A Simple Culture Method Enhances the Recovery of Culturable Actinobacteria from Coastal Sediments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kaistella Soli Sp. Nov., Isolated from Oil-Contaminated Soil
A001 Kaistella soli sp. nov., Isolated from Oil-contaminated Soil Dhiraj Kumar Chaudhary1, Ram Hari Dahal2, Dong-Uk Kim3, and Yongseok Hong1* 1Department of Environmental Engineering, Korea University Sejong Campus, 2Department of Microbiology, School of Medicine, Kyungpook National University, 3Department of Biological Science, College of Science and Engineering, Sangji University A light yellow-colored, rod-shaped bacterial strain DKR-2T was isolated from oil-contaminated experimental soil. The strain was Gram-stain-negative, catalase and oxidase positive, and grew at temperature 10–35°C, at pH 6.0– 9.0, and at 0–1.5% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence analysis suggested that the strain DKR-2T was affiliated to the genus Kaistella, with the closest species being Kaistella haifensis H38T (97.6% sequence similarity). The chemotaxonomic profiles revealed the presence of phosphatidylethanolamine as the principal polar lipids;iso-C15:0, antiso-C15:0, and summed feature 9 (iso-C17:1 9c and/or C16:0 10-methyl) as the main fatty acids; and menaquinone-6 as a major menaquinone. The DNA G + C content was 39.5%. In addition, the average nucleotide identity (ANIu) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain DKR-2T and phylogenically closest members were below the threshold values for species delineation. The polyphasic taxonomic features illustrated in this study clearly implied that strain DKR-2T represents a novel species in the genus Kaistella, for which the name Kaistella soli sp. nov. is proposed with the type strain DKR-2T (= KACC 22070T = NBRC 114725T). [This study was supported by Creative Challenge Research Foundation Support Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2020R1I1A1A01071920).] A002 Chitinibacter bivalviorum sp. -
Pentachlorophenol Degradation by Janibacter Sp., a New Actinobacterium Isolated from Saline Sediment of Arid Land
Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 296472, 9 pages http://dx.doi.org/10.1155/2014/296472 Research Article Pentachlorophenol Degradation by Janibacter sp., a New Actinobacterium Isolated from Saline Sediment of Arid Land Amel Khessairi,1,2 Imene Fhoula,1 Atef Jaouani,1 Yousra Turki,2 Ameur Cherif,3 Abdellatif Boudabous,1 Abdennaceur Hassen,2 and Hadda Ouzari1 1 UniversiteTunisElManar,Facult´ e´ des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolecules´ Actives, Campus Universitaire, 2092 Tunis, Tunisia 2 Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopoleˆ Borj-Cedria,´ B.P. 273, 8020 Soliman, Tunisia 3 Universite´ de Manouba, Institut Superieur´ de Biotechnologie de Sidi Thabet, LR11ES31 Laboratoire de Biotechnologie et Valorization des Bio-Geo Resources, Biotechpole de Sidi Thabet, 2020 Ariana, Tunisia Correspondence should be addressed to Hadda Ouzari; [email protected] Received 1 May 2014; Accepted 17 August 2014; Published 17 September 2014 Academic Editor: George Tsiamis Copyright © 2014 Amel Khessairi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Many pentachlorophenol- (PCP-) contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, and high salt concentrations. PCP-degrading microorganisms, adapted to grow and prosper in these environments, play an important role in the biological treatment of polluted extreme habitats. A PCP-degrading bacterium was isolated and characterized from arid and saline soil in southern Tunisia and was enriched in mineral salts medium supplemented with PCP as source of carbon and energy. -
Relative Genetic Diversity of the Rare and Endangered Agave Shawii Ssp
