View Full Text-PDF

Total Page:16

File Type:pdf, Size:1020Kb

View Full Text-PDF Int.J.Curr.Microbiol.App.Sci (2020) 9(4): 284-302 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 4 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.904.035 Optimization of Nutritional Variables Using Response Surface Methodology for Enhanced Antifungal Metabolite Production by Janibacter sp. RC18 from Turmeric Rhizosphere Ruth Chiamaka Osaro-Matthew*, Francis Sopuruchukwu Ire and Nnenna Frank-peterside Department of Microbiology University of Port Harcourt Choba, Nigeria *Corresponding author ABSTRACT Antifungal metabolites from rare actinomycetes have been found attractive for application due to its novelty, potency and environmental friendliness. K e yw or ds Optimization of process variables for enhanced production of antifungal metabolite in Janibacter sp. RC18 was carried out in this study. One factor at a Janibacter sp. time (OFAT) was used for preliminary optimization of fermentation variables RC18, Antifungal (time, temperature, initial pH, carbon and nitrogen sources). A three factor central metabolite , OFAT, composite design (CCD) and response surface methodology (RSM) were Central composite design; Response employed for optimization of the selected significant nutritional variable (starch, surface soybean meal) and CaCO3. The optimum antifungal metabolite production was methodology o obtained at day 7 incubation period inhibition, temperature 30 C, pH 8, starch as carbon source and soybean meal as nitrogen source. Response surface analysis Article Info revealed that the optimum value of the variables were 10.76 g/l of starch, 11.95 g/l Accepted: of soybean meal and 1.57 g/l of CaCO . Under this optimal condition antifungal 04 March 2020 3 Available Online: metabolite production was 23.7 ± 0.09 mm which increased by 22.33 % compared 10 April 2020 to OFAT optimized medium (18.4 ± 0.06 mm). The present study has proved CCD and RSM is a reliable statistical tool for optimization of antifungal metabolite production in actinomycetes. Introduction agrochemicals are recalcitrant xenobiotics persisting in the environment thereby causing The recent call for green or sustainable environmental degradation. It also agriculture is a path to profitable and accumulates in the agricultural produce and environmentally benign agriculture (FAO, can be passed to humans through food chain 2017). The persistent use of synthetic hence leading to health problems (EEA, agrochemicals leads to environmental and 2005). health problem. Most of these synthetic 284 Int.J.Curr.Microbiol.App.Sci (2020) 9(4): 284-302 Microorganisms have gained global attention a strain by OFAT is important. But for as agroactive agents which are alternative to sustainability, variables especially nutritional synthetic agrochemicals. Actinomycetes factors should be incorporated at the correct which are Gram positive bacteria have proved levels, also relationship between the to be a promising microorganisms for dependent and independent variables must be production of various bioactive agent of established hence the need for RSM agricultural importance (Ahmad et al., 2008). optimization. Response surface methodology The genus Janibacter which Janibacter (RSM) which is a collection of mathematical limosus was the first specie reported by and statistical tools is useful for analysing and Martin et al., (1997) belongs to the family optimizing response of multivariate system intrasporangiaceae in the actinomycetales (Kocheki, 2009). order. Some other species of this genus that have been reported are: J. terrae (Yoon et al., Hence the aim of this study is to use OFAT 2000), J. brevis (Imamura et al., 2000), J. for preliminary optimization investigations, melonis (Yoon et al., 2004), J. corallicola RSM and central composite design (CCD) to (Kageyama et al., 2007), J. hoylei (Shivaji et model and statistically optimize process al., 2009), J. alkaliphilus (Li et al., 2012), J. variables for maximum antifungal production cremeus (Hamada et al., 2013), and J. indicus in Janibacter sp strain RC18. Zhang et al., 2014). Some investigations have shown Janibacter as potential biocontrol Materials and Methods agents, Janibacter