140. Sulphuric, Hydrochloric, Nitric and Phosphoric Acids

Total Page:16

File Type:pdf, Size:1020Kb

140. Sulphuric, Hydrochloric, Nitric and Phosphoric Acids nr 2009;43(7) The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 140. Sulphuric, hydrochloric, nitric and phosphoric acids Marianne van der Hagen Jill Järnberg arbete och hälsa | vetenskaplig skriftserie isbn 978-91-85971-14-5 issn 0346-7821 Arbete och Hälsa Arbete och Hälsa (Work and Health) is a scientific report series published by Occupational and Enviromental Medicine at Sahlgrenska Academy, University of Gothenburg. The series publishes scientific original work, review articles, criteria documents and dissertations. All articles are peer-reviewed. Arbete och Hälsa has a broad target group and welcomes articles in different areas. Instructions and templates for manuscript editing are available at http://www.amm.se/aoh Summaries in Swedish and English as well as the complete original texts from 1997 are also available online. Arbete och Hälsa Editorial Board: Editor-in-chief: Kjell Torén Tor Aasen, Bergen Kristina Alexanderson, Stockholm Co-editors: Maria Albin, Ewa Wigaeus Berit Bakke, Oslo Tornqvist, Marianne Törner, Wijnand Lars Barregård, Göteborg Eduard, Lotta Dellve och Roger Persson Jens Peter Bonde, Köpenhamn Managing editor: Cina Holmer Jörgen Eklund, Linköping Mats Eklöf, Göteborg © University of Gothenburg & authors 2009 Mats Hagberg, Göteborg Kari Heldal, Oslo Arbete och Hälsa, University of Gothenburg Kristina Jakobsson, Lund SE 405 30 Gothenburg, Sweden Malin Josephson, Uppsala Bengt Järvholm, Umeå ISBN 978-91-85971-14-5 Anette Kærgaard, Herning ISSN 0346–7821 Ann Kryger, Köpenhamn http://www.amm.se/aoh Carola Lidén, Stockholm Printed at Reproservice, Chalmers Svend Erik Mathiassen, Gävle Gunnar D. Nielsen, Köpenhamn Catarina Nordander, Lund Gunnar Ahlborg, Göteborg Torben Sigsgaard, Århus Staffan Skerfving, Lund Kristin Svendsen, Trondheim Gerd Sällsten, Göteborg Allan Toomingas, Stockholm Ewa Wikström, Göteborg Eva Vingård, Uppsala Preface The main task of the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals (NEG) is to produce criteria documents to be used by the regulatory authorities as the scientific basis for setting occupational exposure limits for chemical substances. For each document, NEG appoints one or several authors. An evaluation is made of all relevant published, peer-reviewed original literature found. The document aims at establishing dose-response/dose-effect relationships and defining a critical effect. No numerical values for occupational exposure limits are proposed. Whereas NEG adopts the documents by consensus procedures, thereby granting the quality and conclusions, the authors are responsible for the factual content of the document. The evaluation of the literature and the drafting of this document were made by Cand. Scient Marianne van der Hagen at the Norwegian Pollution Control Authority, and Dr. Jill Järnberg at the Swedish Work Environment Authority. The draft document was discussed within the group and the final version was accepted by NEG on April 1, 2008 as its document. The following individuals participated in the elaboration of the document: Gunnar Johanson Institute of Environmental Medicine, Karolinska Institutet, Sweden (chairman) Maria Albin Department of Occupational and Environmental Medicine, University Hospital, Lund, Sweden (former NEG expert) Karin Sørig Hougaard National Research Centre for the Working Environment, Denmark (former NEG expert) Kristina Kjærheim Cancer Registry of Norway (NEG expert) Tiina Santonen Finnish Institute of Occupational Health, Finland (NEG expert) Vidar Skaug National Institute of Occupational Health, Norway (NEG expert) Jill Järnberg and Swedish Work Environment