Brevibacterium Sandarakinum Sp. Nov., Isolated from a Wall of an Indoor Environment

Total Page:16

File Type:pdf, Size:1020Kb

Brevibacterium Sandarakinum Sp. Nov., Isolated from a Wall of an Indoor Environment This is an author manuscript that has been accepted for publication in International Journal of Systematic and Evolutionary Microbiology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in International Journal of Systematic and Evolutionary Microbiology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of ‘Fair Use of Copyrighted Materials’ (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The View metadata, citation and similar papers at core.ac.uk brought to you by CORE Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://ijs.sgmjournals.org,provided by Giessener Elektronische and is freely Bibliothek available without a subscription 24 months after publication. First published in: Int J Syst Evol Microbiol, 2009. 60(4) 909-913. doi:10.1099/ijs.0.014100-0 Brevibacterium sandarakinum sp. nov., isolated from a wall of an indoor environment Peter Ka¨mpfer,1 Jenny Scha¨fer,1 Nicole Lodders1 and Hans-Ju¨rgen Busse2 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, Peter Ka¨mpfer Germany [email protected] 2Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, giessen.de Austria A Gram-stain-positive, rod-shaped, non-endospore-forming, orange-pigmented (coloured) actinobacterium (01-Je-003T) was isolated from the wall of an indoor environment primarily colonized with moulds. On the basis of 16S rRNA gene sequence similarity studies, strain 01-Je- 003T was shown to belong to the genus Brevibacterium and was most similar to the type strains of Brevibacterium picturae (98.8 % similarity), Brevibacterium marinum (97.3 %) and Brevibacterium aurantiacum (97.2 %). Chemotaxonomic data [predominant quinone menaquinone MK-8(H2); polar lipid profile consisting of major compounds diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid; characteristic cell-wall diamino acid meso- diaminopimelic acid; polyamine pattern showing major compounds putrescine and cadaverine; ] T major fatty acids anteiso-C15 : 0 and anteiso-C17 : 0 supported the affiliation of strain 01-Je-003 to the genus Brevibacterium. The results of DNA–DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 01-Je-003T from the two most closely related species, B. picturae and B. marinum. Strain 01-Je-003T therefore represents a novel species, for which the name Brevibacterium sandarakinum sp. nov. is proposed, with the type strain 01-Je-003T (5DSM 22082T 5CCM 7649T). The genus Brevibacterium, originally proposed by Breed performed with a commercialized DNA extraction kit (1953), served for a long time as a depository for various (GenElute plant genomic DNA kit; Sigma) after disruption Gram-positive rods. Collins et al. (1980) emended the for a 1 min bead-beating step with 1 g of 0.1 mm diameter genus description and, at present, the genus comprises zirconia beads at maximum speed. more than 20 species listed or described by Collins et al. Multiple alignment of the sequence data was performed (1983), McBride et al. (1993), Pascual et al. (1996), Pascual using the software package MEGA version 4 (Tamura et al. & Collins (1999), Gavrish et al. (2004), Ivanova et al. 2007) and ARB (version December 2007; Ludwig et al., (2004), Heyrman et al. (2004), Wauters et al. (2001, 2003, 2004) with the corresponding SILVA SSURef 95 database 2004), Lee (2006), Bhadra et al. (2008), Tang et al. (2008) and Mages et al. (2008). (version July 2008; Pruesse et al., 2007). For the MEGA software, multiple alignment of sequences was done with T Strain 01-Je-003 was enriched and recovered from a wall CLUSTAL W (Thompson et al., 1994) and the alignment was colonized by moulds. After extraction of 1 g sample for edited manually, if necessary. In the ARB software package, 15 min in 10 ml 0.9 % NaCl solution containing 0.01 % the sequence was aligned with the SILVA SSURef 95 database (v/v) Tween 80 and dilution on M79 agar [containing 10 g by the integrated aligner and the alignment was again glucose, 10 g peptone (Bacto), 2 g casein hydrolysate, 2 g edited manually, if necessary. Distances (distance options yeast extract, 6 g NaCl, 15 g agar] for 2 weeks at 28 uC, the according to the Kimura-2 model) were calculated and strain was maintained on M79 agar at 28 uC and showed clustering with the neighbour-joining and maximum- orange-pigmented colonies. parsimony (results not shown) methods was performed Gram-staining behaviour and cell morphology were with MEGA 4 by using bootstrap values based on 1000 observed by phase-contrast microscopy as described by replications. Tree reconstruction using the maximum- Ka¨mpfer & Kroppenstedt (2004). Isolation of the DNA was likelihood method with fastDNAml (Olsen et al., 1994) and 30 % conservation filter (only alignment columns in