Airborne Bacterial and Eukaryotic Community Structure Across the United Kingdom Revealed by High-Throughput Sequencing

Total Page:16

File Type:pdf, Size:1020Kb

Airborne Bacterial and Eukaryotic Community Structure Across the United Kingdom Revealed by High-Throughput Sequencing Supplementary Airborne Bacterial and Eukaryotic Community Structure Across the United Kingdom Revealed by High-Throughput Sequencing Hokyung Song, Ian Crawford, Jonathan R. Lloyd *, Clare H. Robinson, Christopher Boothman, Keith Bower, Martin Gallagher *, Grant Allen and David Topping Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK; [email protected] (H.S.); [email protected] (I.C.); [email protected] (C.H.R.); [email protected] (C.B.); [email protected] (K.B.); [email protected] (G.A.); [email protected] (D.T.) * Correspondence: [email protected] (J.R.L.); [email protected] (M.G.) Supplementary Figures Figure S1. 96 hour HYSPLIT Lagrangian back trajectories of air sampled at: (a) Chilbolton at 950 m, (b) Chilbolton at 380 m, and (c) Weybourne at 724 m. Figure S2. Canonical correspondence analysis result plot. Each of CH10, CH20, CH30 indicates samples collected in Chilbolton at high elevation (range of 950-1000 m asl) in the time duration of 10 min, 20 min, and 30 min. Each of W10, W20, W30 indicates samples collected in Weybourne (height range of 650-1000 m) in the time duration of 10 min, 20 min, and 30 min. Figure S3. Number of bacterial OTUs. Each of CH10, CH20, CH30 indicates samples collected in Chilbolton at high elevation (range of 950-1000 m asl) in the time duration of 10 min, 20 min, and 30 min. Each of W10, W20, W30 indicates samples collected in Weybourne (height range of 650-1000 m) in the time duration of 10 min, 20 min, and 30 min. Figure S4. Redundancy analysis result plot. Each of CH10, CH30 indicates samples collected in Chilbolton at high elevation (range of 950-1000 m asl) in the Table 10. min and 30 min. Each of CL10, CL20, CL30 indicates samples collected in Chilbolton at low elevation (range of 300-450 m asl) in the time duration of 10 min, 20 min, and 30 min. Each of W10, W20, W30 indicates samples collected in Weybourne (height range of 650-1000 m) in the time duration of 10 min, 20 min, and 30 min. Figure S5. Number of Eukaryotic OTUs. Each of CH10, CH30 indicates samples collected in Chilbolton at high elevation (range of 950–1000 m asl) in the time duration of 10 min and 30 min. Each of CL10, CL20, CL30 indicates samples collected in Chilbolton at low elevation (range of 300–450 m asl) in the time duration of 10 min, 20 min, and 30 min. Each of W10, W20, W30 indicates samples collected in Weybourne (height range of 650–1000 m) in the time duration of 10 min, 20 min, and 30 min. Supplementary tables. Table S1. Detailed information of collected filter samples. “lat” stands for latitude, “lon” stands for longitude, and “alt” stands for altitude. Relative humidity was calculated using the Arden Buck equation (Buck 1981). Average Start End Start End Average Start End Relative Filter ID Run Location Latitude/Longitude Latitude/Longitude Altitude Altitude Temperature Time Time Humidity (°) (°) (km) (km) (℃) (%) leg 1 Chilbolton 11:26:30 11:37:40 50.7962/−2.6726 51.0184/−1.7314 0.436 0.354 12.995 48.508 Chilbolton low 30 min leg 2 Chilbolton 11:44:38 11:54:37 51.1384/−1.4495 50.8815/−2.3144 0.378 