Hazardous Substance Fact Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Hazardous Substance Fact Sheet Right to Know Hazardous Substance Fact Sheet Common Name: NITRIC OXIDE Synonyms: Nitrogen Monoxide CAS Number: 10102-43-9 Chemical Name: Nitrogen Oxide RTK Substance Number: 1357 Date: August 1999 Revision: August 2009 DOT Number: UN 1660 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Nitric Oxide is a colorless gas with a sharp odor. It is the Hazard Summary main component of photochemical smog and occurs as a by- Hazard Rating NJDOH NFPA product of tobacco smoke, and propane, diesel and gasoline HEALTH 3 3 engine exhaust. It is also used as bleaching agent for rayon FLAMMABILITY 0 0 and for making Nitric Acid and other Nitrogen compounds. REACTIVITY 2 0 REACTIVE AND STRONG OXIDIZER f ODOR THRESHOLD = 0.3 to 1 ppm POISONOUS GASES ARE PRODUCED IN FIRE f Odor thresholds vary greatly. Do not rely on odor alone to CONTAINERS MAY EXPLODE IN FIRE determine potentially hazardous exposures. Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe f Nitric Oxide can affect you when inhaled. Reasons for Citation f Contact can irritate the skin and eyes. f Nitric Oxide is on the Right to Know Hazardous Substance f Inhaling Nitric Oxide can irritate the nose and throat. List because it is cited by OSHA, ACGIH, DOT, NIOSH, f Inhaling Nitric Oxide can irritate the lungs. Higher DEP, IRIS, NFPA and EPA. exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. f High levels of this substance may reduce the blood’s ability to transport Oxygen, causing headache, fatigue, dizziness, SEE GLOSSARY ON PAGE 5. and a blue color to the skin and lips (methemoglobinemia). f Repeated high exposure can damage the teeth and can cause headache, dizziness, nausea and vomiting, FIRST AID unconsciousness and death. Eye Contact f Nitric Oxide is REACTIVE and a DANGEROUS f Immediately flush with large amounts of water for at least 15 EXPLOSION HAZARD. minutes, lifting upper and lower lids. Remove contact f Nitric Oxide is not combustible, but it is a STRONG lenses, if worn, while rinsing. OXIDIZER that enhances the combustion of other substances. Skin Contact f Nitric Oxide is converted spontaneously in air to Nitrogen f Remove contaminated clothing and wash contaminated skin Dioxide. For more information, consult the Right to Know with soap and water. Hazardous Substance Fact Sheet on NITROGEN DIOXIDE. Inhalation f Remove the person from exposure. f Begin rescue breathing (using universal precautions) if Workplace Exposure Limits breathing has stopped and CPR if heart action has stopped. OSHA: The legal airborne permissible exposure limit (PEL) is f Transfer promptly to a medical facility. 25 ppm averaged over an 8-hour workshift. f Medical observation is recommended for 24 to 48 hours after overexposure, as pulmonary edema may be delayed. NIOSH: The recommended airborne exposure limit (REL) is 25 ppm averaged over a 10-hour workshift. EMERGENCY NUMBERS ACGIH: The threshold limit value (TLV) is 25 ppm averaged Poison Control: 1-800-222-1222 over an 8-hour workshift. CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802 NITRIC OXIDE Page 2 of 6 Determining Your Exposure Reproductive Hazard f According to the information presently available to the New f Read the product manufacturer’s Material Safety Data Jersey Department of Health, Nitric Oxide has not been Sheet (MSDS) and the label to determine product tested for its ability to affect reproduction. ingredients and important safety and health information about the product mixture. Other Effects f Nitric Oxide can irritate the lungs. Repeated exposure may f For each individual hazardous ingredient, read the New cause bronchitis to develop with coughing, phlegm, and/or Jersey Department of Health Hazardous Substance Fact shortness of breath. Sheet, available on the RTK website f Repeated high exposure can damage the teeth and can (www.nj.gov/health/eoh/rtkweb) or in your facility’s RTK cause headache, dizziness, nausea and vomiting, Central File or Hazard Communication Standard file. unconsciousness and death. f You have a right to this information under the New Jersey Worker and Community Right to Know Act, the Public Medical Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the Medical Testing federal Occupational Safety and Health Act (OSHA) if you For frequent or potentially high exposure (half the PEL or greater), the following is recommended before beginning work are a private worker. and at regular times after that: f The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and f Blood methemoglobin level requires public employers to provide their employees with If symptoms develop or overexposure is suspected, the information concerning chemical hazards and controls. following is recommended: The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication f Consider chest x-ray after acute overexposure Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees. Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for This Fact Sheet is a summary of available information damage already done are not a substitute for controlling regarding the health hazards that may result from exposure. exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential Request copies of your medical testing. You have a legal right effects described below. to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020). Health Hazard Information Mixed Exposures f Smoking can cause heart disease, lung cancer, Acute Health Effects emphysema, and other respiratory problems. It may worsen The following acute (short-term) health effects may occur respiratory conditions caused by chemical exposure. Even if immediately or shortly after exposure to Nitric Oxide: you have smoked for a long time, stopping now will reduce your risk of developing health problems. f Contact can irritate the skin and eyes. f Inhaling Nitric Oxide can irritate the nose and throat. f Inhaling Nitric Oxide can irritate the lungs causing coughing and/or shortness of breath. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of breath. f High levels of this substance may reduce the blood’s ability to transport Oxygen, causing headache, fatigue, dizziness, and a blue color to the skin and lips (methemoglobinemia). Exposure to very high levels may cause trouble breathing, collapse and even death. Chronic Health Effects The following chronic (long-term) health effects can occur at some time after exposure to Nitric Oxide and can last for months or years: Cancer Hazard f According to the information presently available to the New Jersey Department of Health, Nitric Oxide has not been tested for its ability to cause cancer in animals. NITRIC OXIDE Page 3 of 6 Workplace Controls and Practices f All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work. Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures Eye Protection include: (1) enclosing chemical processes for severely f Wear non-vented, impact resistant goggles when working irritating and corrosive chemicals, (2) using local exhaust with fumes, gases, or vapors. ventilation for chemicals that may be harmful with a single f Wear a face shield along with goggles when working with exposure, and (3) using general ventilation to control corrosive, highly irritating or toxic substances. exposures to skin and eye irritants. For further information on f Do not wear contact lenses when working with this workplace controls, consult the NIOSH document on Control substance. Banding at www.cdc.gov/niosh/topics/ctrlbanding/. Respiratory Protection The following work practices are also recommended: Improper use of respirators is dangerous. Respirators should only be used if the employer has implemented a written f Label process containers. program that takes into account workplace conditions, f Provide employees with hazard information and training. requirements for worker training, respirator fit testing, and f Monitor airborne chemical concentrations. f Use engineering controls if concentrations exceed medical exams, as described in the OSHA Respiratory recommended exposure levels. Protection Standard (29 CFR 1910.134). f Provide eye wash fountains and emergency showers. f Wash or shower if skin comes in contact with a hazardous f Where the potential exists for exposure over 25 ppm, use a material. NIOSH approved full facepiece respirator with a cartridge f Always wash at the end of the workshift. which is specifically approved for Nitric Oxide. Increased f Change into clean clothing if clothing becomes protection is obtained from full facepiece powered-air contaminated. purifying respirators. f Do not take contaminated clothing home. f Leave the area immediately if (1) while wearing a filter or f Get special training to wash contaminated clothing. cartridge respirator you can smell, taste, or otherwise detect f Do not eat, smoke, or drink in areas where chemicals are Nitric Oxide, (2) while wearing particulate filters abnormal being handled, processed or stored. resistance to breathing is experienced, or (3) eye irritation f Wash hands carefully before eating, smoking, drinking, occurs while wearing a full facepiece respirator. Check to applying cosmetics or using the toilet. make sure the respirator-to-face seal is still good. If it is, replace the filter or cartridge. If the seal is no longer good, In addition, the following may be useful or required: you may need a new respirator.