which The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene the frequency of the most abundant nucleotide is ¢30 % sequence of strain 01-Je-003T is FN293377. are included in the calculation) was performed with the ARB P. Ka¨mpfer and others software package (Fig. 1). Tree topology was further tested genus. Since it has been shown for other bacteria (Munro without filters. No significant differences could be detected et al., 1972; Yamamoto et al., 1986) that increased medium between the two trees. The 16S rRNA gene sequence of osmolarity significantly reduces the intracellular polyamine strain 01-Je-003T was a continuous stretch of 1424 bp. content, relatively low polyamine contents compared with Distance calculations indicated that the closest relatives other brevibacteria might be explained by the fact that our of strain 01-Je-003T were Brevibacterium picturae DSM strain was grown in a salt-supplemented medium, whereas 16132T (98.8 % sequence similarity) and Brevibacterium the other brevibacteria subjected to polyamine analyses marinum DSM 18964T (97.3 %). Adjacent to this sub- were grown without salt supplementation (Altenburger cluster, the type strains of Brevibacterium aurantiacum et al., 1997). The characteristic cell-wall diamino acid was (97.2 % sequence similarity) and Brevibacterium antiquum meso-diaminopimelic acid. The quinone system exhibited (96.6 %) were grouped in the maximum-likelihood tree the major compound MK-8(H ) (89 %), moderate , 2 (Fig. 1). Lower sequence similarities ( 97 %) were found amounts of MK-7(H2) (10 %) and small amounts of to 16S rRNA gene sequences from all other species of the MK-9(H2) (1 %). The presence of meso-diaminopimelic genus Brevibacterium. acid is common to all brevibacteria examined so far. Also, a For analyses of polyamines, cell-wall diamino acid, qui- quinone system with MK-8(H2) predominating has been nones and polar lipids, cells were grown in PYE (0.3 % reported for representatives of this genus including peptone from casein, 0.3 % yeast extract, pH 7.2 supple- Brevibacterium samyangense (Lee, 2006), Brevibacterium mented with 3 % salts used for seawater aquarium). Polar marinum (Lee, 2008), Brevibacterium album (Tang et al., lipids and quinones were extracted and analysed as 2008), Brevibacterium oceani (Bhadra et al., 2008) and reported previously (Tindall, 1990a, b; Altenburger et al., B. picturae (Heyrman et al., 2004). The polar lipid profile T 1996; Stolz et al., 2007). Polyamines were analysed of strain 01-Je-003 consisted of the major components according to Busse & Auling (1988) and Altenburger diphosphatidylglycerol, phosphatidylglycerol and an un- et al. (1997) using the instrumentation described by Stolz identified glycolipid, moderate amounts of an unidentified et al. (2007). The diamino acid was analysed as described aminophospholipid and minor amounts of three phos- by Schleifer (1985). The polyamine pattern consisted of the pholipids and a polar lipid (Fig. 2). The presence of the 2 major compounds putrescine [0.24 mmol (g dry weight) 1] predominant lipids diphosphatidylglycerol, phosphatidyl- 2 and cadaverine [0.24 mmol (g dry weight) 1] and minor glycerol and an unidentified glycolipid was also reported 2 amounts of spermidine [0.02 mmol (g dry weight) 1]. This for B. picturae (Heyrman et al., 2004), and B. album, type of polyamine pattern with the major compounds B. marinum and B. oceani have also been shown to contain putrescine and cadaverine has been reported rarely for the major lipids diphosphatidylglycerol and phosphatidyl- actinobacteria and shown to characterize species of the glycerol (Bhadra et al., 2008; Lee, 2008; Tang et al., 2008). genus Brevibacterium (Altenburger et al., 1997), dem- Phosphatidylinositol, shown to be present in some onstrating the affiliation of strain 01-Je-003T with this Brevibacterium species, could not be detected, but the Fig. 1. Phylogenetic analysis based on 16S rRNA gene sequences available from the EMBL database (accession numbers in T parentheses) showing the position of strain 01-Je-003 . The phylogenetic tree was constructed using the ARB software package and the corresponding SILVA SSURef 95 database as detailed in the text. Tree building was performed using the maximum-likelihood method with fastDNAml (Olsen et al., 1994) and 30 % conservation filter. Bar, 0.05 substitutions per nucleotide position. Brevibacterium sandarakinum sp. nov. Table 2. Physiological characteristics of strain 01-Je-003T and its most closely related type strains Strains: 1, 01-Je-003T;2,B. picturae DSM 16132T;3,B. marinum DSM 18964T. +, Positive; 2, negative; (+), weakly positive. Data were obtained in this study. All three strains were positive for the assimilation of D-glucose, D-sorbitol, acetate (weak), propionate, cis- aconitate, citrate, fumarate (weak), glutarate, DL-3-hydroxybutyrate, 2-oxoglutarate and pyruvate.