Authority, Sweden (NEG secretariat) Anna-Karin Alexandrie Editorial work and technical editing were performed by the NEG secretariat. This work was financially supported by the former Swedish National Institute for Working Life, The Swedish Work Environment Authority, the Norwegian Ministry of Labour and Social Inclusion and the Nordic Council of Ministers. All criteria document produced by NEG may be downloaded from www.nordicexpertgroup.org . Gunnar Johanson, Chairman of NEG Contents Preface Abbreviations and acronyms 1. Introduction 1 2. Substance identification 1 3. Physical and chemical properties 2 4. Occurrence, production and use 4 5. Measurements and analysis of workplace exposure 6 6. Occupational exposure data 8 7. Toxicokinetics 14 7.1 Deposition 14 7.2 Uptake 15 7.3 Distribution 15 7.4 Biotransformation and excretion 15 8. Biological monitoring 15 9. Mechanisms of toxicity 16 10. Effects in animals and in vitro studies 17 10.1 Irritation, corrosion and sensitisation 17 10.2 Effects of single exposure 20 10.3 Effects of short-term exposure (up to 90 days) 32 10.4 Mutagenicity and genotoxicity 39 10.5 Effects of long-term exposure and carcinogenicity 39 10.6 Reproductive and developmental effects 47 11. Observations in man 47 11.1 Irritation, corrosion and sensitisation 47 11.2 Case reports 48 11.3 Effects of single and short-term exposure 50 11.4 Effects of long-term exposure 63 11.5 Genotoxic effects 66 11.6 Carcinogenic effects 70 11.7 Reproductive and developmental effects 72 12. Dose-effect and dose-response relationships 81 12.1 Sulphuric acid 81 12.1.1 Single/short-term exposure 81 12.1.2 Long-term exposure 83 12.2 Hydrochloric acid 89 12.2.1 Single/short-term exposure 89 12.2.2 Long-term exposure 90 12.3 Nitric acid 91 12.3.1 Single/short-term exposure 91 12.3.2 Long-term exposure 93 12.4 Phosphoric acid 93 13. Previous evaluations by national and international bodies 93 13.1 Sulphuric acid 93 13.2 Hydrochloric acid 95 13.3 Nitric acid 95 13.4 Phosphoric acid 96 14. Evaluation of human health risks 96 14.1 Assessment of health risks 96 14.2 Groups at extra risk 100 14.3 Scientific basis for an occupational exposure limit 100 15. Research needs 102 16. Summary 103 17. Summary in Norwegian 104 18. References 105 19. Data bases used in the literature search 118 Appendix 1. Occupational exposure limits 119 Appendix 2. Previous NEG criteria documents 120 Abbreviations and acronyms ACGIH American Conference of Governmental Industrial Hygienists ARDS acute (or adult) respiratory distress syndrome ATSDR Agency for Toxic Substances and Disease Registry CI confidence interval DECOS Dutch Expert Committee on Occupational Safety DFG Deutsche Forschungsgemeinschaft (German Research Foundation) FEF x forced expiratory flow at x % of FVC FEV 1 forced expiratory volume in one second FVC forced vital capacity IARC International Agency for Research on Cancer IOM Institute of Occupational Medicine, Edinburgh, United Kingdom IPCS International Programme on Chemical Safety LC 50 lethal concentration for 50 % of the exposed animals at single exposure LOAEL lowest observed adverse effect level MD median diameter MMAD mass median aerodynamic diameter MMD mass median diameter NEG Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals NIOSH National Institute for Occupational Safety and Health (United States) NOAEL no observed adverse effect level OR odds ratio PM x particulate matter with aerodynamic diameter up to x µm RADS reactive airways dysfunction syndrome RD 50 air concentration associated with a 50 % decrease in the respiratory rate of animals RR relative risk (risk ratio) SCOEL Scientific Committee on Occupational Exposure Limits (European Union) SG aw specific airway conductance SIR standardised incidence ratio