Summer World
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
Social Parasitism in Ant and Human Societies
POLITICAL PSYCHOLOGY POL358 Social Parasitism in Ant and Human Societies Joseph Marcel Virassamy 4/10/2013 Contents Introduction 1. Types of Parasitic Life History: Emery’s Rule 2. Temporary Parasitism: Concept of Power 3. Permanent Inquilines: Free Rider 4. Slave-making: Work Force 5. Recommendations and conclusion 6. Research Question: In what ways and for what reasons do social parasites manipulate their host? 7. Hypotheses: I would argue that social parasitism, whether in humans or ants societies, is based partly on self-interest and nature. Introduction This paper will attempt to bring to light a new study proposed by Professor Anil Hira in the field of bioeconomics studies. Though other nonhuman social societies, such as honeybees, can be used to draw parallels to human societies, in this paper I will focus specifically on ant social societies that are more “than a hundred million years older than humans” (Gordon, 2010, p.1). The reason I have decided to study ants and human societies is because both societies are the two most successful social organizations on the planet. Ants are one of the “most highly social of all organisms” (Wilson, 1991, p. 14) and dominate the insect world. Furthermore, like humans, ants succeed because they communicate effectively and efficiently (Hölldobler & Wilson, 1994). There is abundant literature on biological studies of ants; in the research for this literature review, I have selected some noteworthy literature on ant behaviour that I believe will 1 help to initiate a discussion on ant behaviour. The literature review includes the work of Hölldobler & Wilson, 1994, 2011; Gordon, 1999, 2010; Sudd, 1967; Moffett, 2010; Bourke & Franks, 1995; Hugh, 1967; Abbott, Lach & Parr, 2010; Gotwald, 1995 and Deslippe, 2010. -
Insect Survey of Four Longleaf Pine Preserves
A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia. -
Artificial Laboratory Breeding of Xylophagous Insect Larvae and Its Application in Cytogenetic Studies 2)
Eos, t. LXII, págs. 7-22 (1986). Artificial laboratory breeding of xylophagous insect larvae and its application in cytogenetic studies 2) BY J. R. BARAGAÑO, A. NOTARIO y M. G. DE VIEDMA. INTRODUCTION HAYDAK, in 1936, managed to rear Oryzaephilus surinantensis (L.) in the la- boratory using an artificial diet. Many researchers have followed in his footsteps, so that since then, approximately 260 species of Coleoptera have been raised on nonnatural diets. Among these species there are 121 which are eminently xylophagous. They belong to seven families (Buprestidae, Elateridae, Bostrychiclae, Lyctidae, Myc- teridae, Cerambyciclae and Curculionidae). Their importance, from the economic point of view, varies widely : some of them attack living trees making them a pest ; others feed on dead or decaying wood so that they may be considered harmless or even beneficial (for example in the decomposition of tree stumps in forests) ; finally, a few cause damage to seasoned timber. Therefore, specialists in artificial breeding have been motivated by different objectives, and so have chosen the insect or insects in each case which were most suitable for obtaining specific desired results. It is clear that in the majority of cases the choice was not made at random. Generally, the insect studied was either recently established as a pest or well documented as such. •With these laboratory breeding experiments it is possible on the one hand to draw conclusions about the insects' nutritive requirements, parasitism, ethology etc ; and on the other to obtain enough specimens to try out different phytosanitary treatments with them. Both of these achievements are applicable to effectiye control of the insect problem. -
4 Reproductive Biology of Cerambycids
4 Reproductive Biology of Cerambycids Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois Qiao Wang Massey University Palmerston North, New Zealand CONTENTS 4.1 Introduction .................................................................................................................................. 133 4.2 Phenology of Adults ..................................................................................................................... 134 4.3 Diet of Adults ............................................................................................................................... 138 4.4 Location of Host Plants and Mates .............................................................................................. 138 4.5 Recognition of Mates ................................................................................................................... 140 4.6 Copulation .................................................................................................................................... 141 4.7 Larval Host Plants, Oviposition Behavior, and Larval Development .......................................... 142 4.8 Mating Strategy ............................................................................................................................ 144 4.9 Conclusion .................................................................................................................................... 148 Acknowledgments ................................................................................................................................. -
Competition and Climate Affect Body Size and Sexual Size Dimorphism in Pine Sawyer Beetles