0.406 13.817 46.741 leg 3 Chilbolton 11:57:11 12:08:01 50.8672/−2.3676 51.1309/−1.4658 0.385 0.320 14.089 45.837 Chilbolton low 10 min leg 1 Chilbolton 11:26:30 11:37:40 50.7962/−2.6726 51.0184/−1.7314 0.436 0.354 12.995 48.508 leg 1 Chilbolton 11:44:38 11:54:37 51.1384/−1.4495 50.8815/−2.3144 0.378 0.406 13.817 46.741 Chilbolton low 20 min leg 2 Chilbolton 11:57:11 12:08:01 50.8672/−2.3676 51.1309/−1.4658 0.385 0.320 14.089 45.837 leg 1 Chilbolton 12:14:15 12:24:19 51.0898/−1.5581 50.8384/−2.4859 0.975 0.974 8.196 62.864 Chilbolton high 30 min leg 2 Chilbolton 12:28:47 12:39:36 50.7926/−2.3218 51.1414/−1.4436 0.979 0.976 8.374 61.906 leg 3 Chilbolton 12:44:10 12:54:06 51.1324/−1.4567 50.9039/−2.3721 0.981 0.963 8.620 60.722 Chilbolton high 10 min leg 1 Chilbolton 12:14:15 12:24:19 51.0898/−1.5581 50.8384/−2.4859 0.975 0.974 8.196 62.864 leg 1 Chilbolton 12:28:47 12:39:36 50.7926/−2.3218 51.1414/−1.4436 0.979 0.976 8.374 61.906 Chilbolton high 20 min leg 2 Chilbolton 12:44:10 12:54:06 51.1324/−1.4567 50.9039/−2.3721 0.981 0.963 8.620 60.722 leg 1 Weybourne 13:36:05 13:46:18 52.9406/0.55184 52.8147/1.5293 0.973 0.677 7.519 37.590 Weybourne 30 min leg 2 Weybourne 13:50:10 13:59:16 52.8763/1.3028 52.9563/0.36313 0.670 0.673 8.515 56.670 leg 3 Weybourne 14:02:10 14:13:10 52.9452/0.4676 52.8768/1.5355 0.679 0.670 8.181 55.923 Weybourne 10 min leg 1 Weybourne 13:36:05 13:46:18 52.9406/0.55184 52.8147/1.5293 0.973 0.677 7.519 37.590 leg 1 Weybourne 13:50:10 13:59:16 52.8763/1.3028 52.9563/0.36313 0.670 0.673 8.515 56.670 Weybourne 20 min leg 2 Weybourne 14:02:10 14:30:10 52.9452/0.4676 53.1219/0.8797 0.679 2.593 7.596 56.309 Table S2. Blast result of the 20 most abundant bacterial OTUs. Among 100 best hits, only the hit results with highest similarity, highest score, and lowest e-value are shown. If there are multiple best hit sequences with the same similarity, e-value, and hit score, they are shown together. OTU ID Genus (Silva Database) Blast (NCBI NT Database) Similarity E−value Hit Score OTU008 Gordonia Gordonia iterans 100 1.96E-127 466 OTU009 Psychroglaciecola uncultured bacterium OTU010 Burkholderiaceae_unclassified Hydrogenophaga soli 99.206 4.24E-124 455 OTU011 Lautropia uncultured bacterium OTU013 Morganella Morganella morganii, Providencia rustigianii, Salmonella enterica, Escherichia coli 100 1.96E-127 466 OTU014 Candidatus_Udaeobacter uncultured bacterium OTU015 Fusobacterium Fusobacterium nucleatum 100 7.01E-127 464 Janibacter indicus, Janibacter hoylei, Janibacter terrae, Knoellia locipacati, Janibacter anophelis, OTU016 Intrasporangiaceae_unclassified Janibacter melonis, Janibacter limosus, Knoellia sinensis, Janibacter massiliensis, Knoellia 100 1.96E-127 466 subterranea OTU017 Chryseobacterium Chryseobacterium hominis 100 1.96E-127 466 OTU018 Sphingomonas uncultured bacterium OTU019 Pajaroellobacter uncultured bacterium Streptococcus oralis, Streptococcus mitis, Streptococcus infantis, Streptococcus pyogenes, OTU020 Streptococcus 100 7.01E-127 464 Streptococcus australis, Streptococcus sanguinis, Streptococcus pneumoniae OTU021 Nakamurella uncultured bacterium Arthrobacter davidanieli, Arthrobacter russicus, Psychromicrobium silvestre, Psychromicrobium OTU022 Micrococcaceae_unclassified 100 1.96E-127 466 lacuslunae OTU023 Actinomyces Actinomyces oris, Actinomyces naeslundii, Actinomyces