A Nomenclator of Diplostephium (Asteraceae: Astereae): a List of Species with Their Synonyms and Distribution by Country

Total Page:16

File Type:pdf, Size:1020Kb

A Nomenclator of Diplostephium (Asteraceae: Astereae): a List of Species with Their Synonyms and Distribution by Country 32 LUNDELLIA DECEMBER, 2011 A NOMENCLATOR OF DIPLOSTEPHIUM (ASTERACEAE: ASTEREAE): A LIST OF SPECIES WITH THEIR SYNONYMS AND DISTRIBUTION BY COUNTRY Oscar M. Vargas Integrative Biology and Plant Resources Center, 1 University Station CO930, The University of Texas, Austin, Texas 78712 U.S.A Author for correspondence ([email protected]) Abstract: Since the description of Diplostephium by Kunth in 1820, more than 200 Diplostephium taxa have been described. In the absence of a recent revision of the genus, a nomenclator of Diplostephium is provided based on an extensive review of the taxonomic literature, herbarium material, and databases. Here, 111 species recognized in the literature are listed along with their reference citations, types, synonyms, subspecific divisions, and distributions by country. In addition, a list of doubtful names and Diplostephium names now considered to be associated with other taxa is provided. Resumen: Desde la descripcio´n del genero Diplostephium por Kunth en 1820, mas de 200 nombres han sido publicados bajo Diplostephium. En ausencia de un estudio taxono´mico actualizado, se presenta una lista de nombres de Diplostephium basada en una revisio´n extensiva de la literaura taxono´mica, material de herbario y bases de datos. En este estudio se listan las 111 especies reconocidas hasta ahora, incluyendo informacio´n acerca de la publicacio´n de la especie, tipos, sino´nimos, divisio´n subgene´rica y distribuciones por paı´s. Adicionalmente se provee una lista de nombres dudosos y nombres de Diplostephium que se consideran estar asociados con otros taxones. Keywords: Asteraceae, Astereae, Diplostephium, nomenclator. Diplostephium is a genus of small trees, (ROSMARINIFOLIA,FLORIBUNDA,DENTICU- shrubs, and sub-shrubs that range from LATA,RUPESTRIA, and LAVANDULIFOLIA 5 Costa Rica to northern Chile. Carl Sigis- DIPLOSTEPHIUM) based on leaf and sinflor- mund Kunth published the genus in Nova escence variation. In his second revision Genera et Species Plantarum (1820) with the (1928), Blake recognized 43 species and description of a single species, Diplostephium combined the series RUPESTRIA,FLORIBUN- lavandulifolium Kunth (now Diplostephium DA, and DENTICULATA under RUPESTRIA ericoides (Lam.) Cabrera). The generic name (leaving LAVANDULIFOLIA,ROSMARINIFOLIA, came from the Greek diplos, double, and the and RUPESTRIA). Following Blake, the Span- Greek stefanos, crown, referring to the two- ish botanist Jose´ Cuatrecasas, who largely rowed pappus present on the achenes. After explored the Colombian territory, published the original description, the first authors to more than 90 new taxa in the genus along describe new taxa were Hugh Algernon with two revisions (1943, 1969). In his first Weddell, who described 17 new species in treatment (1943), Cuatrecasas accounted for Chloris Andina (1857) and Georg Hans 64 species and subdivided the genus in two Emmo Wolfgang Hieronymus, who pub- sections based on the stigma form (sect. lished 10 species between 1895 and 1905. EMARGINATUM and BIFIDUM) ignoring the In the twentieth century, Sidney Blake subdivision previously proposed by Blake. In published 28 new taxa and two revisions of his second revision (1969), Cuatrecasas the genus (1922, 1928). In his first treatment studied the 53 Colombian species recognized (1922), Blake subdivided the 40 species at that time and calculated the total number recognized at that time into five series of species to be 90. Additionally, Cuatrecasas LUNDELLIA 14:32–51. 