Recommended publications
  • Biological and Chemical Diversity of Bacteria Associated with a Marine Flatworm
    Article Biological and Chemical Diversity of Bacteria Associated with a Marine Flatworm Hui-Na Lin 1,2,†, Kai-Ling Wang 1,3,†, Ze-Hong Wu 4,5, Ren-Mao Tian 6, Guo-Zhu Liu 7 and Ying Xu 1,* 1 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; [email protected] (H.-N.L.); [email protected] (K.-L.W.) 2 School of Life Sciences, Xiamen University, Xiamen 361102, China 3 Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China 4 The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; [email protected] 5 Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China 6 Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; [email protected] 7 HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, China; [email protected] * Correspondence: [email protected]; Tel.: +86-755-26958849; Fax: +86-755-26534274 † These authors contributed equally to this work. Received: 20 July 2017; Accepted: 29 August 2017; Published: 1 September 2017 Abstract: The aim of this research is to explore the biological and chemical diversity of bacteria associated with a marine flatworm Paraplanocera sp., and to discover the bioactive metabolites from culturable strains. A total of 141 strains of bacteria including 45 strains of actinomycetes and 96 strains of other bacteria were isolated, identified and fermented on a small scale.
    [Show full text]
  • Thermophilic Carboxydotrophs and Their Applications in Biotechnology Springerbriefs in Microbiology
    SPRINGER BRIEFS IN MICROBIOLOGY EXTREMOPHILIC BACTERIA Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology SpringerBriefs in Microbiology Extremophilic Bacteria Series editors Sonia M. Tiquia-Arashiro, Dearborn, MI, USA Melanie Mormile, Rolla, MO, USA More information about this series at http://www.springer.com/series/11917 Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology 123 Sonia M. Tiquia-Arashiro Department of Natural Sciences University of Michigan Dearborn, MI USA ISSN 2191-5385 ISSN 2191-5393 (electronic) ISBN 978-3-319-11872-7 ISBN 978-3-319-11873-4 (eBook) DOI 10.1007/978-3-319-11873-4 Library of Congress Control Number: 2014951696 Springer Cham Heidelberg New York Dordrecht London © The Author(s) 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Studies on Antibacterial Activity and Diversity of Cultivable Actinobacteria Isolated from Mangrove Soil in Futian and Maoweihai of China
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2019, Article ID 3476567, 11 pages https://doi.org/10.1155/2019/3476567 Research Article Studies on Antibacterial Activity and Diversity of Cultivable Actinobacteria Isolated from Mangrove Soil in Futian and Maoweihai of China Feina Li,1 Shaowei Liu,1 Qinpei Lu,1 Hongyun Zheng,1,2 Ilya A. Osterman,3,4 Dmitry A. Lukyanov,3 Petr V. Sergiev,3,4 Olga A. Dontsova,3,4,5 Shuangshuang Liu,6 Jingjing Ye,1,2 Dalin Huang ,2 and Chenghang Sun 1 1 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China 2College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China 3Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia 4Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia 5Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Te Russian Academy of Sciences, Moscow 117997, Russia 6China Pharmaceutical University, Nanjing 210009, China Correspondence should be addressed to Dalin Huang; [email protected] and Chenghang Sun; [email protected] Received 29 March 2019; Accepted 21 May 2019; Published 9 June 2019 Guest Editor: Jayanta Kumar Patra Copyright © 2019 Feina Li et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mangrove is a rich and underexploited ecosystem with great microbial diversity for discovery of novel and chemically diverse antimicrobial compounds. Te goal of the study was to explore the pharmaceutical actinobacterial resources from mangrove soil and gain insight into the diversity and novelty of cultivable actinobacteria.
