<<

LAI PD Meeting 10/7/03

SPACETUG: Dr. Hugh McManus Roles of Metis Design MATE-CON and Traditional Design Methods Space Tugs

• A vehicle or vehicles that can – Observe in situ – Change the orbit of – Eliminate (clean debris) – Retrieve – Otherwise interact with objects in orbit.

Potentially, an important national asset

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 2 Problem and opportunity

• Single-use missions for such a vehicle tend to be economically or physically infeasible • Little work on the potential for a general-purpose vehicle and some of the key challenges associated with it • Recognized difficulties include: – Unfriendly orbital dynamics and environment – Vehicle complexity – Market uncertainty

A new look at the problem: Exploring the Architectural Tradespace with MATE-CON AND defining point designs with more traditional mission analyses

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 3 MATE: Developing A Trade Space

Mission Attributes Concept Define Design • Understand the Vector Mission • Create a list of Develop System “Attributes” Model • Interview the Customer Calculate • Create Utility Curves Utility Estimate • Develop the design Cost vector and system model • Evaluate the potential Architecture Architectures Trade Space

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 4 MATE: Multi-Attribute Tradespace Analysis

Spacetug System Attributes: • Total Delta-V capability - where it can go – Calculated from simple model (rocket equation) • Response time - how fast it can get there – Binary - electric is slow • Mass of observation/manipulation equipment - what it can do when it gets there – Based solely on equipment mass (didn’t design observation or grappling equipment)

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 5 Utilities (parametric) and Cost

DV Utility

1.00 Leo-Geo RT 0.90 1

0.80 0.9

Leo-Geo 0.8

0.70 Utility Utility

0.7 0.60 0.6 0.50 0.5 0.40 0.4 Single-Attribute Single-Attribute

single-attribute 0.30 0.3

DV 0.20 0.2 Capability 0.10 0.1

0 0.00 Low Medium High Extreme 0 2000 4000 6000 8000 10000 12000 DV DV Utility Capability Utility

• Response time utility binary (electric bad) • Total Utility a weighted sum – Examples will stress DV, then capability • Cost estimated from wet and dry mass

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 6 Design Space

• Capability = Manipulator Mass – Low (300kg) – Medium (1000kg) • Other more detailed designs – High (3000 kg) incorporated into study – Extreme (5000 kg) – Freebird (MIT class project) • Propulsion Type – SCADS (Aerospace) – Storable bi-prop – GEO one-way or RT Tugs “ ” – Cryogenic bi-prop – GEO and LEO tenders – Electric (NSTAR) • Most developed by ICE – Nuclear Thermal method • Fuel Load - 8 levels Exhaustive survey - 139+ designs

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 7 Tradespace Evaluation

For each potential design: • Calculate attributes – Total DV capability - rocket equation – Response time - electric is slow – Mass of observation/grappling equipment - specified – Vehicle wet and dry masses - simple models • Calculate individual utilities for first three – Utility curves • Calculate total utility – Weighted sum • Calculate cost from wet and dry masses

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 8 Spacetug Tradespace Propulsion System as a Discriminator 4000

3500

3000 Biprop Cryo 2500 Electric

($M) Nuclear 2000

1500 Cost

1000

500

0 0.0 0.2 0.4 0.6 0.8 1.0 Utility (dimensionless) Highest performance systems require high ISP propulsion

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 9 Sensitivities to shifts in user needs

1.00 1.00 Leo-Geo RT 0.90 Leo-Geo RT 0.90 Leo-Geo 0.80 0.80 Leo-Geo 0.70

Utility 0.70 0.60 Utility 0.60 0.50 0.50 0.40 0.40 single-attribute 0.30 single-attribute 0.30 DV

0.20 DV 0.20 0.10 0.10 0.00 0 2000 4000 6000 8000 10000 12000 0.00 0 5000 10000 15000 20000 25000 30000 35000 40000 DV (m/sec) 4000 DV (m/sec) 4000

3500 Biprop 3500 Biprop Cryo 3000 Cryo Electric 3000 Electric Nuclear 2500 Nuclear 2500 ($M)

2000 ($M) 2000

1500 Cost 1500 Cost

1000 1000

500 500

0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Utility (dimensionless) Utility (dimensionless) Unlimited DV demand favors high ISP propulsion Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 10 Key Physical Limits and Dangers

4000.00 Low Biprop 3500.00 Medium Biprop High Biprop 3000.00 Extreme Biprop Low Cryo 2500.00 Medium Cryo High Cryo (M$) 2000.00 Extreme Cryo Low Electric

Cost 1500.00 Medium Electric High Electric 1000.00 Extreme Electric Low Nuclear 500.00 Medium Nuclear High Nuclear 0.00 Extreme Nuclear 0.00 0.20 0.40 0.60 0.80 1.00 Utility (dimensionless) Hits a “wall” of either physics (can’t change!) or utility (can)