2011 NUMBER 14 VARGAS: DIPLOSTEPHIUM NOMENCLATOR 33 adopted Blake’s 1922 subdivision of the assigned to any series are assigned here). genus into series, omitting the sections he Preliminary data on the phylogeny of the himself previously described (Cuatrecasas genus (Vargas & Madrin˜a´n, data unpub- 1943) and proposed seven new additional lished) suggest the series are not mono- series (CRASSIFOLIA,CORIACEA,HUERTASINA, phyletic, leading to the interpretation of SCHULTZIANA,PHYLICOIDEA,SAXATILIA y the series as artificial subdivisions, which ANACTINOTA) for a total of twelve. This nevertherless are helpful for identifying treatment of the genus was the last effort in species and morphological groups (see publishing a complete study of Diploste- Cuatrecasas 1969, Vargas & Madrin˜a´n phium. Cuatrecasas never explained why he 2006). Authors, books, and journal abbre- eventually preferred using series rather than viations are listed accorded to IPNI, TL-2 sections. Blake, who first described the (Taxonomic Literature, 2nd edition), and stigma types in Diplostephium, concluded BPH-2 (Botanico Periodico Huntianum, that dividing the genus using stigma char- 2nd edition) respectively. Additionally, a acters (as in Cuatresases’ sections) is not list of doubtful names and Diplostephium compatible with a division of the genus names now considered to be associated using foliage and inflorescence traits, and with other taxa is provided in Appendix 1. that the division by series seemed to be the Items capitalized and in bold represent more natural one. It appears that Cuatreca- accepted names, while those in italics sas came to the same conclusion before his represent a synonyms, a nomina nuda, or second revision. a nomina illegitima. Following the extensive work done by Cuatrecasas, four new Colombian species LIST OF ABREVIATIONS have been recently published by Santiago Diaz and collaborators (Dı´az-Piedrahita * : type or series newly assigned in this study. and Restrepo 1994, Dı´az-Piedrahita and Note: designations are made to unas- Mendez-Ramirez 1997, Dı´az-Piedrahita and signed types or series; these do not Morales 2002). Colombia now has 63 represent changes or differences with species described (for a key, see Vargas & previos treatments. Madrin˜a´n 2006), Peru´ 39, Ecuador 26, A: Herbarium of the Arnold Arboretum, Venezuela 10, Chile 3, Costa Rica 2, and Harvard University, Cambridge, Massa- Bolivia 1. Due to the size of the genus, this chusetts USA. B: Botanischer Garten study is limited to listing the 111 species und Botanisches Museum Berlin-Dah- recognized in the literature without evalu- lem, Zentraleinrichtung der Freien Uni- ating their taxonomic status. This nomen- versita¨t Berlin, Berlin, Germany. BC: clator is the result of the intensive review Institut Bota`nic de Barcelona, Barce- of the published manuscripts, work in lona, Spain. BM: The Natural History herbaria (COL, F, FMB, TEX, US, and Museum, London, England. COL: Her- USM), and information available in differ- bario Nacional Colombiano, Universi- ent databases (cf., IPNI and JSTOR Plant dad Nacional de Colombia, Bogota´, Science). All types deposited in the herbaria Colombia. F: Field Museum of Natural previously mentioned were seen. The list History, Chicago, Illinois, USA. FI: includes information about the biblio- Museo di Storia Naturale, Firenze, Italy. graphical reference of the publication of G: Conservatoire et Jardin botaniques the taxa, types with locations and notes, de la Ville de Gene`ve, Gene`ve, Switzer- synonyms, distribution by country, and land. GH: Gray Herbarium, Harvard placement in the subgeneric subdivision University, Cambridge, Massachusetts according to Cuatrecasas’ taxonomic defi- USA. GOET: Universita¨tGo¨ttingen, nition of the series (species not previously Go¨ttingen, Germany. K: Kew Herbari- 34 LUNDELLIA DECEMBER, 2011 um, Royal Botanic Gardens, Kew, En- I. DIPLOSTEPHIUM ser. ANACTINOTA gland. LD: Botanical Museum, Lund, Cuatrec., Webbia 24: 190. TYPE: Di- Sweden. LIL: Fundacio´n Miguel Lillo, plostephium anactinotum Wedd. San Miguel de Tucuma´n, Argentina. LP: II. DIPLOSTEPHIUM ser. CORIACEA Cua- Museo de la Plata, Buenos Aires, trec., Webbia 24: 123. 