SMR standard mortality ratio STEL short-term exposure limit TNF α tumour necrosis factor alpha TWA time-weighted average VMD volume median diameter WHO World Health Organization 1. Introduction Inorganic acids are of prime importance in the chemical and metal industries. They are used as raw materials in the manufacture of a wide range of chemicals, as well as in refining, electrolysis and extraction in chemical processes. Inorganic acids are widely used in the pickling processes of electroplating, in vehicle production plants and in steel producing plants. The present document concerns the effects of four inorganic acids: sulphuric acid (H 2SO 4), hydrochloric acid (HCl), nitric acid (HNO 3) and phosphoric acid (H 3PO 4). It does not consider sulphur dioxide, nitrous gases, or phosphorous compounds such as phosphorous pentoxide and red phosphorus, which may be converted to phosphoric acid. A previous NEG document published in 1993 described the effects of aerosols of these four acids (142). The biological effects of H 2SO 4 are relatively well investigated, whereas the documentation concerning the effects of the other three acids, discussed in this document, is limited. Acid concentrations are given in mg/m 3. Data originally reported in units of ppm have been converted to units of mg/m 3 by using the conversion factors given in Table 2. Occasionally, the originally reported ppm values are also given. 2. Substance identification Substance identification data for the inorganic acids dealt with in this document are given in Table 1. Although anhydrous sulphuric and nitric acids can be produced, the chemical names usually refer to aqueous solutions of the compounds. Hydrochloric acid is the aqueous solution of hydrogen chloride gas. In this document, the chemical formula HCl may denote hydrochloric acid as well as hydrogen chloride gas. Table 1. Substance identification data of the inorganic acids (142). Common name CAS No. Synonyms Molecular Molecular formula weight Sulphuric acid 7664-93-9 Battery acid, dipping acid, H2SO 4 98.08 electrolyte acid, fertiliser acid, hydrogen
Recommended publications
  • An Improved Process for the Production of Cumene
    Europaisches Patentamt European Patent Office © Publication number: 0 537 389 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 91309531.1 int. Ci.5; C07C 2/66, C07C 2/86, C07C 6/12, C07C 15/085 (§) Date of filing: 16.10.91 ® Date of publication of application: @ Applicant: Council of Scientific and Industrial 21.04.93 Bulletin 93/16 Research Rafi Marg @ Designated Contracting States: New Delhi 110 001 (IN) BE DE FR GB IT NL @ Inventor: Pradhan, Ajit Ramchandra National Chemical Laboratory Pune-411008, Maharashtra(IN) Inventor: Rao, Bollapragad Seshagiri National Chemical Laboratory Pune-411008, Maharashtra(IN) 0 Representative: Collier, Jeremy Austin Grey et al J.A.Kemp & Co., 14 South Square, Gray's Inn London WC1R 5LX (GB) 0 An improved process for the production of cumene. © An improved process is disclosed for the preparation of cumene. Cumene is prepared by reacting benzene with a propylating agent in the presence of a catalyst containing metal loaded Zeolite EU-1 in a reactor in the range of a temperature of 150 to 250 °C and a pressure of 1 to 35 atmospheres, the propyl and diisopropylben- zene so formed are separated from the reactor effluent by conventional methods. The diisopropylbenzene is recycled back to the reactor. Simultaneous alkylation and transalkylation reactions occur in a single catalyst bed containing Zeolite EU-1 with a feed containing benzene, propylene and diisopropylbenzene. Cumenes are important chemical precursors in the production of detergents and polymers among others. Oi CO CO IV CO m Rank Xerox (UK) Business Services (3. 10/3.5x/3.0.