Recommended publications
  • SAFETY DATA SHEET Nonflammable Gas Mixture: Carbon Dioxide / Carbon Monoxide / Nitric Oxide / Nitrogen / Propane Section 1
    SAFETY DATA SHEET Nonflammable Gas Mixture: Carbon Dioxide / Carbon Monoxide / Nitric Oxide / Nitrogen / Propane Section 1. Identification GHS product identifier : Nonflammable Gas Mixture: Carbon Dioxide / Carbon Monoxide / Nitric Oxide / Nitrogen / Propane Other means of : Not available. identification Product type : Gas. Product use : Synthetic/Analytical chemistry. SDS # : 002173 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : GASES UNDER PRESSURE - Compressed gas substance or mixture GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. May increase respiration and heart rate. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Prevention : Not applicable. Response : Not applicable. Storage : Protect from sunlight. Store in a well-ventilated place. Disposal : Not applicable. Hazards not otherwise : In addition to any other important health or physical hazards, this product may displace classified oxygen and cause rapid suffocation.
    [Show full text]
  • Nitric Oxide in Health and Disease of the Nervous System H-Y Yun1,2, VL Dawson1,3,4 and TM Dawson1,3
    Molecular Psychiatry (1997) 2, 300–310 1997 Stockton Press All rights reserved 1359–4184/97 $12.00 PROGRESS Nitric oxide in health and disease of the nervous system H-Y Yun1,2, VL Dawson1,3,4 and TM Dawson1,3 Departments of 1Neurology; 3Neuroscience; 4Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Nitric oxide (NO) is a widespread and multifunctional biological messenger molecule. It mediates vasodilation of blood vessels, host defence against infectious agents and tumors, and neurotransmission of the central and peripheral nervous systems. In the nervous system, NO is generated by three nitric oxide synthase (NOS) isoforms (neuronal, endothelial and immunologic NOS). Endothelial NOS and neuronal NOS are constitutively expressed and acti- vated by elevated intracellular calcium, whereas immunologic NOS is inducible with new RNA and protein synthesis upon immune stimulation. Neuronal NOS can be transcriptionally induced under conditions such as neuronal development and injury. NO may play a role not only in physiologic neuronal functions such as neurotransmitter release, neural development, regeneration, synaptic plasticity and regulation of gene expression but also in a variety of neurological disorders in which excessive production of NO leads to neural injury. Keywords: nitric oxide synthase; endothelium-derived relaxing factor; neurotransmission; neurotoxic- ity; neurological diseases Nitric oxide is probably the smallest and most versatile NO synthases isoforms and regulation of NO bioactive molecule identified. Convergence of multi- generation disciplinary efforts in the field of immunology, cardio- vascular pharmacology, chemistry, toxicology and neu- NO is formed by the enzymatic conversion of the guan- robiology led to the revolutionary novel concept of NO idino nitrogen of l-arginine by NO synthase (NOS).
    [Show full text]
  • Experimental and Analytical Study of Nitric Oxide Formation During Combustion of Propane in a Jet-Stirred Combustor
    NASA Technical Paper 1181 I 1 Experimental and Analytical Study of Nitric Oxide Formation During / Combustion of Propane in a Jet-Stirred Combustor , ' N. T. Wakelyn, Casimir J. Jachimowski, and Charles H. Wilson , TECH LIBRARY KAFB, NM 0134538 NASA Technical Paper 1181 Experimental and Analytical Study of Nitric Oxide Formation During Combustion of Propane in a Jet-Stirred Combustor N. T. Wakelyn, Casimir J. Jachimowski, and Charles H. Wilson Langley Research Center Hampton, Virginia National Aeronautics and Space Administration Scientific and Technical Information Otfice 1978 '8' SUMMARY A jet-stirred combustor, constructed of castable zirconia and with an inconel injector, has been used to study nitric oxide formation in propane-air combustion with residence times in the range from 3.2 to 3.3 msec and equiva­ lence ratios varying from 0.7 to 1.4. The residence time range was character­ istic of that found in the primary zones of aircraft turbines. Premixed propane-air formulations were subjected to intense and turbulent backmixed combustion within the cavity formed between the injector and the hemispherical inner walls of the zirconia shell. The volume of the combustor cavity was 12.7 cm3 and the mass loading was maintained in the range from 0.053 to 0.055 g/cm3-sec. Measurements were made of combustor operating tem­ perature and of nitric oxide concentration. Maximum nitric oxide concentrations of the order of 55 ppm were found in the range of equivalence ratio from 1.0 to 1.1. Nitric oxide concentrations were predicted over the range of equivalence ratio by a computer program which employs a perfectly stirred'reactor (PSR) algorithm with finite-rate kinetics.