1969. TYPE: Argentina. M: Botanische Staatssamm- Diplostephium coriaceum Cuatrec. lung Mu¨nchen, Mu¨nchen, Germany. III. DIPLOSTEPHIUM ser. CRASSIFOLIA MA: Real Jardı´n Bota´nico, Madrid, Cuatrec., Webbia 24: 122. 1969. TYPE: Espan˜a. MEDEL: Universidad Nacional Diplostephium crassifolium Cuatrec. de Colombia - Sede de Medellı´n, IV. DIPLOSTEPHIUM ser. DENTICULATA Medellı´n, Colombia. MO: Missouri S.F.Blake, Contr. U. S. Natl. Herb. Botanical Garden, St. Louis, Missouri, 24: 69. 1922. TYPE: Diplostephium USA. NY: New York Botanical Garden, ochraceum (Kunth) Nees. Bronx, New York, USA. P: Muse´um V. DIPLOSTEPHIUM ser. DIPLOSTEPHIUM. National d’Histoire Naturelle, Paris, Diplostephium ser. Lavandulifolia S.F.Blake, France. S: Swedish Museum of Natural Contr. U. S. Natl. Herb. 24: 69. 1922. History, Stockholm, Sweden. TEX: The TYPE: Diplostephium ericoides (Lam.) University of Texas Herbarium, Austin, Cabrera. Texas, USA. U: National Herbarium of VI. DIPLOSTEPHIUM ser. FLORIBUNDA the Netherlands, Herbarium Utrecht, S.F.Blake, Contr. U. S. Natl. Herb. Leiden, Netherlands. UC: University of 24: 69. 1922. TYPE: Diplostephium California, Berkeley, California, USA. floribundum (Benth.) Wedd. UPTC: Herbario de la Universidad VII. DIPLOSTEPHIUM ser. HUERTASINA Pedago´gica y Tecnolo´gica de Colombia, Cuatrec., Webbia 24: 126. TYPE: Tunja, Colombia. US: United States Diplostephium huertasii Cuatrec. National Herbarium, Smithsonian Insti- VIII. DIPLOSTEPHIUM ser. PHYLICOIDEA tution, Washington DC, USA. USM: Cuatrec., Webbia 24: 164. TYPE: Dip- Museo de Historia Natural de la Uni- lostephium phylicoides (Kunth) Wedd. versidad Mayor de San Marcos, Lima, IX. DIPLOSTEPHIUM ser. ROSMARINIFOLIA Peru. VALLE: Universidad Nacional de S.F.Blake, Contr. U. S. Natl. Herb. 24: Colombia - Sede Palmira, Palmira, 69. 1922. TYPE: Diplostephium
Recommended publications
  • Plant Diversity and Composition Changes Along an Altitudinal Gradient in the Isolated Volcano Sumaco in the Ecuadorian Amazon
    diversity Article Plant Diversity and Composition Changes along an Altitudinal Gradient in the Isolated Volcano Sumaco in the Ecuadorian Amazon Pablo Lozano 1,*, Omar Cabrera 2 , Gwendolyn Peyre 3 , Antoine Cleef 4 and Theofilos Toulkeridis 5 1 1 Herbario ECUAMZ, Universidad Estatal Amazónica, Km 2 2 vía Puyo Tena, Paso Lateral, 160-150 Puyo, Ecuador 2 Dpto. de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 110-104 Loja, Ecuador; [email protected] 3 Dpto. de Ingeniería Civil y Ambiental, Universidad de los Andes, Cra. 1E No. 19a-40, 111711 Bogotá, Colombia; [email protected] 4 IBED, Paleoecology & Landscape ecology, University of Amsterdam, Science Park 904, 1098 HX Amsterdam, The Netherlands; [email protected] 5 Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, P.O.Box, 171-5-231B Sangolquí, Ecuador; [email protected] * Correspondence: [email protected]; Tel.: +593-961-162-250 Received: 29 April 2020; Accepted: 29 May 2020; Published: 8 June 2020 Abstract: The paramo is a unique and severely threatened ecosystem scattered in the high northern Andes of South America. However, several further, extra-Andean paramos exist, of which a particular case is situated on the active volcano Sumaco, in the northwestern Amazon Basin of Ecuador. We have set an elevational gradient of 600 m (3200–3800 m a.s.l.) and sampled a total of 21 vegetation plots, using the phytosociological method. All vascular plants encountered were typified by their taxonomy, life form and phytogeographic origin. In order to determine if plots may be ensembled into vegetation units and understand what the main environmental factors shaping this pattern are, a non-metric multidimensional scaling (NMDS) analysis was performed.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • A Preliminary Survey of Plant Distribution in Ohio.* John H