melonis was reported to be antagonistic against Ralstonia solanacearum Actinomycetes and inoculum preparation by Achari and Ramesh, (2014), and Nimaichand et al., (2015) reported Janibacter Janibacter sp strain RC18 (Genbank antagonistic against Fusarium oxysporum and Accession number MK473882) isolated from Rhizoctonia oryzae-sativea. turmeric rhizosphere was described in precious studies (Osaro-Matthew et al., In bioprospecting, one thing is to source for 2020). Strain RC18 was inoculated into 50ml novel and potent strain another thing is Starch Casein broth in a 100 ml Erlenmeyer sustainable production of bioactive flask. The flask was then incubated in a rotary metabolites by the strain. Antifungal incubator for 150 rpm at temperature 30oC metabolite production is affected by some until absorbance of 0.2 was recorded at OD600 physical (temperature, pH and incubation and 20 µl of this culture was used as seed period) and nutritional factors (carbon, inoculum. nitrogen and mineral) (Bundale et al., 2015). These factors are responsible to make Test phytopathogens fermentation conditions suitable for bacterial growth and metabolites production. One- Alternaria pimpriana DSM 62023 and factor-at-a-time (OFAT) technique which is a Colletotrichum coccodes DSM 2492 were traditional method of optimization that fails to obtained from DSMZ (German collection of describe interactions between variables and microorganism and cell cultures). response is suitable for preliminary study in Collectotricum coccodes DMS 2924 was order to select significant factors before selected as the test organism for RSM proceeding to optimization. experiment since it is a commonly found phytopathogen in Nigeria. Although, identifying significant variables for optimal production of bioactive compound in 285 Int.J.Curr.Microbiol.App.Sci (2020) 9(4): 284-302 Experimental set up Initial pH The experiment was carried out in 100 ml Optimum pH was studied by adjusting initial Erlenmeryer flask containing 50 ml Glycerol fermentation media pH to different pH levels beef extract broth of (Glycerol 10 g/l, Beef (4, 5, 6, 7, 8, 9, 10) using 1 M HCl and 1 M extract 10 g/l, NaCl 5 g/l, CaCO3 2 g/l and NaOH. The fermentation broth was K2HPO4 2.5 g/l,). Fermentation was carried inoculated with strain RC18 and incubated at out in a rotary incubator at 150 rpm, all optimized temperature (30oC) and optimized experiment was done in triplicates. incubation period (7 days). Bioassay Carbon sources At the end of fermentation, antifungal activity To select the best carbon source for maximum was determined using Agar well diffusion antifungal metabolite production five technique (Barry and Thornsberry, 1985), on different carbon sources (glucose, lactose, a PDA (Potato Dextrose Agar). A 5 mm fructose, sucrose and starch) were used in diameter well was made by punching the agar substituting glycerol which was the carbon (inoculated with test organisms) with a sterile source in the primary basal medium one at a steel borer and 50 µl of the culture time. Afterward, fermentation was carried out supernatant obtained after centrifuging at at optimum temperature (30 oC), incubation 5000 rpm for 10 minutes was poured in the time (7 days) and pH 8 and bioassay was well. Incubation was carried out at 25 oC ± 2 carried as previously described. oC for 5 days and the diameter zone of inhibition was measured and recorded in Nitrogen sources millimetres (mm). In order to select the best nitrogen sources for Selection of fermentation conditions enhancing the antifungal activity of the strain Incubation period RC18. Various sources of nitrogen (malt extract, yeast extract, peptone, ammonium Fermentation media inoculated with strain sulphate, and soybean meal) were used to RC18 were incubated at 28 oC on a rotary substitute one by one for beef extract shaker for 10 days for maximum antifungal (nitrogen source) in the primary basal metabolite production and antifungal assay medium and fermentation was carried out was carried out every 24 hours till the day 10. using the best carbon source (starch), at the optimum temperature (30 oC), incubation time Incubation temperature (7 days) and pH 8, thereafter, bioassay was carried as