A Guide to Acids, Acid Strength, and Concentration

Total Page:16

File Type:pdf, Size:1020Kb

A Guide to Acids, Acid Strength, and Concentration A GUIDE TO ACIDS, ACID STRENGTH, AND CONCENTRATION What’s the difference between acid strength and concentration? And how does pH fit in with these? This graphic explains the basics. CH COOH HCl H2SO4 HNO3 H3PO4 HF 3 H2CO3 HYDROCHLORIC ACID SULFURIC ACID NITRIC ACID PHOSPHORIC ACID HYDROFLUORIC ACID ETHANOIC ACID CARBONIC ACID pKa = –7 pKa = –2 pKa = –2 pKa = 2.12 pKa = 3.45 pKa = 4.76 pKa = 6.37 STRONGER ACIDS WEAKER ACIDS STRONG ACIDS VS. WEAK ACIDS ACIDS, Ka AND pKa CONCENTRATION AND pH + – The H+ ion is transferred to a + A decrease of one on the pH scale represents + [H+] [A–] pH = –log10[H ] a tenfold increase in H+ concentration. HA H + A water molecule, forming H3O Ka = pKa = –log10[Ka] – [HA] – – + + A + + A– + A + A H + H H H H A H + H H H A Ka pK H – + – H a A H A A – + A– A + H A– H A– VERY STRONG ACID >0.1 <1 A– + H A + + + – H H A H A H H H + A – + – H A– A H A A– –3 FAIRLY STRONG ACID 10 –0.1 1–3 – – + A A + H – – + – H + H A A H A A A H H + A A– + H A– H H WEAK ACID 10–5–10–3 3–5 STRONG ACID WEAK ACID VERY WEAK ACID 10–15–10–5 5–15 CONCENTRATED ACID DILUTE ACID + – H Hydrogen ions A Negative ions H A Acid molecules EXTREMELY WEAK ACID <10–15 >15 H+ Hydrogen ions A– Negative ions Acids react with water when they are added to it, The acid dissociation constant, Ka, is a measure of the Concentration is distinct from strength. It refers to the forming ions. The degree to which they do this is what strength of an acid. The higher its value, the stronger amount of acid in a given solution. A concentrated acid determines whether they are strong or weak acids. the acid (i.e. the more readily it ionises in water). pKa contains a large amount of acid in a given volume; a Strong acids are essentially 100% ionised in solution. converts Ka number to a logarithmic scale that makes it dilute solution contains a small amount. The pH scale Weak acids ionise very little in solution. easier to compare strengths of different acids. gauges the amount of hydrogen ions in solution. © COMPOUND INTEREST 2016 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem C This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence. BY NC ND.
Recommended publications
  • The Strongest Acid Christopher A
    Chemistry in New Zealand October 2011 The Strongest Acid Christopher A. Reed Department of Chemistry, University of California, Riverside, California 92521, USA Article (e-mail: [email protected]) About the Author Chris Reed was born a kiwi to English parents in Auckland in 1947. He attended Dilworth School from 1956 to 1964 where his interest in chemistry was un- doubtedly stimulated by being entrusted with a key to the high school chemical stockroom. Nighttime experiments with white phosphorus led to the Headmaster administering six of the best. He obtained his BSc (1967), MSc (1st Class Hons., 1968) and PhD (1971) from The University of Auckland, doing thesis research on iridium organotransition metal chemistry with Professor Warren R. Roper FRS. This was followed by two years of postdoctoral study at Stanford Univer- sity with Professor James P. Collman working on picket fence porphyrin models for haemoglobin. In 1973 he joined the faculty of the University of Southern California, becoming Professor in 1979. After 25 years at USC, he moved to his present position of Distinguished Professor of Chemistry at UC-Riverside to build the Centre for s and p Block Chemistry. His present research interests focus on weakly coordinating anions, weakly coordinated ligands, acids, si- lylium ion chemistry, cationic catalysis and reactive cations across the periodic table. His earlier work included extensive studies in metalloporphyrin chemistry, models for dioxygen-binding copper proteins, spin-spin coupling phenomena including paramagnetic metal to ligand radical coupling, a Magnetochemi- cal alternative to the Spectrochemical Series, fullerene redox chemistry, fullerene-porphyrin supramolecular chemistry and metal-organic framework solids (MOFs).
