Pos(GRB 2012)117
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary of Acronyms and Definitions
CASSINI FINAL MISSION REPORT 2018 CASSINI FINAL MISSION REPORT 2019 1 Glossary of Acronyms and Definitions A A/D Analog-to-Digital AACS Attitude and Articulation Control Subsystem AAN Automatic Alarm Notification AB Approved By ABS timed Absolute Timed AC Acoustics AC Alternating Current ACC Accelerometer ACCE Accelerometer Electronics ACCH Accelerometer Head ACE Aerospace Communications & Information Expertise ACE Aerospace Control Environment ACE Air Coordination Element ACE Attitude Control Electronics ACI Accelerometer Interface ACME Antenna Calibration and Measurement Equipment ACP Aerosol Collector Pyrolyzer ACS Attitude Control Subsystem ACT Actuator ACT Automated Command Tracker ACTS Advanced Communications Technology Satellite AD Applicable Document ADAS AWVR Data Acquisition Software ADC Analog-to-Digital Converter ADP Automatic Data Processing AE Activation Energy AEB Agência Espacial Brasileira (Brazilian Space Agency) AF Air Force AFC AACS Flight Computer AFETR Air Force Eastern Test Range AFETRM Air Force Eastern Test Range Manual 2 CASSINI FINAL MISSION REPORT 2019 AFS Atomic Frequency Standard AFT Abbreviated Functional Test AFT Allowable Flight Temperature AFS Andrew File System AGC Automatic Gain Control AGU American Geophysical Union AHSE Assembly, Handling, & Support Equipment AIT Assembly, Integration & Test AIV Assembly, Integration & Verification AKR Auroral Kilometric Radiation AL Agreement Letter AL Aluminum AL Anomalously Large ALAP As Low As Practical ALARA As Low As Reasonably Achievable ALB Automated Link -
The Interplanetary Network Database
THE INTERPLANETARY NETWORK DATABASE Kevin Hurley UC Berkeley Space Sciences Laboratory Berkeley, CA And the current IPN team: T. Cline (Mars Odyssey, Konus), I. G. Mitrofanov, D. Golovin, M. L. Litvak, and A. B. Sanin (HEND-Odyssey), W. Boynton, C. Fellows, K. Harshman, H. Enos, and R. Starr (GRS-Odyssey), S. Golenetskii, R. Aptekar, E. Mazets, V. Pal'shin, D. Frederiks, D. Svinkin (Konus-Wind), D. M. Smith, R. P. Lin, J. McTiernan, R. Schwartz, W. Hajdas (RHESSI), A. von Kienlin, X. Zhang, A. Rau (INTEGRAL SPI-ACS), K. Yamaoka, M. Ohno, Y. Hanabata, Y. Fukazawa, T. Takahashi, M. Tashiro,Y. Terada, T. Murakami, and K. Makishima (Suzaku WAM), S. Barthelmy, J. Cummings, N. Gehrels, H. Krimm, and D. Palmer (Swift-BAT), J. Goldsten (MESSENGER GRNS), E. Del Monte, M. Feroci, F. Lazzarotto, M. Marisaldi (AGILE),V. Connaughton, M. S. Briggs, and C. Meegan (Fermi GBM) In The Beginning (ca. 1975 A.D.)… • The only way to get arcminute GRB positions was by triangulation • So the IPN has a long history, and over 30 spacecraft have participated in it • But it also has a present, and a future THE CURRENT IPN Mars (Odyssey) . Mercury . (MESSENGER) 600 l-s . LEO Spacecraft 24 light-ms l ● RHESSI AGILE l WIND 6 light-s Swift INTEGRAL 0.5 light-s Suzaku Fermi THE CURRENT IPN • Comprises 9 spacecraft (AGILE, Fermi, INTEGRAL, MESSENGER, Odyssey, RHESSI, Suzaku, Swift, Wind) – an excellent configuration • Detects 325 GRBs/year • Effectively acts as a full-time, all-sky monitor for gamma-ray transients (mainly SGRs and GRBs) • There is no time when all the -
Хроники / Ikichronicles / 1965–2015
ХРОНIKIИКИCHRONICLES 1965–2015 50 ЛЕТ ИНСТИТУТА КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ Президент академии Academician артиллерийских наук, Anatoly A. Blagonravov, академик анатолий President of the Academy аркадьевич Благонравов of Artillery Sciences «теоретик Academician «Главный конструктор» Academician Sergey P. Korolev, КОСМОНАВТИКИ», Mstislav V. Keldysh, космической техники, “Chief Designer” for rocket президент академии “Theoretician академик сергей Павлович technology наук СССР, академик of Cosmonautics”, королёв Мстислав всеволодович President of the Academy келдыш of Sciences of the USSR Академическая наука была тесно связа- Academic science has been closely associ- на с ракетостроением с самого начала работ ated with space rocket technology from the first по созданию ракетно-космической техники. day when rocket science was created. In the Осенью 1948 года испытываются первые от- autumn of 1948 the first Soviet controlled bal- ечественные комплексы с управляемыми listic missile systems were tested, and in 1949 баллистическими ракетами, и уже в 1949 году