х35 (4) p s 905-1195 XMM 1999.12 - 30 p is 1700-5500 GALEX 2003.04 - 2013.06 50 sp is 1350-2800 SWIFT 2004.11 - 30 p i 1700-6500 2 ASTROSAT/UVIT UVIT - UltraViolet Imaging Telescopes (on the ISRO Astrosat observatory, launch 2015); Two 40cm telescopes: FUV and NUV, FOV 0.5 degrees, resolution ~1” Next talk by John Hutchings! 3 4 ASTRON (1983 – 1989) ASTRON is an UV space observatory with 80 cm aperture telescope equipped with a scanning spectrometer:(λλ 110-350 nm, λ ~ 2 nm) onboard. Some significant results: detection of OH (H2O) in Halley comet, UV spectroscopy of SN1987a, Pb lines in stellar spectra etc. (Photo of flight model at Lavochkin Museum).5 “Spektr” (Спектр) missions Federal Space Program (2016-2025) includes as major astrophysical projects: Spektr-R (Radioastron) – launched in 2011.
    [Show full text]
  • Annexe: Summary of Soviet and Russian Space Science Missions
    Contents Introduction by the authors ..................................... ix Acknowledgments ............................................ xi Glossary .................................................. xiii Terminological and translation notes ..............................xv Reference notes .............................................xvii List of tables ............................................... xix List of illustrations ......................................... xxiii List of figures .............................................xxvii 1 Early space science ........................................... 1 Space science by balloon....................................... 3 Scientific flights into the atmosphere: the Akademik series..............14 Scientific test flights with animals ................................20 The idea of a scientific Earth satellite .............................23 Scientific objectives of the first Earth satellites . ....................25 Key people .................................................25 Instead, Prosteishy Sputnik .....................................27 PS2......................................................29 Object D: the first large scientific satellite in orbit....................33 Early space science: what was learned? ............................37 References .................................................39 2 Deepening our understanding ....................................43 Following Sputnik: the MS series ................................43 Cosmos 5 and Starfish: introducing Yuri Galperin
    [Show full text]
  • The Soviet Space Program
    C05500088 TOP eEGRET iuf 3EEA~ NIE 11-1-71 THE SOVIET SPACE PROGRAM Declassified Under Authority of the lnteragency Security Classification Appeals Panel, E.O. 13526, sec. 5.3(b)(3) ISCAP Appeal No. 2011 -003, document 2 Declassification date: November 23, 2020 ifOP GEEAE:r C05500088 1'9P SloGRET CONTENTS Page THE PROBLEM ... 1 SUMMARY OF KEY JUDGMENTS l DISCUSSION 5 I. SOV.IET SPACE ACTIVITY DURING TfIE PAST TWO YEARS . 5 II. POLITICAL AND ECONOMIC FACTORS AFFECTING FUTURE PROSPECTS . 6 A. General ............................................. 6 B. Organization and Management . ............... 6 C. Economics .. .. .. .. .. .. .. .. .. .. .. ...... .. 8 III. SCIENTIFIC AND TECHNICAL FACTORS ... 9 A. General .. .. .. .. .. 9 B. Launch Vehicles . 9 C. High-Energy Propellants .. .. .. .. .. .. .. .. .. 11 D. Manned Spacecraft . 12 E. Life Support Systems . .. .. .. .. .. .. .. .. 15 F. Non-Nuclear Power Sources for Spacecraft . 16 G. Nuclear Power and Propulsion ..... 16 Te>P M:EW TCS 2032-71 IOP SECl<ET" C05500088 TOP SECRGJ:. IOP SECREI Page H. Communications Systems for Space Operations . 16 I. Command and Control for Space Operations . 17 IV. FUTURE PROSPECTS ....................................... 18 A. General ............... ... ···•· ................. ····· ... 18 B. Manned Space Station . 19 C. Planetary Exploration . ........ 19 D. Unmanned Lunar Exploration ..... 21 E. Manned Lunar Landfog ... 21 F. Applied Satellites ......... 22 G. Scientific Satellites ........................................ 24 V. INTERNATIONAL SPACE COOPERATION ............. 24 A. USSR-European Nations .................................... 24 B. USSR-United States 25 ANNEX A. SOVIET SPACE ACTIVITY ANNEX B. SOVIET SPACE LAUNCH VEHICLES ANNEX C. SOVIET CHRONOLOGICAL SPACE LOG FOR THE PERIOD 24 June 1969 Through 27 June 1971 TCS 2032-71 IOP SLClt~ 70P SECRE1- C05500088 TOP SEGR:R THE SOVIET SPACE PROGRAM THE PROBLEM To estimate Soviet capabilities and probable accomplishments in space over the next 5 to 10 years.' SUMMARY OF KEY JUDGMENTS A.