    [Show full text]
  • 5. POTENTIAL for HUMAN EXPOSURE 5.1 OVERVIEW White
    WHITE PHOSPHORUS 157 5. POTENTIAL FOR HUMAN EXPOSURE 5.1 OVERVIEW White phosphorus can enter the environment from its production, use, accidental spills during loading and unloading for shipment, and accidental spills during transport. Hazardous wastes sites containing white phosphorus can also be a source of phosphorus in the environment. White phosphorus has been found in at least 77 of the 1,430 current or former EPA National Priorities List (NPL) hazardous waste sites (HazDat 1996). However, the number of sites evaluated for white phosphorus is not known. The frequency of these sites within the United States can be seen in Figure 5-l. The persistence of elemental phosphorus in the air is very short due to oxidation to phosphorus oxides and ultimately to phosphorus acids. However, the particulate phosphorus aerosol may be coated with a protective oxide layer that may prevent further oxidation and extend the lifetime of particulate phosphorus in air. Both wet and dry deposition remove unreacted elemental phosphorus and the degradation products from the air. Similarly, elemental phosphorus oxidizes and hydrolyzes in water and in soil. A small amount of elemental phosphorus is lost from soil and water by volatilization. Phosphorus is used as a fumigant in the storage of grain. Because of ease of application, pellets of aluminum or magnesium phosphide are commonly used (Garry et al. 1993). Phosphine, a highly toxic gas, is generated from phosphide. The rate of formation of phosphine (permissible exposure limit [PEL], 0.4 mg/m3) is dependent on the ambient temperature and humidity. Its release is rapid, and it is extremely fatal to the unprotected person (Garry et al.
    [Show full text]
  • The Strongest Acid Christopher A
    Chemistry in New Zealand October 2011 The Strongest Acid Christopher A. Reed Department of Chemistry, University of California, Riverside, California 92521, USA Article (e-mail: [email protected]) About the Author Chris Reed was born a kiwi to English parents in Auckland in 1947. He attended Dilworth School from 1956 to 1964 where his interest in chemistry was un- doubtedly stimulated by being entrusted with a key to the high school chemical stockroom. Nighttime experiments with white phosphorus led to the Headmaster administering six of the best. He obtained his BSc (1967), MSc (1st Class Hons., 1968) and PhD (1971) from The University of Auckland, doing thesis research on iridium organotransition metal chemistry with Professor Warren R. Roper FRS. This was followed by two years of postdoctoral study at Stanford Univer- sity with Professor James P. Collman working on picket fence porphyrin models for haemoglobin. In 1973 he joined the faculty of the University of Southern California, becoming Professor in 1979. After 25 years at USC, he moved to his present position of Distinguished Professor of Chemistry at UC-Riverside to build the Centre for s and p Block Chemistry. His present research interests focus on weakly coordinating anions, weakly coordinated ligands, acids, si- lylium ion chemistry, cationic catalysis and reactive cations across the periodic table. His earlier work included extensive studies in metalloporphyrin chemistry, models for dioxygen-binding copper proteins, spin-spin coupling phenomena including paramagnetic metal to ligand radical coupling, a Magnetochemi- cal alternative to the Spectrochemical Series, fullerene redox chemistry, fullerene-porphyrin supramolecular chemistry and metal-organic framework solids (MOFs).
    [Show full text]
  • Phosphoric Acid 706-798-4346 Section 1.0 Product and Company Information
    MATERIAL SAFETY DATA SHEET PRAYON INC. P.O. Box 1473 1610 Marvin Griffin Road Augusta, GA 30903-1473 PHOSPHORIC ACID 706-798-4346 SECTION 1.0 PRODUCT AND COMPANY INFORMATION PRODUCT NAME: PHOSPHORIC ACID (36-85%) MSDS Number: P007664382 Chemical Name: Phosphoric acid MSDS Origination Date: 10/01/2000 Synonyms: Phos acid, orthophosphoric acid MSDS Revision Date: 01/05/2006 IN THE EVENT OF A CHEMICAL EMERGENCY, SPILL, LEAK, FIRE, EXPOSURE, OR ACCIDENT Call CHEMTREC: 1-800-424-9300. Toll free in the continental U.S., Hawaii, Puerto Rico, Canada, Alaska, or U.S. Virgin Islands. For calls originating elsewhere dial 703-527-3887 (collect calls accepted). For additional non-emergency information call: 706-798-4346 SECTION 2.0 COMPOSITION / INGREDIENTS INFORMATION Component CAS No. % By Weight OSHA PEL* ACGIH TLV* Phosphoric acid 7664-38-2 36-85 1 mg/m3 1 mg/ m3 Water 7732-18-5 15-64 N/A N/A *Based on 8-hour time weighted averages SECTION 3.0 HAZARD IDENTIFICATION WARNING STATEMENTS: DANGER: CAUSES EYE AND SKIN BURNS MAY BE HARMFUL IF SWALLOWED CORROSIVE TO MILD STEEL EMERGENCY OVERVIEW: APPEARANCE AND ODOR: Slightly viscous, clear liquid with no odor POTENTIAL HEALTH EFFECTS: Likely Routes of Entry: Skin & Eye contact EYE CONTACT: This product can cause serious eye burns. Damage may be permanent. SKIN CONTACT: Corrosive to the skin. Causes burns. Burning may be delayed. INHALATION: Breathing of vapor or mist may be irritating to the respiratory tract. Serious cases of inhalation may cause respiratory problems and late pulmonary edema. INGESTION: May be harmful if swallowed.