previously described Effect of incubation temperatures on antifungal production of strain RC18 were Experimental design for optimization by studied at different temperature (25 oC, 30 oC, RSM 35 oC, 40 oC and 45 oC). Fermentation was carried out in a Glycerol Beef extract (GBE) Central composite design broth at the optimized fermentation period (day 7) and at the end bioassay was carried The optimization of antifungal production out as previously described. was carried out according RSM. The nutritional variables were optimized for 286 Int.J.Curr.Microbiol.App.Sci (2020) 9(4): 284-302 enhanced antifungal activity using the central βii is the coefficient squared effect, is the composite design, the three selected variables coefficient of interaction effect, and is were carbon, nitrogen and CaCO3. For carbon independent variables under study. This and nitrogen sources, starch and soybean meal design was used to study the effects of the were selected based on the one factor at a variables (main, interaction, and quadratic). It time result, for CaCO3 it was selected based was also used to optimize
Recommended publications
  • Pentachlorophenol Degradation by Janibacter Sp., a New Actinobacterium Isolated from Saline Sediment of Arid Land
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 296472, 9 pages http://dx.doi.org/10.1155/2014/296472 Research Article Pentachlorophenol Degradation by Janibacter sp., a New Actinobacterium Isolated from Saline Sediment of Arid Land Amel Khessairi,1,2 Imene Fhoula,1 Atef Jaouani,1 Yousra Turki,2 Ameur Cherif,3 Abdellatif Boudabous,1 Abdennaceur Hassen,2 and Hadda Ouzari1 1 UniversiteTunisElManar,Facult´ e´ des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolecules´ Actives, Campus Universitaire, 2092 Tunis, Tunisia 2 Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopoleˆ Borj-Cedria,´ B.P. 273, 8020 Soliman, Tunisia 3 Universite´ de Manouba, Institut Superieur´ de Biotechnologie de Sidi Thabet, LR11ES31 Laboratoire de Biotechnologie et Valorization des Bio-Geo Resources, Biotechpole de Sidi Thabet, 2020 Ariana, Tunisia Correspondence should be addressed to Hadda Ouzari; [email protected] Received 1 May 2014; Accepted 17 August 2014; Published 17 September 2014 Academic Editor: George Tsiamis Copyright © 2014 Amel Khessairi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Many pentachlorophenol- (PCP-) contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, and high salt concentrations. PCP-degrading microorganisms, adapted to grow and prosper in these environments, play an important role in the biological treatment of polluted extreme habitats. A PCP-degrading bacterium was isolated and characterized from arid and saline soil in southern Tunisia and was enriched in mineral salts medium supplemented with PCP as source of carbon and energy.
    [Show full text]
  • (ΐ2) United States Patent (ΐο) Patent No.: US 10,596,255 Β2 Clube (45) Date of Patent: *Mar
    US010596255B2 US010596255B2 (ΐ2) United States Patent (ΐο) Patent No.: US 10,596,255 Β2 Clube (45) Date of Patent: *Mar. 24, 2020 (54) SELECTIVELY ALTERING MICROBIOTA 39/0258; C07K 14/315; C07K 14/245; FOR IMMUNE MODULATION C07K 14/285; C07K 14/295; C12N 2310/20; C12N 2320/30 (71) Applicant: SNIPR Technologies Limited, London See application file for complete search history. (GB) (72) Inventor: Jasper Clube, London (GB) (56) References Cited (73) Assignee: SNIPR Technologies Limited, London U.S. PATENT DOCUMENTS (GB) 4,626,504 A 12/1986 Puhler et al. 5,633,154 A 5/1997 Schaefer et al. (*) Notice: Subject to any disclaimer, the term of this 8,241,498 Β2 8/2012 Summer et al. patent is extended or adjusted under 35 8,252,576 Β2 8/2012 Campbell et al. U.S.C. 154(b) by 0 days. 8,906,682 Β2 12/2014 June et al. 8,911,993 Β2 12/2014 June et al. This patent is subject to a terminal dis ­ 8,916,381 Β1 12/2014 June et al. 8,975,071 Β1 3/2015 June et al. claimer. 9,101,584 Β2 8/2015 June et al. 9,102,760 Β2 8/2015 June et al. (21) Appl. No.: 16/389,376 9,102,761 Β2 8/2015 June et al. 9,113,616 Β2 8/2015 MacDonald et al. (22) Filed: Apr. 19, 2019 9,328,156 Β2 5/2016 June et al. 9,464,140 Β2 10/2016 June et al. (65) Prior Publication Data 9,481,728 Β2 11/2016 June et al.