scientists began to use them to explore the upper Заместитель с их помощью учёные приступили к изуче- atmosphere. In 1951 systematic biomedical re- председателя нию верхних слоёв атмосферы. В 1951 году search began that involved high-altitude rockets. специальной комиссии при начинаются систематические медико-био- S. P. Korolev supervises the experiments back to Президиуме ан СССР логические исследования на базе высотных back with an outstanding Soviet expert in me- по «объекту Д» — искусственному ракет. Руководит экспериментами вместе chanics, president of the Academy of Artillery спутнику Земли — с С. П. Королёвым крупнейший отечествен- Sciences, future director of the Institute of Me- Михаил клавдиевич тихонравов ный специалист в области механики, прези- chanical Engineering (Academy of Sciences Mikhail K. Tikhonravov, дент Академии артиллерийских наук, в даль- of the USSR), academician A. -
Observational Cosmology - 30H Course 218.163.109.230 Et Al
Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity. -
Search for Gravitational Waves Associated with #- Ray Bursts Detected by the Interplanetary Network
Search for Gravitational Waves Associated with #- Ray Bursts Detected by the Interplanetary Network The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Aasi, J., B. P. Abbott, R. Abbott, T. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, et al. “Search for Gravitational Waves Associated with γ-Ray Bursts Detected by the Interplanetary Network.” Physical Review Letters 113, no. 1 (June 2014). © 2014 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevLett.113.011102 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/91195 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. week ending PRL 113, 011102 (2014) PHYSICAL REVIEW LETTERS 4 JULY 2014 Search for Gravitational Waves Associated with γ-ray Bursts Detected by the Interplanetary Network J. Aasi,1 B. P. Abbott,1 R. Abbott,1 T. Abbott,2 M. R. Abernathy,1 F. Acernese,3,4 K. Ackley,5 C. Adams,6 T. Adams,7 P. Addesso,8 R. X. Adhikari,1 C. Affeldt,9 M. Agathos,10 N. Aggarwal,11 O. D. Aguiar,12 P. Ajith,13 A. Alemic,14 B. Allen,9,15,16 A. Allocca,17,18 D. Amariutei,5 M. Andersen,19 R. A. Anderson,1 S. B. Anderson,1 W. G. Anderson,15 K. Arai,1 M. C. Araya,1 C. Arceneaux,20 J. S. Areeda,21 S. -
THE INTERPLANETARY NETWORK SUPPLEMENT to the Bepposax GAMMA-RAY BURST CATALOGS
THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BeppoSAX GAMMA-RAY BURST CATALOGS The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Hurley, K., C. Guidorzi, F. Frontera, E. Montanari, F. Rossi, M. Feroci, E. Mazets, et al. “ THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BeppoSAX GAMMA-RAY BURST CATALOGS .” The Astrophysical Journal Supplement Series 191, no. 1 (November 1, 2010): 179–184. © 2010 The American Astronomical Society. As Published http://dx.doi.org/10.1088/0067-0049/191/1/179 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/96021 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal Supplement Series, 191:179–184, 2010 November doi:10.1088/0067-0049/191/1/179 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BeppoSAX GAMMA-RAY BURST CATALOGS K. Hurley1, C. Guidorzi2, F. Frontera2,3, E. Montanari2,15, F. Rossi2, M. Feroci4, E. Mazets5, S. Golenetskii5, D. D. Frederiks5,V.D.Pal’shin5, R. L. Aptekar5,T.Cline6,16, J. Trombka6, T. McClanahan6, R. Starr6, J.-L. Atteia7, C. Barraud7,A.Pelangeon´ 7,M.Boer¨ 8, R. Vanderspek9, G. Ricker9, I. G. Mitrofanov10, D. V. Golovin10, A. S. Kozyrev10, M. L. Litvak10,A.B.Sanin10, W. Boynton11, C. Fellows11, K. Harshman11, J. Goldsten12,R.Gold12, D. -
The Current Performance of the Third Interplanetary Network
The Current Performance of the Third Interplanetary Network K. Hurley1, T.Cline2, I. Mitrofanov3, E. Mazets, S. Golenetskii4, F. Frontera5,6, E. Montanari, C. Guidorzi6, and M. Feroci7 1UC Berkeley Space Sciences Laboratory, Berkeley, CA 94720-7450 2NASA GSFC, Code 661, Greenbelt, MD 20771 3IKI, 117810, Profsouznaya 84/32. GSP-7, Moscow, Russia 4Ioffe Physical-Technical Institute, St. Petersburg, 194021, Russia 5Istituto Tecnologie e Studio Radiazioni Extraterrestri, CNR, Via Gobetti 101, 40129, Bologna, Italy 6Universita di Ferrara, via Paradiso, 12, 44100 Ferrara, Italy 7Istituto di Astrofisica Spaziale, C.N.R., via Fosso del Cavaliere, Rome I-00133, Italy Abstract. The 3rd Interplanetary Network (IPN) has