    [Show full text]
  • Properties of Acids and Bases
    GREEN CHEMISTRY LABORATORY MANUAL Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? hat do you taste when you brush your teeth and drink orange juice afterwards. Yuck! It leaves a really bad taste in your mouth, but why? Orange juice and toothpaste by themselves taste good. But the terrible taste W results because an acid/base reaction is going on in your mouth. Orange juice is a weak acid and the toothpaste is a weak base. When they are placed together they neutralize each other and produce a product that is unpleasant to taste. How do you determine what is an acid and what is a base? In this lab we will discover how to distinguish between acids and bases. Introduction Two very important classes of compounds are acids and bases. But what exactly makes them different? There are differences in definition, physical differences, and reaction differences. According to the Arrhenius definition, acids ionize in water to + produce a hydronium ion (H3O ), and bases dissociate in water to produce hydroxide ion (OH -). Physical differences can be detected by the senses, including taste and touch. Acids have a sour or tart taste and can produce a stinging sensation to broken skin. For example, if you have ever tasted a lemon, it can often result in a sour face. Bases have a bitter taste and a slippery feel. Soap and many cleaning products are bases.
    [Show full text]
  • Introduction to Ionic Mechanisms Part I: Fundamentals of Bronsted-Lowry Acid-Base Chemistry
    INTRODUCTION TO IONIC MECHANISMS PART I: FUNDAMENTALS OF BRONSTED-LOWRY ACID-BASE CHEMISTRY HYDROGEN ATOMS AND PROTONS IN ORGANIC MOLECULES - A hydrogen atom that has lost its only electron is sometimes referred to as a proton. That is because once the electron is lost, all that remains is the nucleus, which in the case of hydrogen consists of only one proton. The large majority of organic reactions, or transformations, involve breaking old bonds and forming new ones. If a covalent bond is broken heterolytically, the products are ions. In the following example, the bond between carbon and oxygen in the t-butyl alcohol molecule breaks to yield a carbocation and hydroxide ion. H3C CH3 H3C OH H3C + OH CH3 H3C A tertiary Hydroxide carbocation ion The full-headed curved arrow is being used to indicate the movement of an electron pair. In this case, the two electrons that make up the carbon-oxygen bond move towards the oxygen. The bond breaks, leaving the carbon with a positive charge, and the oxygen with a negative charge. In the absence of other factors, it is the difference in electronegativity between the two atoms that drives the direction of electron movement. When pushing arrows, remember that electrons move towards electronegative atoms, or towards areas of electron deficiency (positive, or partial positive charges). The electron pair moves towards the oxygen because it is the more electronegative of the two atoms. If we examine the outcome of heterolytic bond cleavage between oxygen and hydrogen, we see that, once again, oxygen takes the two electrons because it is the more electronegative atom.
    [Show full text]
  • 140. Sulphuric, Hydrochloric, Nitric and Phosphoric Acids
    nr 2009;43(7) The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 140. Sulphuric, hydrochloric, nitric and phosphoric acids Marianne van der Hagen Jill Järnberg arbete och hälsa | vetenskaplig skriftserie isbn 978-91-85971-14-5 issn 0346-7821 Arbete och Hälsa Arbete och Hälsa (Work and Health) is a scientific report series published by Occupational and Enviromental Medicine at Sahlgrenska Academy, University of Gothenburg. The series publishes scientific original work, review articles, criteria documents and dissertations. All articles are peer-reviewed. Arbete och Hälsa has a broad target group and welcomes articles in different areas. Instructions and templates for manuscript editing are available at http://www.amm.se/aoh Summaries in Swedish and English as well as the complete original texts from 1997 are also available online. Arbete och Hälsa Editorial Board: Editor-in-chief: Kjell Torén Tor Aasen, Bergen Kristina Alexanderson, Stockholm Co-editors: Maria Albin, Ewa Wigaeus Berit Bakke, Oslo Tornqvist, Marianne Törner, Wijnand Lars Barregård, Göteborg Eduard, Lotta Dellve och Roger Persson Jens Peter Bonde, Köpenhamn Managing editor: Cina Holmer Jörgen Eklund, Linköping Mats Eklöf, Göteborg © University of Gothenburg & authors 2009 Mats Hagberg, Göteborg Kari Heldal, Oslo Arbete och Hälsa, University of Gothenburg Kristina Jakobsson, Lund SE 405 30 Gothenburg, Sweden Malin Josephson, Uppsala Bengt Järvholm, Umeå ISBN 978-91-85971-14-5 Anette Kærgaard, Herning ISSN 0346–7821 Ann Kryger, Köpenhamn http://www.amm.se/aoh
    [Show full text]
  • Hydrochloric Acid Handbook