    [Show full text]
  • United States Patent 0 "Ice Patented Mar
    3,504,046 United States Patent 0 "Ice Patented Mar. 31, 1970 1 2 higher temperature would make such a difference in the 3 504,046 ALKYLATION OF NAPHTHALENE WITH PRO isomer product ratio. PYLENE IN THE PRESENCE OF PHOSPHORIC In accordance with the present invention the solid ACID CATALYST phosphoric acid catalyst and the naphthalene are charged Edward Jonathan Scharf, Somerville, and Herbert Ru into a suitable reaction vessel, such as an autoclave. The ‘dolph Kemme, Piscataway, N.J., assignors to American system is purged with nitrogen and then with propylene. Cyanamid Company, Stamford, Conn., a corporation of The mixture is then heated to the desired temperature, Maine agitation started and the reaction allowed to proceed un No Drawing. Filed Apr. 26, 1968, Ser. No. 724,626 der autogenous pressure. Upon completion of the reac Int. Cl. C07c 3/54 10 tion, the reactor is cooled, the product mixture with US. Cl. 260-671 2 Claims drawn and the catalyst separated. Any of the solid phosphoric acid catalysts disclosed ABSTRACT OF THE DISCLOSURE in US. Patent Nos. 2,575,457, 2,584,102, 3,183,233 and 3201,486 may be used in the invention. In general, The alkylation of naphthalene with propylene in the 15 they are comprised of phosphoric acid on an inert presence of solid phosphoric acid catalysts is conducted support, such as kieselguhr. They are used in the alkyla at temperatures above about 300° 0., whereby the ratio tion reaction in an amount, based on the total weight of beta- to alpha-isopropyl naphthalene in the product of naphthalene and proylene used, of at least about 1% is substantially increased.
    [Show full text]
  • A Guide to Acids, Acid Strength, and Concentration
    A GUIDE TO ACIDS, ACID STRENGTH, AND CONCENTRATION What’s the difference between acid strength and concentration? And how does pH fit in with these? This graphic explains the basics. CH COOH HCl H2SO4 HNO3 H3PO4 HF 3 H2CO3 HYDROCHLORIC ACID SULFURIC ACID NITRIC ACID PHOSPHORIC ACID HYDROFLUORIC ACID ETHANOIC ACID CARBONIC ACID pKa = –7 pKa = –2 pKa = –2 pKa = 2.12 pKa = 3.45 pKa = 4.76 pKa = 6.37 STRONGER ACIDS WEAKER ACIDS STRONG ACIDS VS. WEAK ACIDS ACIDS, Ka AND pKa CONCENTRATION AND pH + – The H+ ion is transferred to a + A decrease of one on the pH scale represents + [H+] [A–] pH = –log10[H ] a tenfold increase in H+ concentration. HA H + A water molecule, forming H3O Ka = pKa = –log10[Ka] – [HA] – – + + A + + A– + A + A H + H H H H A H + H H H A Ka pK H – + – H a A H A A – + A– A + H A– H A– VERY STRONG ACID >0.1 <1 A– + H A + + + – H H A H A H H H + A – + – H A– A H A A– –3 FAIRLY STRONG ACID 10 –0.1 1–3 – – + A A + H – – + – H + H A A H A A A H H + A A– + H A– H H WEAK ACID 10–5–10–3 3–5 STRONG ACID WEAK ACID VERY WEAK ACID 10–15–10–5 5–15 CONCENTRATED ACID DILUTE ACID + – H Hydrogen ions A Negative ions H A Acid molecules EXTREMELY WEAK ACID <10–15 >15 H+ Hydrogen ions A– Negative ions Acids react with water when they are added to it, The acid dissociation constant, Ka, is a measure of the Concentration is distinct from strength.