viscosus 100 1.96E-127 466 OTU024 Rubellimicrobium uncultured bacterium Chryseobacterium bernardetii, Bergeyella porcorum, Chryseobacterium taichungense, OTU026 uncultured 95.635 4.33E-109 405 Chryseobacterium moechotypicola OTU028 Burkholderiaceae_unclassified Tepidimonas taiwanensis 99.6 1.18E-124 457 OTU029 Gemella Gemella haemolysans, Gemella morbillorum 100 1.96E-127 466 OTU030 Devosia uncultured bacterium Table S3. Blast result of the 20 most abundant eukaryotic OTUs. Among 100 best hits, only the hit results with highest similarity, highest score, and lowest e-value are shown. If there are multiple best hit sequences with the same similarity, e-value, and hit score, they are shown together. OTU ID Genus Blast Result Similarity E-value Hit Score OTU0002 Embryophyta unclassified Pinus luchuensis 100 4.81E-50 207 Cladosporium tenuissimum, Cladosporium halotolerans, Cladosporium xylophilum, Cladosporium oxysporum, Cladosporium exasperatum, Cladosporium herbarum, Panicum hallii, Cladosporium anthropophilum, Selaginella moellendorffii, Cladosporium xanthochromaticum, Cladosporium velox, Cladosporium tenellum, Cladosporium subinflatum, Cladosporium sphaerospermum, OTU0001 Cladosporium Cladosporium ramotenellum, Cladosporium pulvericola, Cladosporium pseudocladosporioides, 100 6.07E-49 204 Cladosporium perangustum, Cladosporium parasubtilissimum, Cladosporium parahalotolerans, Cladosporium neolangeronii, Cladosporium needhamense, Cladosporium lycoperdinum, Cladosporium limoniforme, Cladosporium langeronii, Cladosporium inversicolor, Cladosporium funiculosum, Cladosporium floccosum, Cladosporium dominicanum OTU0010 Phoma Epicoccum sorghinum (also known as Phoma sorghina), Epicoccum nigrum, Curvularia kusanoi 100 6.07E-49 204 OTU0012 Chlamydomonadal unclassified Chloromonas subdivisa 100 7.65E-48 200 Vigna unguiculata, Brassica oleracea, Brassica rapa, Eutrema salsugineum, Brassica carinata, Brassica napus, Brassica juncea, Raphanus sativus, Raphanus raphanistrum, Brassica oleracea, OTU0008 Brassicales unclassified 100 4.81E-50 207 Brassica nigra, Arabis alpina, Thlaspi arvense, Nasturtium officinale, Matthiola longipetala, Sisymbrium orientale, Isatis tinctoria, Draba nemorosa, Brassica tournefortii Moesziomyces antarcticus, Ustilago maydis, Sporisorium reilianum, Pseudozyma hubeiensis, OTU0009 Ustilaginaceae unclassified Melanopsichium pennsylvanicum, Ustilago williamsii, Ustilago striiformis, Ustilago cynodontis, 100 1.71E-49 206 Tranzscheliella hypodytes, Macalpinomyces bursus, Melanopsichium pennsylvanicum OTU0016 Pleosporales unclassified Torula herbarum 100 6.07E-49 204 OTU0027 Blumeria Blumeria graminis 99.091 2.82E-47 198 OTU0032 Pleosporales unclassified Phaeosphaeria graminis, Neocucurbitaria acanthocladae, Alternaria alternariae 100 6.07E-49 204 OTU0015 Hemiptera Aulacorthum solani 99.194 5.43E-55 224 OTU0014 Ranunculales unclassified Ranunculus japonicus 100 4.81E-50 207 OTU0029 Blumeria Blumeria graminis 100 6.07E-49 204 OTU0025 Sclerotinia
Recommended publications
  • Pentachlorophenol Degradation by Janibacter Sp., a New Actinobacterium Isolated from Saline Sediment of Arid Land