been operating since April 2001 with two distant spacecraft, Ulysses and Mars Odyssey, and numerous near-Earth spacecraft, such as BeppoSAX, Wind, and HETE-II. Mars Odyssey is presently in orbit about Mars, and the network has detected approximately 30 cosmic, SGR, and solar bursts. We discuss the results obtained to date and use them to predict the future performance of the network. I INTRODUCTION The 3rd IPN began with the launch of Ulysses in November 1990. Ulysses is in a heliocentric orbit roughly perpendicular to the ecliptic, with perihelion of about 1.5 arXiv:astro-ph/0201374v1 22 Jan 2002 AU and an aphelion of about 5 AU. Until 1992, the network had Ulysses and Pioneer Venus Orbiter (PVO) as its distant points, and utilized many near-Earth spacecraft such as the Compton Gamma-Ray Observatory (CGRO) as its third point. PVO entered the atmosphere of Venus in 1992, and it was to be replaced in the IPN by NASA’s Mars Observer, which was lost during insertion into Martian orbit. -
Future Ground Systems for Scientific Spacecraft
National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Future ground systems for scientific spacecraft for Ground System Architectures Workshop (GSAW2003) Manhattan Beach, California March 4, 2003 Gen. Eugene Tattini Deputy Director, Jet Propulsion Laboratory California Institute of Technology National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Agenda • Ground systems; current situation • JPL overview • Future vision National Aeronautics and Space Administration Solar system Jet Propulsion Laboratory California Institute of Technology distance scales • To reach Voyager 1 at 12.5 billion km, it would take: – Lewis & Clark: 3.8 million years – JPL Director’s 260Z: 14 thousand years – Chuck Yeager’s X-1: 1500 years – John Glenn in the ISS: 54 years • For Columbus to have reached Mars by today, he should have left Spain when it was populated by Neanderthals (60,000 years ago). • Alternatively, if Earth were the size of a golf ball (and humans were the size of large protein molecules), distances to other objects would be: – Sun: 1600 feet (and 16 feet in diameter) – Mars from Sun: 2600 feet – Jupiter: 1.6 miles – Neptune: 10 miles – Voyager 1: 26 miles National Aeronautics and Space Administration GroundGround SystemSystem Comparisons:Comparisons: Jet Propulsion Laboratory California Institute of Technology Factors Affecting Complexity Some Factors Example Systems Affecting GS Commercial DOD NOAA NASA Earth NASA Deep Complexity Orbiters -
Comparative Study of the Inial Spikes of SGR Giant Flares in 1998 And
Comparative study of the inial spikes of SGR giant flares in 1998 and 2004 observed with GEOTAIL: Do magnetospheric instabilities trigger large scale fracturing of magnetar’s crust? Y. T. Tanaka1, T. Terasawa2, N. Kawai2, A. Yoshida3, I. Yoshikawa1, Y. Saito4, T. Takashima4, and T. Mukai4 [email protected] ABSTRACT We present the unsaturated peak profile of SGR 1900+14 giant flare on 1998 August 27. This was obtained by particle counters of the Low Energy Particle in- strument onboard the GEOTAIL spacecraft. The observed peak profile revealed four characteristic structures: initial steep rise, intermediate rise to the peak, exponential decay and small hump in the decay phase. From this light curve, we found that the isotropic peak luminosity was 2.3 × 1046 erg s−1 and the total energy was 4.3 × 1044 erg s−1 (E & 50 keV), assuming that the distance to SGR 1900+14 is 15 kpc and that the spectrum is optically thin thermal bremsstrahlung with kT = 240 keV. These are consistent with the previously reported lower lim- its derived from Ulysses and Konus-Wind observations. A comparative study of the initial spikes of SGR 1900+14 giant flare in 1998 and SGR 1806-20 in 2004 is also presented. The timescale of the initial steep rise shows the magnetospheric origin, while the timescale of the intermediate rise to the peak indicates that it originates from the crustal fracturing. Finally, we argue that the four structures and their corresponding timescales provide a clue to identify extragalactic SGR arXiv:0706.3123v1 [astro-ph] 21 Jun 2007 giant flares among short GRBs. -
Search for Gravitational Waves Associated with the Interplanetary Network Short Gamma Ray Bursts
Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts V. Predoi for LIGO Scientific Collaboration and Virgo Collaboration and Kevin Hurley for the IPN Cardiff University, Physics and Astronomy, The Parade, Cardiff CF24 3AA, UK E-mail: [email protected] Abstract. We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes. 1. Introduction Short hard gamma ray bursts (short GRBs) are believed to be produced by mergers of either two neutron stars or a neutron star and a stellar mass black hole [1, 2, 3]. These events are ideal sources for strong gravitational wave emission [4, 5]. If an observation of both gamma rays and gravitational waves (GW) originating from the same event could be achieved, it will increase confidence and allow for better science output. It is thus of great importance to constantly monitor and record GRBs to allow a GW search to be performed around the burst times. Systematic analyses of GW data around short GRB times have been done in the past and the most recent publications from the LIGO-Virgo group contain results from the Swift-observed GRBs during LIGO's fifth science run (S5) and Virgo's first science run (VSR1) [6, 7]. -
Astro2020 Science White Paper Gamma Rays and Gravitational
Astro2020 Science White Paper Gamma Rays and Gravitational Waves Thematic Areas: Planetary Systems Star and Planet Formation ✓Formation and Evolution of Compact Objects ✓Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution ✓Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Eric Burns Institution: NASA Goddard Email: [email protected] Phone: +1-301-286-4664 Co-authors: S. Zhu (Albert Einstein Institute), C. M. Hui (NASA Marshall), S. Ansoldi (Universita‘ di Udine), S. Barthelmy (NASA Goddard), S. Boggs (UCSD), S. B. Cenko (NASA Goddard), N. Christensen (Observatoire de la Cˆote d’Azur), C. Fryer (LANL), A. Goldstein (USRA), A. Harding (NASA Goddard), D. Hartmann (Clemson University), A. Joens (George Washington University), G. Kanbach (Max Planck Institute for extraterrestrial Physics), M. Kerr (NRL), C. Kierans (NASA Goddard), J. McEnery (NASA Goddard), B. Patricelli (INFN), J. Perkins (NASA Goddard), J. Racusin (NASA Goddard), P. Ray (NRL), J. Schlieder (NASA Goddard), H. Schoorlemmer (MPI-HD), F. Sch¨ussler (CEA Irfu DPhP), A. Stamerra (INAF), J. Tomsick (UC Berkeley, SSL), Z. Wadiasingh (NASA Goddard), C. Wilson-Hodge (NASA Marshall), G. Younes (George Washington University), B. Zhang (University of Nevada Las Vegas), A. Zoglauer (UC Berkeley, SSL) Abstract: The first multimessenger observation of a neutron star merger was independently detected in γ- rays by Fermi-GBM and INTEGRAL SPI-ACS and gravitational waves by Advanced LIGO and Advanced Virgo. Gravitational waves are emitted from systems with accelerating quadrupole mo- arXiv:1903.04472v1 [astro-ph.HE] 11 Mar 2019 ments, and detectable sources are expected to be compact objects. -
The Search For
THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE Proceedings of an NRAO Workshop held at the National Radio Astronomy Observatory Green Bank, West Virginia May 20, 21, 22, 1985 1960 1985 Honoring the 25th Anniversary of Project OZMA Edited by K. I. Kellermann and G. A. Seielstad THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE Proceedings of an NRAO Workshop held at the National Radio Astronomy Observatory Green Bank, West Virginia May 20, 21, 22, 1985 Edited by K. I. Kellermann and GL A. Seielstad Workshop Na 11 Distributed by: National Radio Astronomy Observatory P.O. Box 2 Green Bank, WV 24944-0002 USA The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with the National Science Foundation. Copyright © 1986 NRAO/AUI. All Rights Reserved. CONTENTS Page I. KEYNOTE ADDRESS Life in Space and Humanity on Earth . Sebastian von Hoeimer 3 II. HISTORICAL PERSPECTIVE Project OZMA Frank D. Drake 17 Project OZMA - How It Really Was J. Fred Crews 27 Evolution of Our Thoughts on the Best Strategy for SETI Michael D. Papagiannis 31 III. SEARCH STRATEGIES The Search for Biomolecules in Space Lewis E. Snyder 39 Mutual Help in SETI's David H. Frisch 51 A Symbiotic SETI Search Thomas M. Bania 61 Should the Search be Made Optically? John J. Broderiok 67 A Search for SETI Targets Jane L. Russell 69 A Milky Way Search Strategy for Extra¬ terrestrial Intelligence .... Woodruff T. Sullivan, III 75 IV. CURRENT PROGRAMS SETI Observations Worldwide Jill C. Tarter 79 Ultra-Narrowband SETI at Harvard/Smithsonian . Paul Horowitz 99 The NASA SETI Program: An Overview Bernard M.