    [Show full text]
  • Properties of Acids and Bases
    GREEN CHEMISTRY LABORATORY MANUAL Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? hat do you taste when you brush your teeth and drink orange juice afterwards. Yuck! It leaves a really bad taste in your mouth, but why? Orange juice and toothpaste by themselves taste good. But the terrible taste W results because an acid/base reaction is going on in your mouth. Orange juice is a weak acid and the toothpaste is a weak base. When they are placed together they neutralize each other and produce a product that is unpleasant to taste. How do you determine what is an acid and what is a base? In this lab we will discover how to distinguish between acids and bases. Introduction Two very important classes of compounds are acids and bases. But what exactly makes them different? There are differences in definition, physical differences, and reaction differences. According to the Arrhenius definition, acids ionize in water to + produce a hydronium ion (H3O ), and bases dissociate in water to produce hydroxide ion (OH -). Physical differences can be detected by the senses, including taste and touch. Acids have a sour or tart taste and can produce a stinging sensation to broken skin. For example, if you have ever tasted a lemon, it can often result in a sour face. Bases have a bitter taste and a slippery feel. Soap and many cleaning products are bases.
    [Show full text]
  • Periodic Trends in the Main Group Elements
    Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds.
    [Show full text]
  • Hydrochloric Acid Handbook
    Hydrochloric Acid Handbook OxyChem ® OxyChem is a registered trademark of Occidental Chemical Corp. 08/2018 Dallas-based Occidental Chemical Corporation is a leading North American manufacturer of basic chemicals, vinyls and performance chemicals directly and through various affiliates (collectively, OxyChem). OxyChem is also North America's largest producer of sodium chlorite. As a Responsible Care® company, OxyChem's global commitment to safety and the environment goes well beyond compliance. OxyChem's Health, Environment and Safety philosophy is a positive motivational force for our employees, and helps create a strong culture for protecting human health and the environment. Our risk management programs and methods have been, and continue to be, recognized as some of the industry's best. OxyChem offers an effective combination of industry expertise, experience, on line business tools, quality products and exceptional customer service. As a member of the Occidental Petroleum Corporation family, OxyChem represents a rich history of experience, top-notch business acumen, and sound, ethical business practices. Table of Contents Page INTRODUCTION TO HYDROCHLORIC ACID .................................................................................... 4 MANUFACTURING ........................................................................................................................... 4 HYDROCHLORIC ACID — USES ........................................................................................................ 5 SPECIFICATIONS AND
    [Show full text]
  • Arsine Back up Data Report
    NIOSH Manual of Analytical Methods (NMAM) 5th Edition BACKUP DATA REPORT NIOSH Method No. 6001 Title: Arsine Analyte: Arsine Author/developer: Developed under contract Date: 1976 Note: Method 6001 is a combination of two older, previously published methods: S229 and P&CAM 265. Therefore, the backup data report is a combination of the two methods’ reports. The backup data report for method S229 is a regular written report. The backup data report for P&CAM 265, however, is in the form of a published journal article. The written report for S229 follows, the journal article for P&CAM can be seen here as a pdf. Disclaimer: Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. In addition, citations to websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites. All web addresses referenced in this document were accessible as of the publication date. NIOSH Manual of Analytical Methods (NMAM), Fifth Edition Backup Data Report Method S229 Substance: Arsine OSHA Standard: 0.2 mg/m3 Chemical Used: Arsine in Nitrogen (14 ppm), Linde Specialty Gases Procedure The general procedure used is described in NIOSH Method 6001. The collection method has been adapted from P&CAM 127. The charcoal used was Lot 105 activated coconut charcoal supplied by SKC, Inc., Pittsburgh, PA. Desorption efficiency tests have not been carried out because the low concentration of the arsine source would require that large volumes of gas (200-800 ml) had to be injected directly into the charcoal tube.