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 296472, 9 pages http://dx.doi.org/10.1155/2014/296472 Research Article Pentachlorophenol Degradation by Janibacter sp., a New Actinobacterium Isolated from Saline Sediment of Arid Land Amel Khessairi,1,2 Imene Fhoula,1 Atef Jaouani,1 Yousra Turki,2 Ameur Cherif,3 Abdellatif Boudabous,1 Abdennaceur Hassen,2 and Hadda Ouzari1 1 UniversiteTunisElManar,Facult´ e´ des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolecules´ Actives, Campus Universitaire, 2092 Tunis, Tunisia 2 Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopoleˆ Borj-Cedria,´ B.P. 273, 8020 Soliman, Tunisia 3 Universite´ de Manouba, Institut Superieur´ de Biotechnologie de Sidi Thabet, LR11ES31 Laboratoire de Biotechnologie et Valorization des Bio-Geo Resources, Biotechpole de Sidi Thabet, 2020 Ariana, Tunisia Correspondence should be addressed to Hadda Ouzari; [email protected] Received 1 May 2014; Accepted 17 August 2014; Published 17 September 2014 Academic Editor: George Tsiamis Copyright © 2014 Amel Khessairi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Many pentachlorophenol- (PCP-) contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, and high salt concentrations. PCP-degrading microorganisms, adapted to grow and prosper in these environments, play an important role in the biological treatment of polluted extreme habitats. A PCP-degrading bacterium was isolated and characterized from arid and saline soil in southern Tunisia and was enriched in mineral salts medium supplemented with PCP as source of carbon and energy.
    [Show full text]
  • Días De Conservación De Diplostephium Ericoides 97
    UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE CIENCIA E INGENIERÍA EN ALIMENTOS CARRERA DE INGENIERÍA BIOQUÍMICA RESCATE DE PLANTAS EN PELIGRO DE EXTINCIÓN DEL SECTOR DE LA LAGUNA DE PISAYAMBO – AUCACOCHA DEL PARQUE NACIONAL LLANGANATES, PARA SU PRESERVACIÓN EN EL BANCO DE GERMOPLASMA DEL JARDÍN BOTÁNICO ATOCHA LA LIRIA. Proyecto de Graduación, modalidad: Seminario presentado como requisito previo a la obtención del Título de Ingeniero Bioquímico otorgado por la Universidad Técnica de Ambato a través de la Facultad de Ciencia e Ingeniería en Alimentos. AUTOR: María Belén Quispilema Cunalata DIRECTOR: Dr. Homero Vargas Ambato – Ecuador 2012 APROBACIÓN DEL TUTOR En calidad de Tutor del trabajo de investigación sobre el tema: “Rescate de plantas en peligro de extinción del sector de la laguna de Pisayambo – Aucacocha del Parque Nacional Llanganates, para su preservación en el banco de germoplasma del jardín botánico Atocha La Liria.”, por la egresada María Belén Quispilema Cunalata, alumna de la Carrera de Ingeniería Bioquímica de la Facultad de Ciencia e Ingeniería en Alimentos de la Universidad Técnica de Ambato certifico que el trabajo fue realizado por la persona indicada y considero que dicho informe investigativo reúne los requisitos y méritos suficientes para ser sometido a la evaluación del Tribunal de Grado, que el Honorable Consejo Directivo designe, para su correspondiente estudio y calificación. Ambato, Junio de 2012 …………………………………………….. Dr. Homero Vargas TUTOR DEL PROYECTO ii AUTORÍA DEL TRABAJO DE GRADO Los contenidos del presente Trabajo de investigación denominado: “Rescate de plantas en peligro de extinción del sector de la laguna de Pisayambo – Aucacocha del Parque Nacional Llanganates, para su preservación en el banco de germoplasma del jardín botánico Atocha La Liria” le corresponden exclusivamente a Egda.; María Belén Quispilema Cunalata y, Dr.