Received: 17 July 2020 | Revised: 9 December 2020 | Accepted: 14 December 2020 DOI: 10.1002/ece3.7172 ORIGINAL RESEARCH Relative genetic diversity of the rare and endangered Agave shawii ssp. shawii and associated soil microbes within a southern California ecological preserve Jeanne P. Vu1 | Miguel F. Vasquez1 | Zuying Feng1 | Keith Lombardo2 | Sora Haagensen1,3 | Goran Bozinovic1,4 1Boz Life Science Research and Teaching Institute, San Diego, CA, USA Abstract 2Southern California Research Learning Shaw's Agave (Agave shawii ssp. shawii) is an endangered maritime succulent growing Center, National Park Services, San Diego, along the coast of California and northern Baja California. The population inhabiting CA, USA 3University of California San Diego Point Loma Peninsula has a complicated history of transplantation without documen- Extended Studies, La Jolla, CA, USA tation. The low effective population size in California prompted agave transplanting 4 Biological Sciences, University of California from the U.S. Naval Base site (NB) to Cabrillo National Monument (CNM). Since 2008, San Diego, La Jolla, CA, USA there are no agave sprouts identified on the CNM site, and concerns have been raised Correspondence about the genetic diversity of this population. We sequenced two barcoding loci, rbcL Goran Bozinovic, Boz Life Science Research and Teaching Institute, 3030 Bunker Hill St, and matK, of 27 individual plants from 5 geographically distinct populations, includ- San Diego CA 92109, USA. ing 12 individuals from California (NB and CNM). Phylogenetic analysis revealed the Emails: [email protected]; gbozinovic@ ucsd.edu three US and two Mexican agave populations are closely related and have similar ge- netic variation at the two barcoding regions, suggesting the Point Loma agave popu- Funding information National Park Services (NPS) Pacific West lation is not clonal. -
Seed Interior Microbiome of Rice Genotypes Indigenous to Three
Raj et al. BMC Genomics (2019) 20:924 https://doi.org/10.1186/s12864-019-6334-5 RESEARCH ARTICLE Open Access Seed interior microbiome of rice genotypes indigenous to three agroecosystems of Indo-Burma biodiversity hotspot Garima Raj1*, Mohammad Shadab1, Sujata Deka1, Manashi Das1, Jilmil Baruah1, Rupjyoti Bharali2 and Narayan C. Talukdar1* Abstract Background: Seeds of plants are a confirmation of their next generation and come associated with a unique microbia community. Vertical transmission of this microbiota signifies the importance of these organisms for a healthy seedling and thus a healthier next generation for both symbionts. Seed endophytic bacterial community composition is guided by plant genotype and many environmental factors. In north-east India, within a narrow geographical region, several indigenous rice genotypes are cultivated across broad agroecosystems having standing water in fields ranging from 0-2 m during their peak growth stage. Here we tried to trap the effect of rice genotypes and agroecosystems where they are cultivated on the rice seed microbiota. We used culturable and metagenomics approaches to explore the seed endophytic bacterial diversity of seven rice genotypes (8 replicate hills) grown across three agroecosystems. Results: From seven growth media, 16 different species of culturable EB were isolated. A predictive metabolic pathway analysis of the EB showed the presence of many plant growth promoting traits such as siroheme synthesis, nitrate reduction, phosphate acquisition, etc. Vitamin B12 biosynthesis restricted to bacteria and archaea; pathways were also detected in the EB of two landraces. Analysis of 522,134 filtered metagenomic sequencing reads obtained from seed samples (n=56) gave 4061 OTUs. -
Corynebacterium Sp.|NML98-0116
1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album -
Development of Bacterial Communities in Biological Soil Crusts Along
1 Development of bacterial communities in biological soil crusts along 2 a revegetation chronosequence in the Tengger Desert, northwest 3 China 4 5 Author names and affiliations: 6 Lichao Liu1, Yubing Liu1, 2 *, Peng Zhang1, Guang Song1, Rong Hui1, Zengru Wang1, Jin Wang1, 2 7 1Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese 8 Academy of Sciences, Lanzhou, 730000, China 9 2Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute 10 of Eco–Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China 11 12 * Corresponding author: Yubing Liu 13 Address: Donggang West Road 320, Lanzhou 730000, P. R. China. 14 Tel: +86 0931 4967202. 15 E-mail address: [email protected] 16 17 Abstract. Knowledge of structure and function of microbial communities in different 18 successional stages of biological soil crusts (BSCs) is still scarce for desert areas. In this study, 19 Illumina MiSeq sequencing was used to assess the composition changes of bacterial communities 20 in different ages of BSCs in the revegetation of Shapotou in the Tengger Desert. The most dominant 21 phyla of bacterial communities shifted with the changed types of BSCs in the successional stages, 22 from Firmicutes in mobile sand and physical crusts to Actinobacteria and Proteobacteria in BSCs, 23 and the most dominant genera shifted from Bacillus, Enterococcus and Lactococcus to 24 RB41_norank and JG34-KF-361_norank. Alpha diversity and quantitative real-time PCR analysis 25 indicated that bacteria richness and abundance reached their highest levels after 15 years of BSC 26 development. -
Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample
geosciences Article Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample Andrey A. Belov 1,*, Vladimir S. Cheptsov 1,2 , Elena A. Vorobyova 1,2, Natalia A. Manucharova 1 and Zakhar S. Ezhelev 1 1 Soil Science Faculty, Lomonosov Moscow State University, Moscow 119991, Russia; [email protected] (V.S.C.); [email protected] (E.A.V.); [email protected] (N.A.M.); [email protected] (Z.S.E.) 2 Space Research Institute, Russian Academy of Sciences, Moscow 119991, Russia * Correspondence: [email protected]; Tel.: +7-917-584-44-07 Received: 28 February 2019; Accepted: 8 April 2019; Published: 10 April 2019 Abstract: The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated. -
Dietzia Papillomatosis Sp. Nov., a Novel Actinomycete Isolated from the Skin of an Immunocompetent Patient with Confluent and Reticulated Papillomatosis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Northumbria Research Link International Journal of Systematic and Evolutionary Microbiology (2008), 58, 68–72 DOI 10.1099/ijs.0.65178-0 Dietzia papillomatosis sp. nov., a novel actinomycete isolated from the skin of an immunocompetent patient with confluent and reticulated papillomatosis Amanda L. Jones,1,2 Roland J. Koerner,3 Sivakumar Natarajan,4 John D. Perry2 and Michael Goodfellow1 Correspondence 1School of Biology, King George VIth Building, University of Newcastle, Roland J. Koerner Newcastle upon Tyne NE1 7RU, UK Roland.Koerner@ 2Department of Microbiology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK chs.northy.nhs.uk 3Department of Microbiology, Sunderland Royal Hospital, Kayll Road, Sunderland SR4 7TP, UK 4Department of Dermatology, Sunderland Royal Hospital, Kayll Road, Sunderland SR4 7TP, UK An actinomycete isolated from an immunocompetent patient suffering from confluent and reticulated papillomatosis was characterized using a polyphasic taxonomic approach. The organism had chemotaxonomic and morphological properties that were consistent with its assignment to the genus Dietzia and it formed a distinct phyletic line within the Dietzia 16S rRNA gene tree. It shared a 16S rRNA gene sequence similarity of 98.3 % with its nearest neighbour, the type strain of Dietzia cinnamea, and could be distinguished from the type strains of all Dietzia species using a combination of phenotypic properties. It is apparent from genotypic and phenotypic data that the organism represents a novel species in the genus Dietzia. The name proposed for this taxon is Dietzia papillomatosis; the type strain is N 1280T (5DSM 44961T5NCIMB 14145T). -
Thermophilic Carboxydotrophs and Their Applications in Biotechnology Springerbriefs in Microbiology
SPRINGER BRIEFS IN MICROBIOLOGY EXTREMOPHILIC BACTERIA Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology SpringerBriefs in Microbiology Extremophilic Bacteria Series editors Sonia M. Tiquia-Arashiro, Dearborn, MI, USA Melanie Mormile, Rolla, MO, USA More information about this series at http://www.springer.com/series/11917 Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology 123 Sonia M. Tiquia-Arashiro Department of Natural Sciences University of Michigan Dearborn, MI USA ISSN 2191-5385 ISSN 2191-5393 (electronic) ISBN 978-3-319-11872-7 ISBN 978-3-319-11873-4 (eBook) DOI 10.1007/978-3-319-11873-4 Library of Congress Control Number: 2014951696 Springer Cham Heidelberg New York Dordrecht London © The Author(s) 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
Agrococcus Citreus Sp. Nov., Isolated from a Medieval Wall Painting of the Chapel of Castle Herberstein (Austria)