    [Show full text]
  • AMMONIA and NITRIC ACID CONCENTRATIONS · in EQUILIBRIUM with ATMOSPHERIC AEROSOLS: EXPERIMENT VS • THEORY Lynn M
    AMMONIA AND NITRIC ACID CONCENTRATIONS · IN EQUILIBRIUM WITH ATMOSPHERIC AEROSOLS: EXPERIMENT VS • THEORY Lynn M. Rildemann,+ Armistead G. Russell,* Glen R. Cass+ California Institute of Technology Pasadena, California 91125 ABSTRACT The equilibrium between gaseous ammonia, nitric acid, and aerosol nitrate is discussed on the basis of a recent field experiment in Southern California. Comparison is drawn between theoretical equilibrium calculations and simultaneous measurements of nitric acid, ammonia, ammonium ion, nitrate ion, sulfate ion, other ionic species, temperature and dewpoint. Particulate .and gaseous pollutant concentrations at some inland sampling sites are readily explained if the aerosol is assumed to exist as an external mixture with all particulate nitrate and ammonium available to form pure NR • At other monitoring sites, especially near the 4No3 coast, aerosol nitrate is found in the presence of NR and RN0 concentrations that 3 3 thermodynamic calculations show are too low to produce pure NR No • This can be 4 3 explained when the amount of aerosol nitrate that can be derived from reaction of nitric acid with sea salt and soil dust is taken into account. A calculation approach that accounts for the presence of mixed sulfate and nitrate salts improves the agreement between predicted and observed pollutant concentrations in the majority of cases studied. Uncertainties in these calculations arise from a number of sources including the thermodynamic quantities, and the effect of these uncertainties on the comparison between
    [Show full text]
  • Nitration of Toluene (Electrophilic Aromatic Substitution)
    Nitration of Toluene (Electrophilic Aromatic Substitution) Electrophilic aromatic substitution represents an important class of reactions in organic synthesis. In "aromatic nitration," aromatic organic compounds are nitrated via an electrophilic aromatic substitution mechanism involving the attack of the electron-rich benzene ring on the nitronium ion. The formation of a nitronium ion (the electrophile) from nitric acid and sulfuric acid is shown below. The sulfuric acid is regenerated and hence acts as a catalyst. It also absorbs water to drive the reaction forward. Figure 1: The mechanism for the formation of a nitronium ion. The methyl group of toluene makes it around 25 times more reactive than benzene in electrophilic aromatic substitution reactions. Toluene undergoes nitration to give ortho and para nitrotoluene isomers, but if heated it can give dinitrotoluene and ultimately the explosive trinitrotoluene (TNT). Figure 2: Reaction of nitric acid and sulfuric acid with toluene. Procedure: 1. Place a 5 mL conical vial, equipped with a spin vane, in a crystallizing dish filled with ice-water placed on a stirrer. 2. Pour 1.0 mL of concentrated nitric acid into the vial. While stirring, slowly add 1.0 mL of concentrated sulfuric acid. 3. After the addition of sulfuric acid is complete, add 1.0 mL of toluene dropwise and slowly over a period of 5 minutes (slow down if you see boiling. Reaction produces a lot of heat). 4. While Stirring, allow the contents of the flask to reach the room temperature. Stir at room temperature for another 5 minutes. 5. Add 10 mL of water into a small separatory funnel.
    [Show full text]