    [Show full text]
  • Diversity and Distribution of Actinobacteria Associated with Reef Coral Porites Lutea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 21 October 2015 doi: 10.3389/fmicb.2015.01094 Diversity and distribution of Actinobacteria associated with reef coral Porites lutea Weiqi Kuang 1, 2 †, Jie Li 1 †, Si Zhang 1 and Lijuan Long 1* 1 CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China, 2 College of Earth Science, University of Chinese Academy of Sciences, Beijing, China Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial Edited by: and temporal distribution of actinobacteria have been rarely documented. In this Sheng Qin, study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites Jiangsu Normal University, China lutea and in the surrounding seawater were examined every 3 months for 1 year on Reviewed by: Syed Gulam Dastager, Luhuitou fringing reef. The population structures of the P.lutea-associated actinobacteria National Collection of Industrial were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which Microorganisms Resource Center, demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described India Wei Sun, families and 10 unnamed families were determined in the populations, and 12 genera Shanghai Jiao Tong University, China were firstly detected in corals. The Actinobacteria diversity was significantly different P. Nithyanand, SASTRA University, India between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by *Correspondence: the seawater and coral samples.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Degrading Bacteria from the Indonesian Marine Environment
    BIODIVERSITAS ISSN: 1412-033X Volume 17, Number 2, October 2016 E-ISSN: 2085-4722 Pages: 857-864 DOI: 10.13057/biodiv/d170263 Polycyclic aromatic hydrocarbon degrading bacteria from the Indonesian Marine Environment ELVI YETTI♥, AHMAD THONTOWI, YOPI Laboratory of Biocatalyst and Fermentation, Research Centre for Biotechnology, Indonesian Institute of Sciences. Cibinong Science Center, Jl. Raya Bogor Km 46 Cibinong-Bogor 16911, West Java, Indonesia. Tel. +62-21-8754587, Fax. +62-21-8754588, ♥email: [email protected] Manuscript received: 20 April 2016. Revision accepted: 20 October 2016. Abstract. Yetti E, Thontowi A, Yopi. 2016. Polyaromatic hydrocarbon degrading bacteria from the Indonesian Marine Environment. Biodiversitas 17: 857-864. Oil spills are one of the main causes of pollution in marine environments. Oil degrading bacteria play an important role for bioremediation of oil spill in environment. We collected 132 isolates of marine bacteria isolated from several Indonesia marine areas, i.e. Pari Island, Jakarta, Kamal Port, East Java and Cilacap Bay, Central Java. These isolates were screened for capability to degrade polyaromatic hydrocarbons (PAHs). Selection test were carried out qualitatively using sublimation method and growth assay of the isolates on several PAHs i.e. phenanthrene, dibenzothiophene, fluorene, naphtalene, phenotiazine, and pyrene. The fifty-eight isolates indicated in having capability to degrade PAHs, consisted of 25 isolates were positive on naphthalene (nap) and 20 isolates showed ability to grow in phenanthrene (phen) containing media. Further, 38 isolates were selected for dibenzothiophene (dbt) degradation and 25 isolates were positive on fluorene (flr). On the other hand, 23 isolates presented capability to degrade in phenothiazine (ptz) and 15 isolates could grow in media with pyrene (pyr).