Bulletin of Insectology 73 (2): 265-273, 2020 ISSN 1721-8861 eISSN 2283-0332 Competition and climate affect body size and sexual size dimorphism in pine sawyer beetles Carla S. PIMENTEL1, Matthew P. AYRES2 1Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Portugal 2Department of Biological Sciences, Dartmouth College, Hanover, NH, USA Abstract The importance of interspecific competition in structuring communities of plant-eating insects has been somewhat controversial. If interspecific competition is ever important for phytophagous insects, it is likely to be observed in the insect guild that feeds in the phloem of trees. We tested for signals of interspecific competition in co-occurring species of pine sawyer beetles Monochamus Megerle (Coleoptera Cerambycidae), generally the largest phloemophagous insects in pines. We evaluated patterns of body size and its correlation with other life-history traits. By studying pine sawyer beetles in different areas (Northeast USA, Southeast USA and Portugal) we assessed the interaction with climate. As predicted under the hypothesis of interspecific competition, there were always clear size differences among coexisting species. As predicted if competition is asymmetric, smaller species were less abun- dant and emerged earlier than the larger species. In the larger and numerically dominant species, sexual size dimorphism was more pronounced and the sex ratio was skewed towards females. In the smaller species, males emerged earlier (protandry), whereas the larger species lacked differences in emergence time or displayed protogyny. Effects of climate only seem to have been expressed in the larger dominant species of each area, whereas the effects of competition in smaller species probably overshadow the effects of climate. -
Empire State Native Pollinator Survey Study Plan
Empire State Native Pollinator Survey Study Plan i Empire State Native Pollinator Survey Study Plan June 2017 Matthew D. Schlesinger Erin L. White Jeffrey D. Corser Please cite this report as follows: Schlesinger, M.D., E.L. White, and J.D. Corser. 2017. Empire State Native pollinator survey study plan. New York Natural Heritage Program, SUNY College of Environmental Science and Forestry, Albany, NY. Cover photos: Sanderson Bumble Bee (Bombus sandersoni) and flower longhorn (Clytus ruricola) by Larry Master, www.masterimages.org; Azalea sphinx moth (Darapsa choerilus) and Syrphus fly by Stephen Diehl and Vici Zaremba. ii Contents Introduction ........................................................................................................................................................ 1 Background: Rising Buzz and a Swarm of Pollinator Plans .................................................................... 1 Advisors and Taxonomic Experts .............................................................................................................. 1 Goal of the Survey ........................................................................................................................................ 2 General Sampling Design ............................................................................................................................. 2 The Role of Citizen Science ......................................................................................................................... 2 Focal Taxa .......................................................................................................................................................... -
Recovery of Domestic Behaviors by a Parasitic Ant (Formica Subintegra) in the Absence of Its Host (Formica Subsericea)
BearWorks MSU Graduate Theses Spring 2019 Recovery of Domestic Behaviors by a Parasitic Ant (Formica Subintegra) in the Absence of Its Host (Formica Subsericea) Amber Nichole Hunter Missouri State University, [email protected] As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Behavior and Ethology Commons, Entomology Commons, and the Other Ecology and Evolutionary Biology Commons Recommended Citation Hunter, Amber Nichole, "Recovery of Domestic Behaviors by a Parasitic Ant (Formica Subintegra) in the Absence of Its Host (Formica Subsericea)" (2019). MSU Graduate Theses. 3376. https://bearworks.missouristate.edu/theses/3376 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. RECOVERY OF DOMESTIC BEHAVIORS BY A PARASITIC ANT (FORMICA SUBINTEGRA) IN THE ABSENCE OF ITS HOST (FORMICA -
Molekulární Fylogeneze Podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) Pomocí Mitochondriální 16S Rdna
Jihočeská univerzita v Českých Budějovicích Přírodovědecká fakulta Bakalářská práce Molekulární fylogeneze podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) pomocí mitochondriální 16S rDNA Miroslava Sýkorová Školitel: PaedDr. Martina Žurovcová, PhD Školitel specialista: RNDr. Petr Švácha, CSc. České Budějovice 2008 Bakalářská práce Sýkorová, M., 2008. Molekulární fylogeneze podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) pomocí mitochondriální 16S rDNA [Molecular phylogeny of subfamilies Spondylidinae and Lepturinae based on mitochondrial 16S rDNA, Bc. Thesis, in Czech]. Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. 34 pp. Annotation This study uses cca. 510 bp of mitochondrial 16S rDNA gene for phylogeny of the beetle family Cerambycidae particularly the subfamilies Spondylidinae and Lepturinae using methods of Minimum Evolutin, Maximum Likelihood and Bayesian Analysis. Two included representatives of Dorcasominae cluster with species of the subfamilies Prioninae and Cerambycinae, confirming lack of relations to Lepturinae where still classified by some authors. The subfamily Spondylidinae, lacking reliable morfological apomorphies, is supported as monophyletic, with Spondylis as an ingroup. Our data is inconclusive as to whether Necydalinae should be better clasified as a separate subfamily or as a tribe within Lepturinae. Of the lepturine tribes, Lepturini (including the genera Desmocerus, Grammoptera and Strophiona) and Oxymirini are reasonably supported, whereas Xylosteini does not come out monophyletic in MrBayes. Rhagiini is not retrieved as monophyletic. Position of some isolated genera such as Rhamnusium, Sachalinobia, Caraphia, Centrodera, Teledapus, or Enoploderes, as well as interrelations of higher taxa within Lepturinae, remain uncertain. Tato práce byla financována z projektu studentské grantové agentury SGA 2007/009 a záměru Entomologického ústavu Z 50070508. Prohlašuji, že jsem tuto bakalářskou práci vypracovala samostatně, pouze s použitím uvedené literatury. -