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 11 Tradespace Reveals Promising Designs

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 12 Traditional Analysis: Requirements developed for specific missions

80

70

60 70-80 60-70 50 50-60 40-50 40 30-40 20-30 30 10-20 0-10 Number Of Number Satellites 20

10 1400-1500 0 1000-1100 Altitude 600-700 [km] 200-300 <40 54-56 66-68 58-60 50-52 42-44 70-72 62-64 44-46 64-66 56-58 48-50 40-42 84-86 76-78 68-70 60-62 52-54 96-98 88-90 80-82 72-74 92-94 46-48 74-76 94-96 86-88 78-80 90-92 82-84 98-100 112-114 106-108 110-112 104-106 116-118 100-102 102-104 108-110 114-116

Inclination[deg] • Target list developed • Specific mission plans scoped • Orbital mechanics and other analyses set requirements • Possible product family built up from individual designs

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 13 Analyses of Specific “Tender” missions

1. Create a complete database (orbital elements, size, mass, type of control, data rates, etc.). 2. See if objects can be grouped in terms of similar orbital and physical characteristics. 3. Define specific target groups: a) Put reasonable constraints on altitude and inclination ranges. b) Identify predominant or average physical characteristics (length, height, span, mass). 4. Create mission scenarios for each target group.

Project led by MIT graduate student Kalina Galabov

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 14 Database

S025388 19 98-041C KM-V1 KM-V1 ISAS 1998 Jul 3 In Earth orbit 1998 Jul 22 CLO 27724 1916 592196 297056 23.8 S026884 20 01-034A Genesis Genesis NASA/JPL 2001 Aug 8 In Earth orbit 2001 Aug 13CLO 97345 2E+05 1E+06 694597 28 S026859 20 01-027A MAP Microwave AnisotropyNASA GSF Pro2001 Jun 30 In Earth orbit 2001 Jul 10 CLO 12867 3144 347874 175509 28.3 S022051 19 92-044C Star 48B Star 48B S/NMDAC 10076-18 1992 Jul 24 In Earth orbit19921992 Dec Jul 31 24 CLO 13367 184 360211 180198 28.7 S023333 19 94-071A WIND NASA GSF 1994 Nov 1 In Earth orbit 1994 Nov 1 CLO 19700 186 470310 235248 28.7 S023350 19 94-071C Star 48B Star 48B MDAC 1994 Nov 1 In Earth orbit 1994 Nov 1 CLO 19700 186 470310 235248 28.7 S024913 19 97-045B Delta 247 Delta/AJ-10-118KBoeing/H No. 2471997 Aug 25 In Earth orbit 1997 Aug 25CLO 46267 172 840904 420538 28.8 S014163 19 83-067A -9 SO-M No. 509MOM 1983 Jul 1 In Earth orbit 1983 Jul 1 CLO 36812 380 720000 360190 65.5 S023716 19 95-062B Ariane H10-3Ariane H10-3Arianesp 1995 Nov 17 In Earth orbit 1997 Mar 14DHEO 1516 926 73746 37336 0.4 S022049 19 92-044A Geotail Geotail ISAS 1992 Jul 24 In Earth orbit 1992 Oct 19DHEO 2474.8 3905 104552 54229 22.3 S025867 19 99-040B Chandra X-rayAXAF ObservatoryNASA MSF 1999 Jul 23 In Earth orbit 1999 Aug 27DHEO 3808.9 9999 138826 74413 28.5 S026886 20 01-034C Star 37FM Star 37FM Boeing/H 2001 Aug 8 In Earth orbit 2001 Jul 1 DHEO 9898.8 182 292492 146337 28.7 S002770 19 67-040F Transtage 10Transtage 10USAF 1967 Apr 28 In Earth orbit 1967 Apr 28 DHEO 2831.2 8588 111242 59915 32.8 S000098 61 Kappa Explorer 10 P-14 NASA GSF 1961 Mar 25 In Earth orbit19681961 May Mar 31 25DHEO 5010.1 220 181000 90610 33 S003951 19 69-046B ERS 26 ERS 26 USAF 1969 May 23 In Earth orbit 1969 Jul 8 DHEO 3115.3 16977 111583 64280 33.1 S003950 19 69-046A ERS 29 ERS 29 USAF 