    [Show full text]
  • Non-Commercial Use Only
    Infectious Disease Reports 2019; volume 11:8132 Janibacter species with most reliable diagnostic tool. However, evidence of genomic sometimes a diagnosis cannot be made Correspondence: Ying Bai, Division of using blood culture because of poor labora- Vector-Borne Diseases, Centers for Disease polymorphism isolated tory infrastructure, presence of uncommon Control and Prevention, 3156 Rampart Road, from resected heart valve pathogens, or pretreatment of the patient Fort Collins, Colorado 80521 USA. in a patient with aortic stenosis with antibiotics prior to sample collection. Tel. 1-970-266-3555. Up to 35% of all infective endocarditis E-mail: [email protected] cases remain blood culture negative either Lile Malania,1 Ying Bai,2 Key words: aortic stenosis; bacteria; genome 3 4 due to slow growth of the bacteria or inap- polymorphism; Janibacter. Kamil Khanipov, Marika Tsereteli, 2 5 1 propriate media. Mikheil Metreveli, David Tsereteli, Calcific aortic stenosis is also a major 1 1 Acknowledgements: The authors would like Ketevan Sidamonidze, Paata Imnadze, problem in many countries. In the United to thank Natalia Abazashvili, Tamriko 3 2 Yuriy Fofanov, Michael Kosoy States, the incidence rate of aortic stenosis Giorgadze, and Nazibrola Chitadze for their 1National Center for Disease Control has been reported as 27.1 per 10,000.3 The assistance with laboratory tests; Guram and Public Health, Tbilisi, Georgia; mechanism of calcification remains unclear. Katstadze, and Neli Chakvetadze for their par- ticipation in investigation of the human case; 2Division of Vector-Borne Diseases, The hypothesis is that low grade chronic or recurrent bacterial endocarditis with specif- Levent Albayrak and George Golovko for the Centers for Disease Control and assistance with genome analysis; and ic calcifiable bacteria is a cause of calcifica- Prevention, Fort Collins, CO, USA; 4 Christina Nelson for careful revision of the 3Department of Pharmacology and tion of the aortic valves.
    [Show full text]
  • WO 2014/121298 A2 7 August 2014 (07.08.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/121298 A2 7 August 2014 (07.08.2014) P O P C T (51) International Patent Classification: VULIC, Marin; c/o Seres Health, Inc., 161 First Street, A61K 39/02 (2006.01) Suite 1A, Cambridge, MA 02142 (US). (21) International Application Number: (74) Agents: HUBL, Susan, T. et al; Fenwick & West LLP, PCT/US2014/014738 Silicon Valley Center, 801 California Street, Mountain View, CA 94041 (US). (22) International Filing Date: 4 February 2014 (04.02.2014) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, English (25) Filing Language: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 61/760,584 4 February 2013 (04.02.2013) US KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/760,585 4 February 2013 (04.02.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/760,574 4 February 2013 (04.02.2013) us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/760,606 4 February 2013 (04.02.2013) us SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 61/926,918 13 January 2014 (13.01.2014) us TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (71) Applicant: SERES HEALTH, INC.
    [Show full text]
  • Abstract Tracing Hydrocarbon
    ABSTRACT TRACING HYDROCARBON CONTAMINATION THROUGH HYPERALKALINE ENVIRONMENTS IN THE CALUMET REGION OF SOUTHEASTERN CHICAGO Kathryn Quesnell, MS Department of Geology and Environmental Geosciences Northern Illinois University, 2016 Melissa Lenczewski, Director The Calumet region of Southeastern Chicago was once known for industrialization, which left pollution as its legacy. Disposal of slag and other industrial wastes occurred in nearby wetlands in attempt to create areas suitable for future development. The waste creates an unpredictable, heterogeneous geology and a unique hyperalkaline environment. Upgradient to the field site is a former coking facility, where coke, creosote, and coal weather openly on the ground. Hydrocarbons weather into characteristic polycyclic aromatic hydrocarbons (PAHs), which can be used to create a fingerprint and correlate them to their original parent compound. This investigation identified PAHs present in the nearby surface and groundwaters through use of gas chromatography/mass spectrometry (GC/MS), as well as investigated the relationship between the alkaline environment and the organic contamination. PAH ratio analysis suggests that the organic contamination is not mobile in the groundwater, and instead originated from the air. 16S rDNA profiling suggests that some microbial communities are influenced more by pH, and some are influenced more by the hydrocarbon pollution. BIOLOG Ecoplates revealed that most communities have the ability to metabolize ring structures similar to the shape of PAHs. Analysis with bioinformatics using PICRUSt demonstrates that each community has microbes thought to be capable of hydrocarbon utilization. The field site, as well as nearby areas, are targets for habitat remediation and recreational development. In order for these remediation efforts to be successful, it is vital to understand the geochemistry, weathering, microbiology, and distribution of known contaminants.