    A PRELIMINARY SURVEY OF PLANT DISTRIBUTION IN OHIO.* JOHN H. SCHAFFNER. The following data are presented as a preliminary basis for field work in determining the natural plant areas of Ohio. It is hoped that the botanists of the State will begin active study of local conditions with a view to determine natural or transition boundaries as well as cataloging local associations. The distri- bution lists are based on herbarium material and more than 15 years of sporadic botanizing in the state. Of course, distribution at present indicates to a considerable extent merely the distri- bution of enthusiastic botanists and their favorite collecting grounds. Nevertheless, enough has been done to indicate in a rough way the general character of our plant geography. The kind of data most important in indicating characteristic areas are as follows:— 1. Meteorological data. 2. Geology, including the nature of the surface rock and soil. 3. Physiography and topography. 4. The actual distribution of characteristic species of plants and to some extent of animals. In Ohio, the following important maps may be studied in this connection:— Meteorology. By Otto E. Jennings in Ohio Naturalist 3: 339-345, 403-409, 1903. Maps I-XII. By J. Warren Smith in Bull. Ohio Agr. Exp. Station No. 235, 1912. Figs. 3-14. Geology. By J. A. Bownocker, A Geological Map of Ohio. 1909. Topography. The maps of the topographic survey, not yet completed. Various geological reports. The eastern half of Ohio is a part of the Alleghany Plateau. The western half belongs to the great interior plain. In Ohio, the Alleghany Plateau consists of a northern glaciated region and a southern non-glaciated region.
    [Show full text]
  • Artemisia Californica Less
    I. SPECIES Artemisia californica Less. [Updated 2017] NRCS CODE: Subtribe: Artemisiinae ARCA11 Tribe: Anthemideae (FEIS CODE: Family: Asteraceae ARCAL) Order: Asterales Subclass: Asteridae Class: Magnoliopsida flowering heads spring growth seedling, March 2009 juvenile plant photos A. Montalvo flowering plant, November 2005 mature plant with flower buds August 2010 A. Subspecific taxa None. Artemisia californica Less. var. insularis (Rydb.) Munz is now recognized as Artemisia nesiotica P.H. Raven (Jepson eFlora 2017). B. Synonyms Artemisia abrotanoides Nuttall; A. fischeriana Besser; A. foliosa Nuttall; Crossostephium californicum (Lessing) Rydberg (FNA 2017). C. Common name California sagebrush. The common name refers to its strong, sage-like aroma and endemism to California and Baja California. Other names include: coastal sage, coast sage, coast sagebrush (Painter 2016). D. Taxonomic relationships The FNA (2017) places this species in subgenus Artemisia . The molecular phylogeny of the genus has improved the understanding of relationships among the many species of Artemisia and has, at times, placed the species in subgenus Tridentadae; morphology of the inflorescences and flowers alone does not place this species with its closest relatives (Watson et al. 2002). The detailed phylogeny is not completely resolved (Hayat et al. 2009). E. Related taxa in region There are 18 species and a total of 31 taxa (including infrataxa) of Artemisia in southern California, all of which differ clearly from A. californica in habitat affinity, structure, or both (Munz 1974, Jepson eFlora 2017). Within subgenus Artemisia (as per FNA 2017), A. nesiotica from the Channel Islands is the most similar and was once considered part of A. californica ; it can be distinguished by its wider leaves with flat leaf margins (not rolled under).