1969 May 23 In Earth orbit 1969 Jul 9 DHEO 3120.2 16994 111712 64353 33.1 S002768 19 67-040D ERS 20 OV5-3 USAF 1967 Apr 28 In Earth orbit 1967 Jun 29 DHEO 2831.1 8981 110845 59913 33.2 S002767 19 67-040C ERS 18 ERS 18 USAF 1967 Apr 28 In Earth orbit 1967 Jun 29 DHEO 2831.1 8989 110839 59914 33.3 S000432 62 B 1Explorer 14 EPE B (S-3A)NASA GSF 1962 Oct 2 In Earth orbit19641964 Dec Oct31 20DHEO 2157.9 914 96959 48937 33.6 S003952 19 69-046C OV5-9 OV5-9 USAF 1969 May 23 In Earth orbit 1970 Jul 20 DHEO 3116.7 16958 111642 64300 33.7 S002769 19 67-040E ERS 27 OV5-1 USAF 1967 Apr 28 In Earth orbit 1967 Aug 9 DHEO 2827.3 9110 110599 59855 34.2 S002765 19 67-040A Vela 4A Vela 4A USAF 1967 Apr 28 In Earth orbit 1967 Sep 29DHEO 2827.9 9193 110534 59864 34.4 S000693 19 63-046A IMP 1 (ExplorerIMP 18) A NASA GSF 1963 Nov 27 In Earth orbit19651964 Nov Apr30 3 DHEO 5599.5 2072 194080 98076 35.2 S003145 19 68-014B Agena D 6503Agena D 6503NASA LeR 1968 Mar 4 In Earth orbit 1968 Sep 6 DHEO 3713.2 2102 144003 73053 36.3 S025989 19 99-066A XMM XMM ESA 1999 Dec 10 In Earth orbit 2000 Jan 9 DHEO 2872.2 7079 114028 60554 38.4 S025990 19 99-066B EPS 504 EPS ESA 1999 Dec 10 In Earth orbit 2000 Jan 12 DHEO 2603.8 789 111844 56317 38.7 S003138 19 68-014A OGO 5 OGO E NASA GSF 1968 Mar 4 In Earth orbit 1968 Dec 17DHEO 3745.1 5075 141939 73507 41.2 S020413 19 83-020D Blok D-1 11S824M No.RVSN 7L 1983 Mar 23 In Earth orbit 1990 Jan 10 DHEO 5826.2 6567 195185 100876 48.3 S019288 19 88-059B Blok D-2 No.11S824F 1L No.RVSN 1L 1988 Jul 12 In Earth orbit 1988 Jul 12 DHEO 3246.5 2499 130000 66250 50.8 S019282 19 88-058B Blok D-2 No.11S824F 2L No.RVSN 2L 1988 Jul 7 In Earth orbit 1988 Jul 7 DHEO 3267.7 2628 130504 66566 50.8 S015664 19 85-033D Blok SO-L Blok SO-L RVSN 1985 Apr 26 In Earth orbit19931985 Dec Apr30 26 DHEO 5785 420 200320 100370 64.9 S023646 19 95-039F Magion-4 Magion-4 Czech 1995 Aug 2 In Earth orbit 1996 Oct 31DHEO 5469.2 14777 178122 96450 71.3 S010370 19 77-093A Prognoz-6 SO-M No. 506MOM 1977 Sep 22 In Earth orbit 1978 Apr 4 DHEO 5683.2 1850 196379 99115 74.3 S015661 19 85-033A Prognoz-10-IKSO-M No. 510MOM 1985 Apr 26 In Earth orbit19941985 Jan Dec12 15DHEO 5783.8 5974 194737 100356 76.7 S013901 19 83-020A 1A No. 602 MOM 1983 Mar 23 In Earth orbit 1985 Mar 20DHEO 5915.8 25129 178818 101974 79.7 Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 15 Target Groups

80

70

60 70-80 60-70 50 50-60 40-50 40 30-40 20-30 30 10-20 0-10 Number Of Number Satellites 20

10 1400-1500 0 1000-1100 Altitude 600-700 [km] 200-300 <40 88-90 94-96 84-86 64-66 90-92 80-82 96-98 70-72 86-88 76-78 62-64 58-60 66-68 54-56 60-62 56-58 44-46 50-52 48-50 46-48 52-54 40-42 42-44 92-94 82-84 72-74 78-80 68-70 74-76 98-100 104-106 110-112 100-102 116-118 106-108 112-114 102-104 108-110 114-116

Inclination[deg]

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 16 Target Group #1

Miscellaneous – 600 kg – 1.27 x 1.58 x 0.94 m – 10.4 m array span – i = 98.1 to 99 deg – 10 m deployed antennas – h = 770.5 to 861 km span – Total: 345 satellites – 3-axis stabilized

– 1990-2001: 47 satellites – US: 76 sat. (29 recent) OR – Numerous rocket – 520 kg bodies – D = 1.31 m, H = 3.96 m – Spin-stabilized

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 17 GEO Target Group (#5)