    [Show full text]
  • Understanding Pigments: the Third Step to Higher Quality And
    Understanding Pigments: The Third Mark Harber October, 2000 Step to Higher Quality and Consistency Putting great color in your product is part of the pigments. However, they are less opaque and systems approach for resolving issues of sub- would have to be used at higher loading levels to standard properties and appearance. achieve similar whiteness and opacity. This article on pigments is the third in a four-part Titanium Dioxide is used in the majority of the series about the interrelationship of the material products made by the cast polymer industry. Tita- components used in marble and solid surface nium Dioxide-based colors include most whites, manufacturing. These AOC-authored articles re- pastels, earth tones and off-whites such as bone, spond to the challenge that the cast polymer in- ivory, beige or biscuit. As noted in Table 1, non- dustries aspire to higher standards of quality and white synthetic oxides are combined with Titani- consistency. Because resolving cast polymer is- um Dioxide to create pastels and earth tones for sues requires a systems approach, other articles cultured marble and solid surface applications. in this series address resins, gel coats and pro- cessing. All articles begin with background infor- Phthalocyanine pigments, or "Phthalos," impart mation on the main subject matter, followed by deep colors such as the automotive "Hunter ten related issues and guidelines. Green" of a sport utility vehicle or the high strength Blue used in ballpoint pens. Because A BACKGROUND ON COLORANTS they are so deep when used by themselves, In their natural state, cast polymer resins meet a Phthalo Blue and Phthalo Green are normally variety of performance requirements but are lack- blended with other pigments, many times Titani- ing in the color that draws the customer to the um Dioxide.
    [Show full text]
  • Chapter 7.1 Nitrogen Dioxide
    Chapter 7.1 Nitrogen dioxide General description Many chemical species of nitrogen oxides (NOx) exist, but the air pollutant species of most interest from the point of view of human health is nitrogen dioxide (NO2). Nitrogen dioxide is soluble in water, reddish-brown in colour, and a strong oxidant. Nitrogen dioxide is an important atmospheric trace gas, not only because of its health effects but also because (a) it absorbs visible solar radiation and contributes to impaired atmospheric visibility; (b) as an absorber of visible radiation it could have a potential direct role in global climate change if its concentrations were to become high enough; (c) it is, along with nitric oxide (NO), a chief regulator of the oxidizing capacity of the free troposphere by controlling the build-up and fate of radical species, including hydroxyl radicals; and (d) it plays a critical role in determining ozone (O3) concentrations in the troposphere because the photolysis of nitrogen dioxide is the only key initiator of the photochemical formation of ozone, whether in polluted or unpolluted atmospheres (1, 2). Sources On a global scale, emissions of nitrogen oxides from natural sources far outweigh those generated by human activities. Natural sources include intrusion of stratospheric nitrogen oxides, bacterial and volcanic action, and lightning. Because natural emissions are distributed over the entire surface of the earth, however, the resulting background atmospheric concentrations are very small. The major source of anthropogenic emissions of nitrogen oxides into the atmosphere is the combustion of fossil fuels in stationary sources (heating, power generation) and in motor vehicles (internal combustion engines).