    [Show full text]
  • A Nomenclator of Diplostephium (Asteraceae: Astereae): a List of Species with Their Synonyms and Distribution by Country
    32 LUNDELLIA DECEMBER, 2011 A NOMENCLATOR OF DIPLOSTEPHIUM (ASTERACEAE: ASTEREAE): A LIST OF SPECIES WITH THEIR SYNONYMS AND DISTRIBUTION BY COUNTRY Oscar M. Vargas Integrative Biology and Plant Resources Center, 1 University Station CO930, The University of Texas, Austin, Texas 78712 U.S.A Author for correspondence ([email protected]) Abstract: Since the description of Diplostephium by Kunth in 1820, more than 200 Diplostephium taxa have been described. In the absence of a recent revision of the genus, a nomenclator of Diplostephium is provided based on an extensive review of the taxonomic literature, herbarium material, and databases. Here, 111 species recognized in the literature are listed along with their reference citations, types, synonyms, subspecific divisions, and distributions by country. In addition, a list of doubtful names and Diplostephium names now considered to be associated with other taxa is provided. Resumen: Desde la descripcio´n del genero Diplostephium por Kunth en 1820, mas de 200 nombres han sido publicados bajo Diplostephium. En ausencia de un estudio taxono´mico actualizado, se presenta una lista de nombres de Diplostephium basada en una revisio´n extensiva de la literaura taxono´mica, material de herbario y bases de datos. En este estudio se listan las 111 especies reconocidas hasta ahora, incluyendo informacio´n acerca de la publicacio´n de la especie, tipos, sino´nimos, divisio´n subgene´rica y distribuciones por paı´s. Adicionalmente se provee una lista de nombres dudosos y nombres de Diplostephium que se consideran estar asociados con otros taxones. Keywords: Asteraceae, Astereae, Diplostephium, nomenclator. Diplostephium is a genus of small trees, (ROSMARINIFOLIA,FLORIBUNDA,DENTICU- shrubs, and sub-shrubs that range from LATA,RUPESTRIA, and LAVANDULIFOLIA 5 Costa Rica to northern Chile.
    [Show full text]
  • (ΐ2) United States Patent (ΐο) Patent No.: US 10,596,255 Β2 Clube (45) Date of Patent: *Mar
    US010596255B2 US010596255B2 (ΐ2) United States Patent (ΐο) Patent No.: US 10,596,255 Β2 Clube (45) Date of Patent: *Mar. 24, 2020 (54) SELECTIVELY ALTERING MICROBIOTA 39/0258; C07K 14/315; C07K 14/245; FOR IMMUNE MODULATION C07K 14/285; C07K 14/295; C12N 2310/20; C12N 2320/30 (71) Applicant: SNIPR Technologies Limited, London See application file for complete search history. (GB) (72) Inventor: Jasper Clube, London (GB) (56) References Cited (73) Assignee: SNIPR Technologies Limited, London U.S. PATENT DOCUMENTS (GB) 4,626,504 A 12/1986 Puhler et al. 5,633,154 A 5/1997 Schaefer et al. (*) Notice: Subject to any disclaimer, the term of this 8,241,498 Β2 8/2012 Summer et al. patent is extended or adjusted under 35 8,252,576 Β2 8/2012 Campbell et al. U.S.C. 154(b) by 0 days. 8,906,682 Β2 12/2014 June et al. 8,911,993 Β2 12/2014 June et al. This patent is subject to a terminal dis ­ 8,916,381 Β1 12/2014 June et al. 8,975,071 Β1 3/2015 June et al. claimer. 9,101,584 Β2 8/2015 June et al. 9,102,760 Β2 8/2015 June et al. (21) Appl. No.: 16/389,376 9,102,761 Β2 8/2015 June et al. 9,113,616 Β2 8/2015 MacDonald et al. (22) Filed: Apr. 19, 2019 9,328,156 Β2 5/2016 June et al. 9,464,140 Β2 10/2016 June et al. (65) Prior Publication Data 9,481,728 Β2 11/2016 June et al.