    [Show full text]
  • Gene Ortholog Metabolic Functional Gene Definition LDA
    Table S1: Gene Metabolic Functional Gene Definition LDA effect p-value p-value Normospermia Semen with Ortholog size (FDR) without leucocytes Leukocytes K02025 multiple sugar transport system permease 2.261725843 0.012724 0.012752175 0.064354389 0.100693286 protein K00557 tRNA (uracil-5-)-methyltransferase 1.874490605 0.012724 0.012758059 0.015985129 0.001204857 K16087 hemoglobin/transferrin/lactoferrin 2.070152298 0.01991 0.020019188 0.025014425 0.001708239 receptor protein K02119 V/A-type H+/Na+-transporting ATPase 1.710055455 0.024682 0.024843508 0.002815807 0.012874332 subunit C K10806 acyl-CoA thioesterase YciA 1.841834075 0.030413 0.030660244 0.017565963 0.003870828 K07783 MFS transporter, OPA family, sugar 1.722774099 0.030413 0.030702979 0.011095006 0.000731635 phosphate sensor protein UhpC K02122 V/A-type H+/Na+-transporting ATPase 1.697757071 0.030413 0.030712492 0.00294449 0.012716599 subunit F K01995 branched-chain amino acid transport 2.209931713 0.037253 0.037677881 0.09816811 0.130399195 system ATP-binding protein K03808 paraquat-inducible protein A 1.69974082 0.037253 0.037698353 0.010599677 0.000781914 K03576 LysR family transcriptional regulator, 1.87590023 0.037253 0.03770128 0.019489044 0.004660097 regulator for metE and metH K03604 LacI family transcriptional regulator, purine 1.949109778 0.045361 0.046168073 0.027013054 0.009424649 nucleotide synthesis repressor K02806 PTS system, nitrogen regulatory IIA 1.980305469 0.045361 0.046186102 0.026697121 0.007783834 component K03583 exodeoxyribonuclease V gamma subunit
    [Show full text]
  • Comparative Analyses of Whole-Genome Protein Sequences
    www.nature.com/scientificreports OPEN Comparative analyses of whole- genome protein sequences from multiple organisms Received: 7 June 2017 Makio Yokono 1,2, Soichirou Satoh3 & Ayumi Tanaka1 Accepted: 16 April 2018 Phylogenies based on entire genomes are a powerful tool for reconstructing the Tree of Life. Several Published: xx xx xxxx methods have been proposed, most of which employ an alignment-free strategy. Average sequence similarity methods are diferent than most other whole-genome methods, because they are based on local alignments. However, previous average similarity methods fail to reconstruct a correct phylogeny when compared against other whole-genome trees. In this study, we developed a novel average sequence similarity method. Our method correctly reconstructs the phylogenetic tree of in silico evolved E. coli proteomes. We applied the method to reconstruct a whole-proteome phylogeny of 1,087 species from all three domains of life, Bacteria, Archaea, and Eucarya. Our tree was automatically reconstructed without any human decisions, such as the selection of organisms. The tree exhibits a concentric circle-like structure, indicating that all the organisms have similar total branch lengths from their common ancestor. Branching patterns of the members of each phylum of Bacteria and Archaea are largely consistent with previous reports. The topologies are largely consistent with those reconstructed by other methods. These results strongly suggest that this approach has sufcient taxonomic resolution and reliability to infer phylogeny, from phylum to strain, of a wide range of organisms. Te reconstruction of phylogenetic trees is a powerful tool for understanding organismal evolutionary processes. Molecular phylogenetic analysis using ribosomal RNA (rRNA) clarifed the phylogenetic relationship of the three domains, bacterial, archaeal, and eukaryotic1.