    [Show full text]
  • Alternatives to High Propane Prices Interest Expense and the Cost of Utilities Are the Two Largest “Out of Pocket” Expenses Facing Most Broiler Growers
    ThePoultry Engineering, Economics & Management NEWSLETTER Critical Information for Improved Bird Performance Through Better House and Ventilation System Design, Operation and Management Auburn University, in cooperation with the U.S. Poultry & Egg Association Issue No 29, May 2004 Alternatives to High Propane Prices Interest expense and the cost of utilities are the two largest “out of pocket” expenses facing most broiler growers. There is little a grower can do to reduce interest costs, short of major mortgage refinancing. However, costs associated with utilities are another matter. The topics we have addressed in most past issues of this newsletter have all dealt with housing and ventilation factors which can result in improved flock performance and in reduced levels of energy being used, which directly reduces costs to the grower. Electricity rates are typically fixed and are highly regulated. However, the price of heating fuel, specifically propane (liquefied petroleum gas or LPG), has varied widely up and down in most recent years, depending on the time of year and numerous supply and demand conditions. Growers can choose What growers should be aware of is that there are ways to reduce the from several good risk that they will have to buy propane at one of those times when the alternatives to paying price is highest. This newsletter explains several alternative methods consistently high prices growers can use to get lower and more stable propane costs over time. for propane. Understanding the Basics of Propane Pricing The most fundamental factor in propane pricing is that propane is basically a fossil fuel, being derived from raw natural gas during the oil refining process.
    [Show full text]
  • Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11
    This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=13374 Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 ISBN Committee on Acute Exposure Guideline Levels; Committee on 978-0-309-25481-6 Toxicology; National Research Council 356 pages 6 x 9 PAPERBACK (2012) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 THE NATIONAL ACADEMIES PRESS 500 FIFTH STREET, NW WASHINGTON, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Insti- tute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.
    [Show full text]
  • The Formation, Effects and Control of Oxides of Nitrogen in Diesel Engines
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3200-3209 © Research India Publications. http://www.ripublication.com The Formation, Effects and Control of Oxides of Nitrogen in Diesel Engines Maroa Semakula1and Prof Freddie Inambao2 1,2University of Kwazulu-Natal Durban South-Africa. Abstract HPL High Pressure Loop EGR The transport service industry is a heavy user of diesel IDICI Indirect Injection Compression Ignition propelled engines as prime movers of goods and services. The diesel propelled engine is praised due to its high fuel efficiency, L Length or Piston Stroke reliability and durability. However, the nitrogen emissions as a result of diesel fuel combustion characteristics raise major LPL Low Pressure Loop EGR concerns for the manufacturing industry, environmentalists and health care researchers. The manner in which diesel engines M Organic Residue combust their fuel is the main cause of the nitrogen oxide NG Natural Gas emission proportion. Although there are other sources of nitrogen oxide emission, this work will cover the sources of NO Nitrogen Oxide nitrogen oxides and their formation within the diesel engine, their routes of formation, identify the mechanisms under which NOX Oxides of Nitrogen Excluding Nitrogen Trioxide the formations occur, identify their types and interactions, look Up at the various effects of the oxides of nitrogen on human health and the overall damage to the natural environment, and look OH Water or Hydroxide Radical critically at control systems.