    Hydrochloric Acid Handbook OxyChem ® OxyChem is a registered trademark of Occidental Chemical Corp. 08/2018 Dallas-based Occidental Chemical Corporation is a leading North American manufacturer of basic chemicals, vinyls and performance chemicals directly and through various affiliates (collectively, OxyChem). OxyChem is also North America's largest producer of sodium chlorite. As a Responsible Care® company, OxyChem's global commitment to safety and the environment goes well beyond compliance. OxyChem's Health, Environment and Safety philosophy is a positive motivational force for our employees, and helps create a strong culture for protecting human health and the environment. Our risk management programs and methods have been, and continue to be, recognized as some of the industry's best. OxyChem offers an effective combination of industry expertise, experience, on line business tools, quality products and exceptional customer service. As a member of the Occidental Petroleum Corporation family, OxyChem represents a rich history of experience, top-notch business acumen, and sound, ethical business practices. Table of Contents Page INTRODUCTION TO HYDROCHLORIC ACID .................................................................................... 4 MANUFACTURING ........................................................................................................................... 4 HYDROCHLORIC ACID — USES ........................................................................................................ 5 SPECIFICATIONS AND
    [Show full text]
  • Characterization of the Acidity of Sio2-Zro2 Mixed Oxides
    Characterization of the acidity of SiO2-ZrO2 mixed oxides Citation for published version (APA): Bosman, H. J. M. (1995). Characterization of the acidity of SiO2-ZrO2 mixed oxides. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR436698 DOI: 10.6100/IR436698 Document status and date: Published: 01/01/1995 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Hydrochloric Acid MSDS Effective Date: December 03, 2012 24 Hour Emergency Contact: Chemtel: (800)255-3924
    Hydrochloric Acid MSDS Effective Date: December 03, 2012 24 Hour Emergency Contact: ChemTel: (800)255-3924 www.pioneerforensics.com 1. PRODUCT AND COMPANY IDENTIFICATION Product: Hydrochloric Acid Product Number(s): PF021, PF022 CAS#: 7647-01-0 Synonyms: Muriatic acid; Hydrogen chloride, aqueous; Chlorohydric acid Manufacturer: Pioneer Forensics, LLC 804 E. Eisenhauer Blvd. Loveland, CO 80537 Ph: (970) 292-8487 Emergency Number: (800) 255-3924 (CHEM-TEL) Customer Service: (970) 292-8487 2. HAZARDS IDENTIFICATION Emergency Overview: DANGER! Corrosive. Causes severe skin, eye, and digestive tract burns. Harmful if swallowed. Mist or vapor extremely irritating to eyes and respiratory tract. Safety Ratings: Health: 3, Severe Reactivity: 1, Slight Flammability: 0, None Contact: 4, Extreme OSHA Regulatory Status: This product is considered a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200. Potential Acute Health Effects: Routes of Exposure: Inhalation, ingestion, skin contact, eye contact Inhalation: Corrosive. May cause damage to mucous membranes in nose, throat, lungs and bronchial system. Ingestion: Corrosive. Harmful if swallowed. May produce burns to the lips, oral cavity, upper airway, esophagus and digestive tract. Skin Contact: Corrosive. Causes severe burns. Eye Contact: Corrosive. Causes severe burns. Vapor or spray may cause eye damage, impaired sight or blindness. Target Organs: Skin, respiratory system, eyes, lungs Chronic Health Effects: Corrosive. Prolonged contact causes serious tissue damage. Product: Hydrochloric Acid Revision Date: 12/03/2012 1/7 Aggravation of: Repeated or prolonged exposure to the substance can produce target organs damage. Medical Conditions: Persons with pre-existing skin disorders or eye problems may be more susceptible to the effects of the substance.
    [Show full text]
  • The Activity and Other Thermodynamic Properties of Hydrochloric Acid in Tetrahydrofuran - Water Mixtures
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1966 The Activity and Other Thermodynamic Properties of Hydrochloric Acid in Tetrahydrofuran - Water Mixtures. Rabindra Nath Roy Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Roy, Rabindra Nath, "The Activity and Other Thermodynamic Properties of Hydrochloric Acid in Tetrahydrofuran - Water Mixtures." (1966). LSU Historical Dissertations and Theses. 1217. https://digitalcommons.lsu.edu/gradschool_disstheses/1217 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 67-1184 ROY, Rabindra Nath, 1939- THE ACTIVITY AND OTHER THERMODYNAMIC PROPERTIES OF HYDROCHLORIC ACID IN TETRAHYDROFURAN-WATER MIXTURES. Louisiana State University and Agricultural and Mechanical College, Ph.D., 1966 Chemistry, physical University Microfilms, Inc., Ann Arbor, Michigan THE ACTIVITY AND OTHER THERMODYNAMIC PROPERTIES OF HYDROCHLORIC ACID IN TETRAHYDROFURAN-WATER MIXTURES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Rabindra Nath Roy B. Sc. (Hons); Jadavpur University, 1959 M. Sc.; Jadavpur University, 1961 August, 1966 ACKNOWLEDGMENT The author wishes to thank first his parents who long ago instilled in him a high appreciation for education. The author is grateful to Dr.