    [Show full text]
  • Marine Rare Actinomycetes: a Promising Source of Structurally Diverse and Unique Novel Natural Products
    Review Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products Ramesh Subramani 1 and Detmer Sipkema 2,* 1 School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji; [email protected] 2 Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-317-483113 Received: 7 March 2019; Accepted: 23 April 2019; Published: 26 April 2019 Abstract: Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
    [Show full text]
  • Disruption of Firmicutes and Actinobacteria Abundance in Tomato Rhizosphere Causes the Incidence of Bacterial Wilt Disease
    The ISME Journal (2021) 15:330–347 https://doi.org/10.1038/s41396-020-00785-x ARTICLE Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease 1,2 1,3 1 1,2 Sang-Moo Lee ● Hyun Gi Kong ● Geun Cheol Song ● Choong-Min Ryu Received: 31 March 2020 / Revised: 27 August 2020 / Accepted: 17 September 2020 / Published online: 7 October 2020 © The Author(s) 2020. This article is published with open access Abstract Enrichment of protective microbiota in the rhizosphere facilitates disease suppression. However, how the disruption of protective rhizobacteria affects disease suppression is largely unknown. Here, we analyzed the rhizosphere microbial community of a healthy and diseased tomato plant grown <30-cm apart in a greenhouse at three different locations in South Korea. The abundance of Gram-positive Actinobacteria and Firmicutes phyla was lower in diseased rhizosphere soil (DRS) than in healthy rhizosphere soil (HRS) without changes in the causative Ralstonia solanacearum population. Artificial disruption of Gram-positive bacteria in HRS using 500-μg/mL vancomycin increased bacterial wilt occurrence in tomato. To identify HRS-specific and plant-protective Gram-positive bacteria species, Brevibacterium frigoritolerans HRS1, Bacillus 1234567890();,: 1234567890();,: niacini HRS2, Solibacillus silvestris HRS3, and Bacillus luciferensis HRS4 were selected from among 326 heat-stable culturable bacteria isolates. These four strains did not directly antagonize R. solanacearum but activated plant immunity. A synthetic community comprising these four strains displayed greater immune activation against R. solanacearum and extended plant protection by 4 more days in comparison with each individual strain. Overall, our results demonstrate for the first time that dysbiosis of the protective Gram-positive bacterial community in DRS promotes the incidence of disease.
    [Show full text]
  • Exploring the Potential of Antibiotic Production from Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis
    fmicb-11-01540 July 27, 2020 Time: 14:51 # 1 ORIGINAL RESEARCH published: 15 July 2020 doi: 10.3389/fmicb.2020.01540 Exploring the Potential of Antibiotic Production From Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis Dini Hu1,2, Chenghang Sun3, Tao Jin4, Guangyi Fan4, Kai Meng Mok2, Kai Li1* and Simon Ming-Yuen Lee5* 1 School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China, 2 Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China, 3 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 4 Beijing Genomics Institute, Shenzhen, China, 5 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China Actinobacteria are well recognized for their production of structurally diverse bioactive Edited by: secondary metabolites, but the rare actinobacterial genera have been underexploited Sukhwan Yoon, for such potential. To search for new sources of active compounds, an experiment Korea Advanced Institute of Science combining genomic analysis and tandem mass spectrometry (MS/MS) screening and Technology, South Korea was designed to isolate and characterize actinobacterial strains from a mangrove Reviewed by: Hui Li, environment in Macau. Fourteen actinobacterial strains were isolated from the collected Jinan University, China samples. Partial 16S sequences indicated that they were from six genera, including Baogang Zhang, China University of Geosciences, Brevibacterium, Curtobacterium, Kineococcus, Micromonospora, Mycobacterium, and China Streptomyces. The isolate sp.01 showing 99.28% sequence similarity with a reference *Correspondence: rare actinobacterial species Micromonospora aurantiaca ATCC 27029T was selected for Kai Li whole genome sequencing.