    [Show full text]
  • Nitrogen Oxide - Wikipedia, the Free Encyclopedia Page 1 of 3
    Nitrogen oxide - Wikipedia, the free encyclopedia Page 1 of 3 Nitrogen oxide From Wikipedia, the free encyclopedia Nitrogen oxide can refer to a binary compound of oxygen and nitrogen, or a mixture of such compounds: Contents ■ Nitric oxide (NO), nitrogen(II) oxide ■ Nitrogen dioxide (NO2), nitrogen(IV) oxide ■ 1 NOx ■ Nitrous oxide (N2O), nitrogen(I) oxide ■ 2 Derivatives ■ Nitrate radical (NO3), nitrogen(VI) oxide ■ 3 See also ■ Dinitrogen trioxide (N2O3), nitrogen(II,IV) oxide ■ 4 References ■ Dinitrogen tetroxide (N2O4), nitrogen(IV) oxide ■ Dinitrogen pentoxide (N2O5), nitrogen(V) oxide In atmospheric chemistry and air pollution and related fields, nitrogen oxides refers specifically to NOx [1][2] (NO and NO2). Only the first three of these compounds can be isolated at room temperature. N2O3, N2O4, and N2O5 all decompose rapidly at room temperature. Nitrate radical is very reactive. N2O is stable and rather unreactive at room temperature, while NO and NO2 are quite reactive but nevertheless quite stable when isolated. Dinitrogen trioxide, Nitric oxide, NO Nitrogen dioxide, NO2 Nitrous oxide, N2O N2O3 Dinitrogen tetroxide, Dinitrogen pentoxide, N2O4 N2O5 http://en.wikipedia.org/wiki/Nitrogen_oxide 11/2/2010 Nitrogen oxide - Wikipedia, the free encyclopedia Page 2 of 3 NOx Main article: NOx NOx (often written NOx) refers to NO and NO2. They are produced during combustion, especially at high temperature. These two chemicals are important trace species in Earth's atmosphere. In the troposphere, during daylight, NO reacts with partly oxidized organic species (or the peroxy radical) to form NO2, which is then photolyzed by sunlight to reform NO: NO + CH3O2 → NO2 + CH3O NO2 + sunlight → NO + O The oxygen atom formed in the second reaction then goes on to form ozone; this series of reactions is the main source of tropospheric ozone.
    [Show full text]
  • Pharmacology – Inhalant Anesthetics
    Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers.
    [Show full text]
  • Periodic Trends in the Main Group Elements
    Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen Et Al
    USOO8603526B2 (12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen et al. (45) Date of Patent: Dec. 10, 2013 (54) PHARMACEUTICAL COMPOSITIONS 2008. O152595 A1 6/2008 Emigh et al. RESISTANT TO ABUSE 2008. O166407 A1 7/2008 Shalaby et al. 2008/0299.199 A1 12/2008 Bar-Shalom et al. 2008/0311205 A1 12/2008 Habib et al. (75) Inventors: Peter Holm Tygesen, Smoerum (DK); 2009/0022790 A1 1/2009 Flath et al. Jan Martin Oevergaard, Frederikssund 2010/0203129 A1 8/2010 Andersen et al. (DK); Karsten Lindhardt, Haslev (DK); 2010/0204259 A1 8/2010 Tygesen et al. Louise Inoka Lyhne-versen, Gentofte 2010/0239667 A1 9/2010 Hemmingsen et al. (DK); Martin Rex Olsen, Holbaek 2010, O291205 A1 11/2010 Downie et al. (DK); Anne-Mette Haahr, Birkeroed 2011 O159100 A1 6/2011 Andersen et al. (DK); Jacob Aas Hoellund-Jensen, FOREIGN PATENT DOCUMENTS Frederikssund (DK); Pemille Kristine Hoeyrup Hemmingsen, Bagsvaerd DE 20 2006 014131 1, 2007 (DK) EP O435,726 8, 1991 EP O493513 7, 1992 EP O406315 11, 1992 (73) Assignee: Egalet Ltd., London (GB) EP 1213014 6, 2002 WO WO 89,09066 10, 1989 (*) Notice: Subject to any disclaimer, the term of this WO WO91,040 15 4f1991 patent is extended or adjusted under 35 WO WO95/22962 8, 1995 U.S.C. 154(b) by 489 days. WO WO99,51208 10, 1999 WO WOOOf 41704 T 2000 WO WO 03/024426 3, 2003 (21) Appl. No.: 12/701,429 WO WOO3,O24429 3, 2003 WO WOO3,O24430 3, 2003 (22) Filed: Feb.
    [Show full text]