    [Show full text]
  • Reinstatement of the Genus Piofontia: a Phylogenomic-Based Study Reveals the Biphyletic Nature of Diplostephium (Asteraceae: Astereae)
    Systematic Botany (2018), 43(2): pp. 485–496 © Copyright 2018 by the American Society of Plant Taxonomists DOI 10.1600/036364418X697210 Date of publication June 21, 2018 Reinstatement of the Genus Piofontia: A Phylogenomic-based Study Reveals the Biphyletic Nature of Diplostephium (Asteraceae: Astereae) Oscar M. Vargas Department of Ecology and Evolutionary Biology, University of Michigan, 830 N. University Avenue, Ann Arbor, Michigan 48109, USA Integrative Biology and Plant Resources Center, The University of Texas at Austin, Austin, Texas 78712, USA ([email protected]) Communicating Editor: Chrissen E. C. Gemmill Abstract—A recent phylogenomic study has shown that Diplostephium in its broad sense is biphyletic. While one of the clades comprises 60 species distributed mainly in the Northern Andes, the clade that contains the generic type, Diplostephium ericoides,contains48species,andprimarilyinhabitsthe Central Andes. Here, I propose to reinstate the generic name Piofontia and transfer to it the species of Diplostephium in the Northern Andean clade. Piofontia consists, then, of 60 species of woody subshrubs, shrubs, and small trees inhabiting high Andean forests and p´aramos of Costa Rica, Colombia, Venezuela, and Ecuador. A morphological description is provided for the genus Piofontia along with a species list with 60 new combinations. Dysaster cajamarcensis is shown to be a synonym of Diplostephium serratifolium. Finally, a brief discussion about the morphological evolution of South American Astereae is provided. Keywords—Andes, South America, p´aramo. Kunth (1820) proposed Diplostephium Kunth with a single Colombia, Venezuela, Ecuador, Peru, Bolivia, and northern species, D. lavandulifolium Kunth (5 D. ericoides (Lam.) Cab- Chile. rera), and defined the genus with the following diagnostic A recent phylogenomic study (Vargas et al.
    [Show full text]
  • Diversity and Distribution of Actinobacteria Associated with Reef Coral Porites Lutea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 21 October 2015 doi: 10.3389/fmicb.2015.01094 Diversity and distribution of Actinobacteria associated with reef coral Porites lutea Weiqi Kuang 1, 2 †, Jie Li 1 †, Si Zhang 1 and Lijuan Long 1* 1 CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China, 2 College of Earth Science, University of Chinese Academy of Sciences, Beijing, China Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial Edited by: and temporal distribution of actinobacteria have been rarely documented. In this Sheng Qin, study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites Jiangsu Normal University, China lutea and in the surrounding seawater were examined every 3 months for 1 year on Reviewed by: Syed Gulam Dastager, Luhuitou fringing reef. The population structures of the P.lutea-associated actinobacteria National Collection of Industrial were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which Microorganisms Resource Center, demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described India Wei Sun, families and 10 unnamed families were determined in the populations, and 12 genera Shanghai Jiao Tong University, China were firstly detected in corals. The Actinobacteria diversity was significantly different P. Nithyanand, SASTRA University, India between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by *Correspondence: the seawater and coral samples.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Degrading Bacteria from the Indonesian Marine Environment
    BIODIVERSITAS ISSN: 1412-033X Volume 17, Number 2, October 2016 E-ISSN: 2085-4722 Pages: 857-864 DOI: 10.13057/biodiv/d170263 Polycyclic aromatic hydrocarbon degrading bacteria from the Indonesian Marine Environment ELVI YETTI♥, AHMAD THONTOWI, YOPI Laboratory of Biocatalyst and Fermentation, Research Centre for Biotechnology, Indonesian Institute of Sciences. Cibinong Science Center, Jl. Raya Bogor Km 46 Cibinong-Bogor 16911, West Java, Indonesia. Tel. +62-21-8754587, Fax. +62-21-8754588, ♥email: [email protected] Manuscript received: 20 April 2016. Revision accepted: 20 October 2016. Abstract. Yetti E, Thontowi A, Yopi. 2016. Polyaromatic hydrocarbon degrading bacteria from the Indonesian Marine Environment. Biodiversitas 17: 857-864. Oil spills are one of the main causes of pollution in marine environments. Oil degrading bacteria play an important role for bioremediation of oil spill in environment. We collected 132 isolates of marine bacteria isolated from several Indonesia marine areas, i.e. Pari Island, Jakarta, Kamal Port, East Java and Cilacap Bay, Central Java. These isolates were screened for capability to degrade polyaromatic hydrocarbons (PAHs). Selection test were carried out qualitatively using sublimation method and growth assay of the isolates on several PAHs i.e. phenanthrene, dibenzothiophene, fluorene, naphtalene, phenotiazine, and pyrene. The fifty-eight isolates indicated in having capability to degrade PAHs, consisted of 25 isolates were positive on naphthalene (nap) and 20 isolates showed ability to grow in phenanthrene (phen) containing media. Further, 38 isolates were selected for dibenzothiophene (dbt) degradation and 25 isolates were positive on fluorene (flr). On the other hand, 23 isolates presented capability to degrade in phenothiazine (ptz) and 15 isolates could grow in media with pyrene (pyr).