    [Show full text]
  • CHOOZIT™Ripening Cultures
    CHOOZIT™ Ripening Cultures CHOOZIT™ Ripening Cultures from taste, textural and structural Danisco give cheese a taste of its true characteristics that distinguish all identity. cheese types. Comprising tailored moulds, yeasts and For delicious cheese with a longer bacteria providing complementary shelf life, CHOOZIT™ Ripening aromatic activities, the range is an Cultures are the value-added choice. essential aid to attaining the exclusive Benefits of using Danisco cultures Product range Impact in cheese processing Penicillium candidum Provides a customised appearance and flavour, extends shelf life on high MFFB*, protects against pollutants, provides a thin rind (no perception in mouth), produces flavours Penicillium roqueforti Provides a customised appearance and flavour, protects against pollutants, produces flavour Geotrichum Enables fine-tuning of cheese characteristics, complements the effect of penicillium, can be used alone for specialities Yeast Enables assimilation and/or fermentation of carbohydrates, produces flavour, provides neutralising power in combination with corynebacteria Corynebacteria Provides flavour and colours from cream to bright orange, possible association of corynebacteria/yeasts and geotrichum, produces sulphur flavours Micrococacceae Improves texture and flavour due to proteolytic potential, activates specific lactic bacteria, protects against pollutants * Moisture on Fat Free Bases Moulds Moulds grow in the form of a cell unit, the so-called mycelium, and, with the help of enzymes, break down higher molecule compounds into smaller molecules they can exploit. Specific proteolysis and lipolysis of mould cultures result in the formation of characteristic flavours and influence the consistency of the cheese considerably. Penicillium roqueforti CHOOZIT™ Penicillium roqueforti Penicillium roqueforti has a number of range provides various colours from functions in the production of blue pale green to dark blue and enzymatic mould cheeses such as Roquefort, activities giving tastes from very mild to danish blue, Gorgonzola and Stilton.
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • Brevibacterium from Austrian Hard Cheese Harbor a Putative Histamine Catabolism Pathway and a Plasmid for Adaptation to the Cheese Environment
    Animal Science Publications Animal Science 2019 Brevibacterium from Austrian hard cheese harbor a putative histamine catabolism pathway and a plasmid for adaptation to the cheese environment Justin M. Anast Iowa State University, [email protected] Monika Dzieciol University of Veterinary Medicine Vienna Dylan L. Schultz Iowa State University, [email protected] Martin Wagner University of Veterinary Medicine Vienna Evelyne Mann University of Veterinary Medicine Vienna See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/ans_pubs Part of the Agriculture Commons, Animal Sciences Commons, Food Microbiology Commons, and the Genetics and Genomics Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ans_pubs/520. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Animal Science at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Science Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Brevibacterium from Austrian hard cheese harbor a putative histamine catabolism pathway and a plasmid for adaptation to the cheese environment Abstract The genus Brevibacterium harbors many members important for cheese ripening. We performed real-time quantitative PCR (qPCR) to determine the abundance of Brevibacterium on rinds of Vorarlberger Bergkäse, an Austrian artisanal washed-rind hard cheese, over 160 days of ripening. Our results show that Brevibacterium are abundant on Vorarlberger Bergkäse rinds throughout the ripening time.
    [Show full text]
  • Uncovering the Uncultivated Majority in Antarctic Soils: Toward a Synergistic Approach
    fmicb-10-00242 February 15, 2019 Time: 15:34 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography REVIEW published: 15 February 2019 doi: 10.3389/fmicb.2019.00242 Uncovering the Uncultivated Majority in Antarctic Soils: Toward a Synergistic Approach Sam Lambrechts*, Anne Willems and Guillaume Tahon* Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium Although Antarctica was once believed to be a sterile environment, it is now clear that the microbial communities inhabiting the Antarctic continent are surprisingly diverse. Until the beginning of the new millennium, little was known about the most abundant inhabitants of the continent: prokaryotes. From then on, however, the rising use of deep sequencing techniques has led to a better understanding of the Antarctic prokaryote diversity and provided insights in the composition of prokaryotic communities in different Antarctic environments. Although these cultivation-independent approaches can produce millions of sequences, linking these data to organisms is hindered by several problems. The largest difficulty is the lack of biological information on Edited by: Samuel Cirés, large parts of the microbial tree of life, arising from the fact that most microbial Autonomous University of Madrid, diversity on Earth has never been characterized in laboratory cultures. These unknown Spain prokaryotes, also known as microbial dark matter, have been dominantly detected Reviewed by: David Anthony Pearce, in all major environments on our planet. Laboratory cultures provide access to the Northumbria University, complete genome and the means to experimentally verify genomic predictions and United Kingdom metabolic functions and to provide evidence of horizontal gene transfer.
    [Show full text]