    [Show full text]
  • Insights Into the Cultured Bacterial Fraction of Corals
    Insights into the cultured bacterial fraction of corals Michael Sweet ( [email protected] ) University of Derby https://orcid.org/0000-0003-4983-8333 Helena Villela Federal University of Rio de Janeiro Tina Keller-Costa Institute for Bioengineering and Biosciences Rodrigo Costa University of Lisbon https://orcid.org/0000-0002-5932-4101 Stefano Romano The Quadram Institute Bioscience https://orcid.org/0000-0002-7600-1953 David Bourne James Cook University Anny Cardenas University of Konstanz Megan Huggett The University of Newcastle, 10 Chittaway Rd, Ourimbah 2258 NSW Australia https://orcid.org/0000- 0002-3401-0704 Allison Kerwin McDaniel College, Westminster Felicity Kuek Pennsylvania State University Monica Medina Pennsylvania State University Julie Meyer Genetics Institute, University of Florida https://orcid.org/0000-0003-3382-3321 Moritz Müller Swinburne University of Technology Sarawak Campus https://orcid.org/0000-0001-8485-1598 Joseph Pollock Pennsylvania State University Michael Rappé University of Hawaii at Manoa Mathieu Sere University of Derby Koty Sharp Roger Williams University Christian Voolstra University of Konstanz https://orcid.org/0000-0003-4555-3795 Maren Ziegler Justus Liebig University Giessen Raquel Peixoto University of California, Davis https://orcid.org/0000-0002-9536-3132 Article Keywords: symbiosis, holobiont, metaorganism, cultured microorganisms, coral, probiotics, benecial microbes Posted Date: November 21st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-105866/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Insights into the cultured bacterial fraction of corals 2 Sweet, Michael1*#; Villela, Helena2*; Keller-Costa, Tina3*; Costa, Rodrigo3,4*; Romano, 3 Stefano5*; Bourne, David G.6; Cárdenas, Anny7; Huggett, Megan J.8,9; Kerwin, Allison H.10; 4 Kuek, Felicity11; Medina, Mónica11; Meyer, Julie L.12; Müller, Moritz13; Pollock, F.
    [Show full text]
  • Sepsis Diagnostic Methods and Protocols M ETHODS in MOLECULAR BIOLOGY
    Methods in Molecular Biology 1237 Nicasio Mancini Editor Sepsis Diagnostic Methods and Protocols M ETHODS IN MOLECULAR BIOLOGY Series Editor John M. Walker School of Life Sciences University of Hertfordshire Hat fi eld, Hertfordshire, AL10 9AB, UK For further volumes: http://www.springer.com/series/7651 Sepsis Diagnostic Methods and Protocols Edited by Nicasio Mancini University Vita-Salute San Raffaele, Milan, Italy Editor Nicasio Mancini University Vita-Salute San Raffaele Milan , Italy ISSN 1064-3745 ISSN 1940-6029 (electronic) ISBN 978-1-4939-1775-4 ISBN 978-1-4939-1776-1 (eBook) DOI 10.1007/978-1-4939-1776-1 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 22014949861 © Springer Science+Business Media New York 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Janibacter Terrae Sp. Nov., a Bacterium Isolated from Soil Around a Wastewater Treatment Plant
    International Journal of Systematic and Evolutionary Microbiology (2000), 50, 1821–1827 Printed in Great Britain Janibacter terrae sp. nov., a bacterium isolated from soil around a wastewater treatment plant Jung-Hoon Yoon,1 Keun-Chul Lee,1 Seok-Sung Kang,1,2 Yung Hee Kho,1 Kook Hee Kang2 and Yong-Ha Park1 Author for correspondence: Yong-Ha Park. Tel: j82 42 860 4620. Fax: j82 42 860 4598. e-mail: yhpark!kribb4680.kribb.re.kr 1 Korea Research Institute of A bacterial strain, CS12T, which was isolated from soil around a wastewater Bioscience and treatment plant, was subjected to a polyphasic taxonomic study using Biotechnology (KRIBB), T PO Box 115, Yusong, phenotypic characterizations and genetic methods. The cell wall of strain CS12 Taejon, Korea contains meso-diaminopimelic acid as the diamino acid but no arabinose and 2 Department of Food and galactose. The predominant menaquinone is MK-8(H4). Mycolic acids are Life Science, absent. Strain CS12T has a cellular fatty acid profile containing saturated, Sungkyunkwan University, unsaturated, branched and 10-methyl fatty acids. The major fatty acids are iso- Chunchun-dong 300, Jangan-gu, Suwon, Korea C16:0,C18:1 ω9c and anteiso-C17:0. The GMC content is 69 mol%. A phylogenetic tree based on 16S rDNA sequences showed that strain CS12T forms an evolutionary lineage within the radiation enclosing the members of the family Intrasporangiaceae and, in particular, a coherent cluster with Janibacter limosus DSM 11140T. The level of 16S rDNA similarity between strain CS12T and J. limosus DSM 11140T is 987%. The phenotypic characteristics and DNA–DNA relatedness data indicate that strain CS12T should be distinguished from J.