    [Show full text]
  • The Rae Table of Earth Satellites 1957-1986 the Rae Table Ofearth Satellites
    THE RAE TABLE OF EARTH SATELLITES 1957-1986 THE RAE TABLE OFEARTH SATELLITES 1957-1986 compiled at The Royal Aircraft Establishment, Famborough, Hants, England by D.G. King-Dele, FRS, D.M.C. Walker, PhD, J.A. Pilkington, BSc, A.N. Winterbottom, H. Hiller, BSc and G.E. Perry, MBE The Table is a chronological list of the 2869 launches of satellites and space vehicles between 1957 and the end of 1986, giving the name and international designation of each satellite and its associated rocket(s), with the date of launch, lifetime (actual or estimated), mass, shape, dimensions and at least one set of orbital parameters. Other fragments associated with a launch, and space vehicles that escape from the Earth's influence, are given without details. Including fragments, more than 17000 satellites appear in the 893 pages of the tabulation, and there is a full Index. M TOCKTON S P R E S S © Crown copyright 1981, 1983, 1987 Softcover reprint of the hardcover 3rd edition 1987 978-0-333-39275-1 Published by permission of the Controller of Her Majesty's Stationery Office. All rights reserved. No part of this publication may be reproduced, or transmitted, in any form or by any means, without permission. Published in the United States and Canada by STOCKTON PRESS, 1987 15 East 26th Street, New York, N.Y. 10010 Library of Congress Cataloging-in-Publication Data The R.A.E. table of earth satellites, 1957-1986. Rev. ed. of: The RAE table of earth satellites, 1957- 1980. 2nd ed. 1981. 1. Artificial satellites- Registers.
    [Show full text]
  • Хроники / Ikichronicles / 1965–2015
    ХРОНIKIИКИCHRONICLES 1965–2015 50 ЛЕТ ИНСТИТУТА КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ Президент академии Academician артиллерийских наук, Anatoly A. Blagonravov, академик анатолий President of the Academy аркадьевич Благонравов of Artillery Sciences «теоретик Academician «Главный конструктор» Academician Sergey P. Korolev, КОСМОНАВТИКИ», Mstislav V. Keldysh, космической техники, “Chief Designer” for rocket президент академии “Theoretician академик сергей Павлович technology наук СССР, академик of Cosmonautics”, королёв Мстислав всеволодович President of the Academy келдыш of Sciences of the USSR Академическая наука была тесно связа- Academic science has been closely associ- на с ракетостроением с самого начала работ ated with space rocket technology from the first по созданию ракетно-космической техники. day when rocket science was created. In the Осенью 1948 года испытываются первые от- autumn of 1948 the first Soviet controlled bal- ечественные комплексы с управляемыми listic missile systems were tested, and in 1949 баллистическими ракетами, и уже в 1949 году scientists began to use them to explore the upper Заместитель с их помощью учёные приступили к изуче- atmosphere. In 1951 systematic biomedical re- председателя нию верхних слоёв атмосферы. В 1951 году search began that involved high-altitude rockets. специальной комиссии при начинаются систематические медико-био- S. P. Korolev supervises the experiments back to Президиуме ан СССР логические исследования на базе высотных back with an outstanding Soviet expert in me- по «объекту Д» — искусственному ракет. Руководит экспериментами вместе chanics, president of the Academy of Artillery спутнику Земли — с С. П. Королёвым крупнейший отечествен- Sciences, future director of the Institute of Me- Михаил клавдиевич тихонравов ный специалист в области механики, прези- chanical Engineering (Academy of Sciences Mikhail K. Tikhonravov, дент Академии артиллерийских наук, в даль- of the USSR), academician A.
    [Show full text]
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • Sputnik-Inspired Educational Reform and Changes in Private Returns in America Hyeonggu Cha Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 12-2015 Soviet Launch of Sputnik: Sputnik-Inspired Educational Reform and Changes in Private Returns in America Hyeonggu Cha Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Public Policy Commons Recommended Citation Cha, Hyeonggu, "Soviet Launch of Sputnik: Sputnik-Inspired Educational Reform and Changes in Private Returns in America" (2015). All Dissertations. 1550. https://tigerprints.clemson.edu/all_dissertations/1550 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SOVIET LAUNCH OF SPUTNIK: SPUTNIK-INSPIRED EDUCATIONAL REFORM AND CHANGES IN PRIVATE RETURNS IN AMERICA A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Policy Studies by Hyeonggu Cha December 2015 Accepted by: Dr. Curtis Simon, Committee Chair Dr. Robert Tollison Dr. Holley Ulbrich Dr. Joseph Stewart ABSTRACT On October 4th 1957, the Soviet Union launched the world’s first man-made satellite, Sputnik 1, into an elliptical low Earth orbit. This surprise triggered an arms race between the United States and the Soviet Union, as well as science-oriented educational reform in the U.S. Sputnik sparked changes for the U.S. in military, politics, policies, and education. The launch of Sputnik woke Americans up from complacency came from technology, science, and educational superiority. Educational reform started with emphasizing science and defense education and it was expanded to all levels of education.
    [Show full text]