How to Operate a Successful Bee Hotel
How to Operate a Successful Bee Hotel Making space for wood and stem nesting bees in home landscapes, parks, and gardens Draft Elsa Youngsteadt Assistant Professor & Extension Urban Ecology Specialist Department of Applied Ecology North Carolina State University Meredith Favre Graduate Student—MS Department of Entomology and Plant Pathology North Carolina State University DRAFT VERSION in progress and not yet peer-reviewed, Feb 27, 2021 TABLE OF CONTENTS What is a bee hotel? .................................................................................................................................. 1 The benefits of bees ............................................................................................................................. 1 Who lives in a bee hotel? ...................................................................................................................... 2 How bees and wasps use a hotel .......................................................................................................... 3 Meet the residents ............................................................................................................................... 5 Family Megachilidae ........................................................................................................................ 2 Blue orchard bee ........................................................................................................................ 5 Other mason bees ..................................................................................................................... -
Bongisiwe Zozo
CAPE PENINSULA UNIVERSITY OF TECHNOLOGY Determination and characterisation of the function of black soldier fly larva protein before and after conjugation by Maillard reaction Bongisiwe Zozo Thesis submitted in fulfilment of the requirements for the degree Master of Applied Science in Chemistry in the Faculty of Applied Science Supervisor Prof Merrill Wicht (CPUT, Department of Chemistry) Co-Supervisor Prof Jessy van Wyk (CPUT, Department of Food Science and Technology) August 2020 CPUT copyright information The thesis may not be published either in part (in scholarly, scientific or technical journals), or as a whole (as a monograph), unless permission has been obtained from the University. DECLARATION I, Bongisiwe Zozo, declare that the content of this thesis represents my own unaided work, and that the thesis has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology. Bongisiwe Zozo 31 August 2020 Signed Dated i ABSTRACT The increasing global population and consumer demand for protein will render the provision of protein a serious future challenge, thus placing substantial pressure on the food industry to provide for the human population. The lower environmental impact of insect farming makes the consumption of insects such as Black soldier fly larvae (BSFL) an appealing solution, although consumers in developed countries often respond to the idea of eating insects with aversion. One approach to adapt consumers to insects as part of their diet is through application of making insect- based products in an unrecognised form. Nutritional value and structural properties of the BSFL flours (full fat and defatted) were assessed. -
Extreme Diversity of Tropical Parasitoid Wasps Exposed by Iterative Integration of Natural History, DNA Barcoding, Morphology, and Collections
Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections M. Alex Smith*†, Josephine J. Rodriguez‡, James B. Whitfield‡, Andrew R. Deans§, Daniel H. Janzen†¶, Winnie Hallwachs¶, and Paul D. N. Hebert* *The Biodiversity Institute of Ontario, University of Guelph, Guelph Ontario, N1G 2W1 Canada; ‡Department of Entomology, 320 Morrill Hall, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801; §Department of Entomology, North Carolina State University, Campus Box 7613, 2301 Gardner Hall, Raleigh, NC 27695-7613; and ¶Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018 Contributed by Daniel H. Janzen, May 31, 2008 (sent for review April 18, 2008) We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgas- A detailed recognition of species in parasitoid communities is trine braconid genera reared from parapatric tropical dry forest, cloud necessary because of the pivotal role parasitoids play in food web forest, and rain forest in Area de Conservacio´ n Guanacaste (ACG) in structure and dynamics. While generalizations about the effects of northwestern Costa Rica and combined these data with records of parasitoids on community diversity are complex (7), a common- caterpillar hosts and morphological analyses. We asked whether place predictor of the impact of a parasitoid species on local host barcoding and morphology discover the same provisional species and dynamics is whether the parasitoid is a generalist or specialist. A whether the biological entities revealed by our analysis are congruent generalist, especially a mobile one, is viewed as stabilizing food webs with wasp host specificity. Morphological analysis revealed 171 (see ref.