    [Show full text]
  • Nomenclatural Priority of the Genus Linochilus Over Piofontia (Asteraceae: Astereae)
    Phytotaxa 424 (3): 158–166 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.424.3.3 Nomenclatural priority of the genus Linochilus over Piofontia (Asteraceae: Astereae) PATRICIO SALDIVIA1*, OSCAR M. VARGAS2, DAVID A. ORLOVICH1 & JANICE M. LORD1 1Department of Botany, University of Otago, Dunedin, New Zealand 2Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA *E-mail: [email protected] Abstract Linochilus Bentham (1845) has priority as the correct name for the recently reinstated genus Piofontia Cuatrecasas (1943) segregated from Diplostephium Kunth (1820). A brief taxonomic historical account is provided in order to explain the taxonomic problem. A list of 61 names within Linochilus is given, including 59 new combinations. The 60 combinations recently created for Piofontia are listed as synonyms. Resumen Linochilus Bentham (1845) tiene prioridad como el nombre correcto para el recientemente reestablecido género Piofontia Cuatrecasas (1943) segregado de Diplostephium Kunth (1820). Se entrega una breve reseña taxonómica histórica con el propósito de explicar el problema taxonómico. Se provee una lista de 61 nombres que conforman el género Linochilus, incluyendo 59 nuevas combinaciones. Las 60 combinaciones recientemente establecidas para Piofontia se listan como sinónimos. Introduction Diplostephium Kunth (1820a: 96) sensu lato includes 111 species (Vargas 2011) of prostrate to erect shrubs and small trees characteristic of the high tropical Andean flora, found in páramos, the upper limit of the cloud forest, and the humid puna (Blake 1928, Cuatrecasas 1969, Vargas et al. 2017).
    [Show full text]
  • Phylogeny of Hinterhubera, Novenia and Related
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae) Vesna Karaman Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Karaman, Vesna, "Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae)" (2006). LSU Doctoral Dissertations. 2200. https://digitalcommons.lsu.edu/gradschool_dissertations/2200 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. PHYLOGENY OF HINTERHUBERA, NOVENIA AND RELATED GENERA BASED ON THE NUCLEAR RIBOSOMAL (nr) DNA SEQUENCE DATA (ASTERACEAE: ASTEREAE) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Vesna Karaman B.S., University of Kiril and Metodij, 1992 M.S., University of Belgrade, 1997 May 2006 "Treat the earth well: it was not given to you by your parents, it was loaned to you by your children. We do not inherit the Earth from our Ancestors, we borrow it from our Children." Ancient Indian Proverb ii ACKNOWLEDGMENTS I am indebted to many people who have contributed to the work of this dissertation.