    [Show full text]
  • Tungurahua Volcano, Ecuador: Structure, Eruptive History and Hazards
    Journal of Volcanology and Geothermal Research 91Ž. 1999 1±21 www.elsevier.comrlocaterjvolgeores Tungurahua Volcano, Ecuador: structure, eruptive history and hazards Minard L. Hall a,1, Claude Robin b,), Bernardo Beate c, Patricia Mothes a,1, Michel Monzier a,d,2 a Instituto Geofõsico,ÂÂ Escuela Politecnica Nacional, P.O. Box 1701-2759, Quito, Ecuador b Institut de Recherches Pour le DeÂÕeloppement() IRD, ex-ORSTOM , UR 6, OPGC, 5 Rue Kessler, 63038, Clermont-Ferrand, France c Departamento de Geologõa,ÂÂÂ Facultad de Geologõa, Minas y Petroleos, Escuela Politecnica Nacional, P.O. Box 1701-2759, Quito, Ecuador d Institut de Recherches pour le DeÂÕeloppement() IRD, ex-ORSTOM , UR 6, A.P. 17-11-6596, Quito, Ecuador Accepted 25 March 1999 Abstract Tungurahua, one of Ecuador's most active volcanoes, is made up of three volcanic edifices. Tungurahua I was a 14-km-wide andesitic stratocone which experienced at least one sector collapse followed by the extrusion of a dacite lava series. Tungurahua II, mainly composed of acid andesite lava flows younger than 14,000 years BP, was partly destroyed by the last collapse event, 2955"90 years ago, which left a large amphitheater and produced a ;8-km3 debris deposit. The avalanche collided with the high ridge immediately to the west of the cone and was diverted to the northwest and southwest for ;15 km. A large lahar formed during this event, which was followed in turn by dacite extrusion. Southwestward, the damming of the Chambo valley by the avalanche deposit resulted in a ;10-km-long lake, which was subsequently breached, generating another catastrophic debris flow.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Cenozoic Volcanism of Northern South America Joshua Stroup Current Volcanism
    Cenozoic Volcanism of Northern South America Joshua Stroup Current Volcanism Focus Area Is the Northern Andean Volcanic Arc Terrains of the Northern Andes There are a large number of accreted terrains Terrains of oceanic affinity Terrains of continental affinity North Andean Block (NAB) Subduction in the Northern Andes Geologic Setting In Ecuador the Cordillera occidental Andean magmatic Allochthonous terrain of mafic arc is divided into composition two parallel chains 30 km thick Cordillera occidental Cordillera real (west) Metamorphosed granites and Cordillera real (east) medasedimentary rocks of A back arc also continental affinity exists further east in 60 km thick the Amazon basin Back arc Sedimentary rocks 35 – 40 km thick Ecuador Volcanism in Ecuador has developed as a broad magmatic arc This is the result of flat slab subduction of the Nazca plate Volcanoes Across the Subduction Zone Pichincha volcano Cordillera real Antisana volcano Cordillera occidental Sumaco volcano Back arc Pichincha Stratovolcano Composed of at least two successive volcanoes Highly active Historic eruptions have produced lava domes, pyroclastic flows and ash falls Pichincha con't. Guagua pichincha is built on the collapsed flank of the old rucu pichincha Magmas erupted here are adakites containing amphibole, plagioclase, pyroxene and Fe-Ti oxides Magma generated here results from the melting of oceanic crust Antisana Massive stratovolcano Also composed of at least two successive volcanoes Built up over granitic and medasedimentary rocks Only one historic eruption, a lava flow Antisana Con’t. Magmas erupted here are calc-alkaline. This is due to the interaction with mature continental crust. Minerals include clinopyroxene, orthopyroxene and plagioclase and Fe-Ti oxides.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • The Flora of Guadalupe Island, Mexico