    [Show full text]
  • Janibacter Limosus Gen. Nov., Sp. Meso
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1997, p. 529-534 Vol. 47, No. 2 0020-7713/97/$04.00+0 Copyright 0 1997, International Union of Microbiological Societies Janibacter limosus gen. nov., sp. nov., a New Actinomycete with meso-Uiaminopimelic Acid in the Cell Wall KARIN MARTIN,l* PETER SCHUMA",2 FREDERICK A. RAINEY,3 BARBARA SCHUETZE,' AND INGRID GROTH' Hans-Knoll-Institut fur Naturstoff-Forschung e. V, and DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Aussenstelle Jena, 0-07745 Jena, and DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 0-38124 Braunschweig, Germany New gram-positive bacteria were isolated from 1-year-old sludge from a wastewater treatment plant. The isolates are coccoid to rod-shaped, nonmotile aerobes that form neither spores nor mycelia. They are charac- terized by a peptidoglycan with directly cross-linked rneso-diaminopimelic acid (type Aly), by the presence of menaquinone MK-S(H,), and by the lack of mycolic acids. The strains have complex fatty acid patterns with i-C16:oand straight-chain saturated and unsaturated fatty acids as major components. The G+C content of the DNA is 70 mol%. The results of chemotaxonomic studies and a 16s ribosomal DNA sequence comparison support our proposal to assign these bacteria to a new genus, the genus Janibacter gen. nov.; the type species is Junibucter Zirnosus sp. nov., and the type strain of J. Zirnosus is strain HKI 83 (= DSM 11140). Both spore-forming and asporogenous actinomycetes have and starch were determined by the methods of Gledhill and Casida (10). The been screened during the last few years for useful bioactive cytochrome oxidase test was performed by using DrySlide Oxidase Test strips (Difco).
    [Show full text]
  • Diversity, Ecological Distribution and Biotechnological Potential of Actinobacteria Inhabiting Seamounts and Non-Seamounts in the Tyrrhenian Sea
    Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea Item Type Article Authors Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur Citation Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea 2016 Microbiological Research Eprint version Post-print DOI 10.1016/j.micres.2016.03.006 Publisher Elsevier BV Journal Microbiological Research Rights NOTICE: this is the author’s version of a work that was accepted for publication in Microbiological Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Microbiological Research, 1 April 2016. DOI: 10.1016/ j.micres.2016.03.006 Download date 26/09/2021 00:32:33 Link to Item http://hdl.handle.net/10754/604744 Accepted Manuscript Title: Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea Author: Besma Ettoumi Habib Chouchane Amel Guesmi Mouna Mahjoubi Lorenzo Brusetti Mohamed Neifar Sara Borin Daniele Daffonchio Ameur Cherif PII: S0944-5013(16)30081-7 DOI: http://dx.doi.org/doi:10.1016/j.micres.2016.03.006
    [Show full text]