International Journal of Systematic Bacteriology (1999), 49, 1165-1 170 Printed in Great Britain Agrococcus citreus sp. nov., isolated from a medieval wall painting of the chapel of Castle Herberstein (Austria) Monika Wieser,'t2 Peter S~humann,~Karin Martin,4 Petra AItenburger,lJ2 Jutta B~rghardt,~Werner Lubitz' and Hans-Jurgen Busse'f2 Author for correspondence: Hans-Jurgen Busse. Tel: +43 1 25077 21 19. Fax: +43 1 25077 2190. e-mail : [email protected] 1 lnstitut fur Mikrobiologie A bacterial strain, D-l/laT,isolated from a medieval wall painting of the chapel und Genetik, Universitat of Herberstein (Styria, Austria) was characterized by a polyphasic approach. Wien, A-1030 Wien, Austria Strain D-l/laTshared 981O!O 165 rRNA sequence similarity to Agrococcus jenensis. The chemotaxonomic characteristics including polar lipid pattern, 2 lnstitut fur Bakteriologie, Mykologie und Hygiene, whole cell sugars, quinone system, polyamine pattern, cell wall composition Veterinarmedizinische and fatty acid profile were in good agreement with those of Agrococcus Universitat, A-1 21 0 Wien, jenensis. The G+C content of the DNA was determined to be 74 mol%. The Austria value of 47 O/O DNA reassociation obtained after DNA-DNA hybridization DSMZ-Deutsche Sammlung between DNA of Agrococcus jenensis and strain D-l/laTas well as differences von Mikroorganismen und Zellkulturen GmbH, in the amino acid composition of the peptidoglycan and in physiological Aussenstelle Jena, characteristics demonstrate that the isolate represents a new species of the Germany genus Agrococcus. The name Agrococcus citreus sp. nov. is proposed for the Hans-Knoll-lnstitut fur new species harbouring isolate D-l/laT.The type strain is DSM 12453T. -
Brevibacterium Sandarakinum Sp. Nov., Isolated from a Wall of an Indoor Environment
This is an author manuscript that has been accepted for publication in International Journal of Systematic and Evolutionary Microbiology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in International Journal of Systematic and Evolutionary Microbiology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of ‘Fair Use of Copyrighted Materials’ (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The View metadata, citation and similar papers at core.ac.uk brought to you by CORE Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://ijs.sgmjournals.org,provided by Giessener Elektronische and is freely Bibliothek available without a subscription 24 months after publication. First published in: Int J Syst Evol Microbiol, 2009. 60(4) 909-913. doi:10.1099/ijs.0.014100-0 Brevibacterium sandarakinum sp. nov., isolated from a wall of an indoor environment Peter Ka¨mpfer,1 Jenny Scha¨fer,1 Nicole Lodders1 and Hans-Ju¨rgen Busse2 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, Peter Ka¨mpfer Germany [email protected] 2Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, giessen.de Austria A Gram-stain-positive, rod-shaped, non-endospore-forming, orange-pigmented (coloured) actinobacterium (01-Je-003T) was isolated from the wall of an indoor environment primarily colonized with moulds. -
Textile Waste and Microplastic Induce Activity and Development of Unique
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.08.939876; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Textile waste and microplastic induce activity and 2 development of unique hydrocarbon-degrading marine 3 bacterial communities 4 5 Elsa B. Girard1, Melanie Kaliwoda2, Wolfgang W. Schmahl1,2,3, Gert Wörheide1,3,4 and 6 William D. Orsi1,3* 7 8 1 Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, 9 80333 Munich, Germany 10 2 SNSB - Mineralogische Staatssammlung München, 80333 München, Germany 11 3 GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 12 4 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, 80333 Munich, Germany 13 *Corresponding author (e-mail: [email protected]) 14 15 16 17 18 KEYWORDS 19 Microplastic, Fiber, Hydrocarbon-degrading bacteria, Microbial community, Pollution 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.08.939876; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 Biofilm-forming microbial communities on plastics and textile fibers are of growing interest since 24 they have potential to contribute to disease outbreaks and material biodegradability in the 25 environment.