    qQ 11 C17X NH THE FLORA OF GUADALUPE ISLAND, MEXICO By Reid Moran Published by the California Academy of Sciences San Francisco, California Memoirs of the California Academy of Sciences, Number 19 The pride of Guadalupe Island, the endemic Cisfuiillw giiailulupensis. flowering on a small islet off the southwest coast, with cliffs of the main island as a background; 19 April 1957. This plant is rare on the main island, surviving only on cliffs out of reach of goats, but common here on sjoatless Islote Nccro. THE FLORA OF GUADALUPE ISLAND, MEXICO Q ^ THE FLORA OF GUADALUPE ISLAND, MEXICO By Reid Moran y Published by the California Academy of Sciences San Francisco, California Memoirs of the California Academy of Sciences, Number 19 San Francisco July 26, 1996 SCIENTIFIC PUBLICATIONS COMMITTEE: Alan E. Lcviton. Ediinr Katie Martin, Managing Editor Thomas F. Daniel Michael Ghiselin Robert C. Diewes Wojciech .1. Pulawski Adam Schift" Gary C. Williams © 1906 by the California Academy of Sciences, Golden (iate Park. San Francisco, California 94118 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any infcMination storage or retrieval system, without permission in writing from the publisher. Library of Congress Catalog Card Number: 96-084362 ISBN 0-940228-40-8 TABLE OF CONTENTS Abstract vii Resumen viii Introduction 1 Guadalupe Island Description I Place names 9 Climate 13 History 15 Other Biota 15 The Vascular Plants Native
    [Show full text]
  • 476 the AMERICAN ALPINE JOURNAL Glaciers That Our Access Was Finally Made Through the Mountain Rampart
    476 THE AMERICAN ALPINE JOURNAL glaciers that our access was finally made through the mountain rampart. One group operated there and climbed some of the high-grade towers by stylish and demanding routes, while the other group climbed from a hid- den loch, ringed by attractive peaks, north of the valley and intermingled with the mountains visited by the 1971 St. Andrews expedition (A.A.J., 1972. 18: 1, p. 156). At the halfway stage we regrouped for new objec- tives in the side valleys close to Base Camp, while for the final efforts we placed another party by canoe amongst the most easterly of the smooth and sheer pinnacles of the “Land of the Towers,” while another canoe party voyaged east to climb on the islands of Pamiagdluk and Quvernit. Weather conditions were excellent throughout the summer: most climbs were done on windless and sunny days and bivouacs were seldom contem- plated by the parties abseiling down in the night gloom. Two mountains may illustrate the nature of the routes: Angiartarfik (1845 meters or 6053 feet; Grade III), a complex massive peak above Base Camp, was ascended by front-pointing in crampons up 2300 feet of frozen high-angled snow and then descended on the same slope in soft thawing slush: this, the easiest route on the peak, became impracticable by mid-July when the snow melted off to expose a crevassed slope of green ice; Twin Pillars of Pamiagdluk (1373 meters or 4505 feet; Grade V), a welded pair of abrupt pinnacles comprising the highest peak on this island, was climbed in a three-day sortie by traversing on to its steep slabby east wall and following a thin 300-metre line to the summit crest.