    [Show full text]
  • Non-Commercial Use Only
    Infectious Disease Reports 2019; volume 11:8132 Janibacter species with most reliable diagnostic tool. However, evidence of genomic sometimes a diagnosis cannot be made Correspondence: Ying Bai, Division of using blood culture because of poor labora- Vector-Borne Diseases, Centers for Disease polymorphism isolated tory infrastructure, presence of uncommon Control and Prevention, 3156 Rampart Road, from resected heart valve pathogens, or pretreatment of the patient Fort Collins, Colorado 80521 USA. in a patient with aortic stenosis with antibiotics prior to sample collection. Tel. 1-970-266-3555. Up to 35% of all infective endocarditis E-mail: [email protected] cases remain blood culture negative either Lile Malania,1 Ying Bai,2 Key words: aortic stenosis; bacteria; genome 3 4 due to slow growth of the bacteria or inap- polymorphism; Janibacter. Kamil Khanipov, Marika Tsereteli, 2 5 1 propriate media. Mikheil Metreveli, David Tsereteli, Calcific aortic stenosis is also a major 1 1 Acknowledgements: The authors would like Ketevan Sidamonidze, Paata Imnadze, problem in many countries. In the United to thank Natalia Abazashvili, Tamriko 3 2 Yuriy Fofanov, Michael Kosoy States, the incidence rate of aortic stenosis Giorgadze, and Nazibrola Chitadze for their 1National Center for Disease Control has been reported as 27.1 per 10,000.3 The assistance with laboratory tests; Guram and Public Health, Tbilisi, Georgia; mechanism of calcification remains unclear. Katstadze, and Neli Chakvetadze for their par- ticipation in investigation of the human case; 2Division of Vector-Borne Diseases, The hypothesis is that low grade chronic or recurrent bacterial endocarditis with specif- Levent Albayrak and George Golovko for the Centers for Disease Control and assistance with genome analysis; and ic calcifiable bacteria is a cause of calcifica- Prevention, Fort Collins, CO, USA; 4 Christina Nelson for careful revision of the 3Department of Pharmacology and tion of the aortic valves.
    [Show full text]
  • WO 2014/121298 A2 7 August 2014 (07.08.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/121298 A2 7 August 2014 (07.08.2014) P O P C T (51) International Patent Classification: VULIC, Marin; c/o Seres Health, Inc., 161 First Street, A61K 39/02 (2006.01) Suite 1A, Cambridge, MA 02142 (US). (21) International Application Number: (74) Agents: HUBL, Susan, T. et al; Fenwick & West LLP, PCT/US2014/014738 Silicon Valley Center, 801 California Street, Mountain View, CA 94041 (US). (22) International Filing Date: 4 February 2014 (04.02.2014) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, English (25) Filing Language: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 61/760,584 4 February 2013 (04.02.2013) US KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/760,585 4 February 2013 (04.02.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/760,574 4 February 2013 (04.02.2013) us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/760,606 4 February 2013 (04.02.2013) us SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 61/926,918 13 January 2014 (13.01.2014) us TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (71) Applicant: SERES HEALTH, INC.
    [Show full text]
  • View Full Text-PDF
    Int.J.Curr.Microbiol.App.Sci (2020) 9(4): 284-302 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 4 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.904.035 Optimization of Nutritional Variables Using Response Surface Methodology for Enhanced Antifungal Metabolite Production by Janibacter sp. RC18 from Turmeric Rhizosphere Ruth Chiamaka Osaro-Matthew*, Francis Sopuruchukwu Ire and Nnenna Frank-peterside Department of Microbiology University of Port Harcourt Choba, Nigeria *Corresponding author ABSTRACT Antifungal metabolites from rare actinomycetes have been found attractive for application due to its novelty, potency and environmental friendliness. K e yw or ds Optimization of process variables for enhanced production of antifungal metabolite in Janibacter sp. RC18 was carried out in this study. One factor at a Janibacter sp. time (OFAT) was used for preliminary optimization of fermentation variables RC18, Antifungal (time, temperature, initial pH, carbon and nitrogen sources). A three factor central metabolite , OFAT, composite design (CCD) and response surface methodology (RSM) were Central composite design; Response employed for optimization of the selected significant nutritional variable (starch, surface soybean meal) and CaCO3. The optimum antifungal metabolite production was methodology o obtained at day 7 incubation period inhibition, temperature 30 C, pH 8, starch as carbon source and soybean meal as nitrogen source. Response surface analysis Article Info revealed that the optimum value of the variables were 10.76 g/l of starch, 11.95 g/l Accepted: of soybean meal and 1.57 g/l of CaCO . Under this optimal condition antifungal 04 March 2020 3 Available Online: metabolite production was 23.7 ± 0.09 mm which increased by 22.33 % compared 10 April 2020 to OFAT optimized medium (18.4 ± 0.06 mm).
    [Show full text]