• i = 0 to 5.2 deg • h = 35, 662 to 36,667 km • Spin-stabilized • Total: 639 satellites • ~55 rpm • 1990-2001: 333 satellites • 750 kg / 850 kg • US: 280 sat. (103 recent) • D = 3 m, H = 3.3 m Htot = 7 m

• 3-axis stabilized • 1,880 kg / 2,200 kg • 2.3 x 2.2 x 2.3 m • 25 m solar arrays span • 8.3 m span of antennas

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 18 Mission Scenario: LEO Tender I

Visit 5 satellites: Missions: - 3 randomly within a 100 km altitude and 1 1) Orbit Change deg inclination box 2) Rendezvous – 100 m/s - 2 in 200 km and 2.2 deg box 3) Dispose (increase the altitude of 100 km

to decay altitudes) or Example: Move (ΔV = 167 m/s; 180 deg in one - any 3 satellites within h = 770 – 870 km week) and i = 98-99 deg 4) Park (if disposal) and Return to LEO - one at h = 670.5 km and i = 98.2 deg (NASA’s Terra, 99-068A) Mission Life: 10 years - one at h = 778 km and i = 100.2 deg (USAF Falconsat, 00-004D) Assumptions: 1) The target properties are the same for all Targets Properties: targets. 2) The tender is launched into a 99 deg - 520 kg orbit, h = 800 km. - 1.27 x 1.58 x 0.94 m box - 10.4 m solar array span - 8 m deployed antennas span

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 19 Mission Scenario: GEO Tender

Visit 5 satellites: Missions: - 3 randomly within a 400 km altitude and 5 deg inclination 1) Orbit Change box 2) Rendezvous – 100 m/s - 2 in 1500 km and 15 deg box 3) Dispose (increase the altitude of 400 km) or

Example: Move (ΔV = 219 m/s; 180 deg in one - any 3 satellites within h = 35,600 – 36,000 km and i = 0 – week) 5 deg 4) Park (if disposal) and Return to GEO - one at about h = 34,900 km and i = 0 deg - one at about h = 35,800 km and i = 13 deg Mission Life: 10 years

Assumptions: Targets Properties: 1) The target properties are the same for - 2,200 kg all targets. - 2.3 x 2.2 x 2.3 m box 2) The tender is launched into a 28 deg - 25 m solar array span GTO orbit. - 8.3 m deployed antennas span

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 20 ICE: Integrated Concurrent Engineering

• Rapid conceptual design of points in the tradespace • CalTech/JPL/Aerospace Corp. Integrated Concurrent Engineering techniques used • Analysis Team: MIT/Caltech/Cambridge Students

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 21 Results based on MATE tradespace: Bipropellant GEO Tug

• Approx. 1300 kg dry mass, 11700 kg wet mass • Quite big (and therefore expensive); not very practical (?)

Solar Panels Scale for all images: black cylinder is Manipulator 1 meter long by System 1 meter in diameter

Spacecraft Bus w/subsystems The “Rocket Equation Wall” Propulsion System w/fuel explored

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 22 Electric Propulsion RT GEO Tug

• Approx. 700 kg dry mass, 1100 kg wet mass • Includes return of tug to safe orbit • A reasonable, versatile system

The “Electric Cruiser” on the knee of the tradespace

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 23 Results from Mission Analysis: Bi-prop Tender Designs

• Lower Utility, lower cost systems • Can’t go to GEO (though can work there if inserted) • 700-1000 kg dry mass; 1000-4000 kg wet mass • A family of potential vehicles with reasonable sizes and mass fractions

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 24 Integration of Mission Analysis Results

• Modular family of possible vehicles • Electric and conventional propulsion • Varying fuel loads • Variety of manipulators within fixed weight/volume/power envelope

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 25 Bringing it all together: Trade Space Check - GEO missions

The GEO mission is near the “wall” for conventional propulsion

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 26 Trade Space Check - Tender missions

The Tender missions are feasible with conventional propulsion General Tender is flexible (though not “optimal”) Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 27 Synergies Between Methods Results in Powerful Conceptual Design Capability

MATE ICE

Validation and understanding

Design point or attributes and sensitivities

Feasible mission Mission Analysis Point design concepts requirements

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 28 Synergies Between Methods Results in Powerful Conceptual Design Capability

Right Design(s) for MATE the Right Mission(s) ICE

General design

Point designs

Feasible mission Mission Analysis Point design concepts requirements

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 29 QUESTIONS?

earth image from:

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 30 Synergies Between Methods Results in Powerful Conceptual Design Capability

MATE ICE

Validation and understanding

Design attributes & sensitivities Point design Feasible Mission Analysis requirements Family concepts, mission multi-mission tender concepts

Right Design(s) for the Right Mission(s)

Space Systems, Policy, and Architecture Research Consortium and the MIT Space Systems Laboratory ©2003 Massachusetts Institute of Technology 31