    [Show full text]
  • Reclassification of North American Haplopappus (Compositae: Astereae) Completed: Rayjacksonia Gen
    AmericanJournal of Botany 83(3): 356-370. 1996. RECLASSIFICATION OF NORTH AMERICAN HAPLOPAPPUS (COMPOSITAE: ASTEREAE) COMPLETED: RAYJACKSONIA GEN. NOV.1 MEREDITH A. LANE2 AND RONALD L. HARTMAN R. L. McGregor Herbarium(University of Kansas NaturalHistory Museum Division of Botany) and Departmentof Botany,University of Kansas, Lawrence, Kansas 66047-3729; and Rocky MountainHerbarium, Department of Botany,University of Wyoming,Laramie, Wyoming82071-3165 Rayjacksonia R. L. Hartman& M. A. Lane, gen. nov. (Compositae: Astereae), is named to accommodate the "phyllo- cephalus complex," formerlyof Haplopappus Cass. sect. Blepharodon DC. The new combinationsare R. phyllocephalus (DC.) R. L. Hartman& M. A. Lane, R. annua (Rydb.) R. L. Hartman& M. A. Lane, and R. aurea (A. Gray) R. L. Hartman & M. A. Lane. This transfercompletes the reclassificationof the North American species of Haplopappus sensu Hall, leaving that genus exclusively South American.Rayjacksonia has a base chromosomenumber of x = 6. Furthermore,it shares abruptlyampliate disk corollas, deltatedisk style-branchappendages, and corolla epidermalcell type,among other features,with Grindelia, Isocoma, Olivaea, Prionopsis, Stephanodoria, and Xanthocephalum.Phylogenetic analyses of morphologicaland chloroplastDNA restrictionsite data, taken together,demonstrate that these genera are closely related but distinct. Key words: Astereae; Asteraceae; Compositae; Haplopappus; Rayjacksonia. During the past seven decades, taxonomic application lopappus sensu Hall (1928) are reclassifiedand are cur-
    [Show full text]
  • Días De Conservación De Diplostephium Ericoides 97
    UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE CIENCIA E INGENIERÍA EN ALIMENTOS CARRERA DE INGENIERÍA BIOQUÍMICA RESCATE DE PLANTAS EN PELIGRO DE EXTINCIÓN DEL SECTOR DE LA LAGUNA DE PISAYAMBO – AUCACOCHA DEL PARQUE NACIONAL LLANGANATES, PARA SU PRESERVACIÓN EN EL BANCO DE GERMOPLASMA DEL JARDÍN BOTÁNICO ATOCHA LA LIRIA. Proyecto de Graduación, modalidad: Seminario presentado como requisito previo a la obtención del Título de Ingeniero Bioquímico otorgado por la Universidad Técnica de Ambato a través de la Facultad de Ciencia e Ingeniería en Alimentos. AUTOR: María Belén Quispilema Cunalata DIRECTOR: Dr. Homero Vargas Ambato – Ecuador 2012 APROBACIÓN DEL TUTOR En calidad de Tutor del trabajo de investigación sobre el tema: “Rescate de plantas en peligro de extinción del sector de la laguna de Pisayambo – Aucacocha del Parque Nacional Llanganates, para su preservación en el banco de germoplasma del jardín botánico Atocha La Liria.”, por la egresada María Belén Quispilema Cunalata, alumna de la Carrera de Ingeniería Bioquímica de la Facultad de Ciencia e Ingeniería en Alimentos de la Universidad Técnica de Ambato certifico que el trabajo fue realizado por la persona indicada y considero que dicho informe investigativo reúne los requisitos y méritos suficientes para ser sometido a la evaluación del Tribunal de Grado, que el Honorable Consejo Directivo designe, para su correspondiente estudio y calificación. Ambato, Junio de 2012 …………………………………………….. Dr. Homero Vargas TUTOR DEL PROYECTO ii AUTORÍA DEL TRABAJO DE GRADO Los contenidos del presente Trabajo de investigación denominado: “Rescate de plantas en peligro de extinción del sector de la laguna de Pisayambo – Aucacocha del Parque Nacional Llanganates, para su preservación en el banco de germoplasma del jardín botánico Atocha La Liria” le corresponden exclusivamente a Egda.; María Belén Quispilema Cunalata y, Dr.
    [Show full text]