    [Show full text]
  • Efficient Surface Functionalization of Detonation Nanodiamond Using
    Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019 Efficient surface functionalization of detonation nanodiamond using ozone under ambient conditions Johannes Ackermann,a Anke Kruegera,b* a Institute for Organic Chemistry, Julius-Maximilians University Würzburg, Am Hubland, D-97074 Würzburg, Germany, b Wilhelm Conrad Röntgen Center for Complex Materials Systems (RCCM), Julius-Maximilians University Würzburg, Am Hubland, D-97074 Würzburg, Germany *[email protected] Supporting information Raman spectra: Fig. S1 Raman spectrum of DND S1 Fig. S2 Raman spectrum of DNDox Fig. S3 Raman spectrum of DNDred S2 Fig. S4 Raman spectrum of aDND Fig. S5 Raman spectrum of aDNDox S3 Fig. S6 Raman spectrum of aDNDred XRD spectra: Fig. S7 XRD spectra of a) untreated DND b) DND treated with ozone and oxidized with H2O2 c) DND treated with ozone and reduced with NaBH4 S4 Fig. S8 XRD spectra of a) untreated aDND b) aDND treated with ozone and oxidized with H2O2 c) aDND treated with ozone and reduced with NaBH4 FTIR spectra of diamond materials between 1500 and 1800 cm-1 Fig. S9. Magnified FTIR spectra of a) untreated DND b) DND treated with ozone over a period of six hours c) DND treated with ozone for 6 h and oxidation with hydrogen peroxide d) DND treated with ozone for 6 h, oxidation with hydrogen peroxide and washing with dilute hydrochloric acid e) DND treated with ozone for 6 h, reduction with sodium borohydride and washing with dilute hydrochloric acid. S5 Fig. S10. FT-IR spectra of a) untreated aDND b) aDND treated with ozone over a period of six hours c) aDND treated with ozone for 6 h, oxidation with hydrogen peroxide and washing with dilute hydrochloric acid d) aDND treated with ozone for 6 h, reduction with sodium borohydride and washing with dilute hydrochloric acid.
    [Show full text]
  • Ammonia, NH3 Is a Base. It Reacts with Hydrochloric Acid According to the Following Equation
    Titration notes Name ___________________________________________ Warm up: How many moles of ammonia are in 75 milliliters of a 0.75M solution? How many moles of hydrochloric acid are in 25.0 mL of a 0.500 M solution? Acid base reaction Ammonia, NH3 is a base. It reacts with hydrochloric acid according to the following equation. Calculate the concentration of 25 mL of an HCl solution if it requires 45.5 mL of 0.75M NH3 solution to neutralize it. NH3 (aq) + HCl (aq) → H2O (l) + NH4Cl (aq) Titration What is the purpose of titration? What is the relationship between titration and neutralization? What is the equivalence point? Titration practice Log on to your text – you will not be going to your text but rather will be using the resources! Follow these steps: 1. Select the “menu” hamburger in the top left 2. Choose “resources” 3. Select “chapter 18” and “section 4: Neutralization” from the drop down menus 4. Find and choose the “animation: Neutralization” 5. You are now ready to begin. Start with the HCl/NaOH titration and answer the following before pressing any more buttons. 1. What is the balanced chemical equation for the reaction between hydrochloric acid and sodium hydroxide? 2. Which chemical is the titrant? 3. What is the concentration of the HCl? _________ What volume is in the flask? __________ 4. How many moles of HCl are in the flask? (show your work) 5. What is the concentration of the NaOH? __________________ 6. How many moles of NaOH will you need to neutralize the HCl? 7.
    [Show full text]
  • Chapter Fourteen Acids and Bases
    CHAPTER FOURTEEN ACIDS AND BASES For Review 1. a. Arrhenius acid: produce H+ in water b. Bρrnsted-Lowry acid: proton (H+) donor c. Lewis acid: electron pair acceptor The Lewis definition is most general. The Lewis definition can apply to all Arrhenius and Brρnsted-Lowry acids; H+ has an empty 1s orbital and forms bonds to all bases by accepting a pair of electrons from the base. In addition, the Lewis definition incorporates other reactions not typically considered acid-base reactions, e.g., BF3(g) + NH3(g) → F3B−NH3(s). NH3 is something we usually consider a base and it is a base in this reaction using the Lewis definition; NH3 donates a pair of electrons to form the N−B bond. 2. a. The Ka reaction always refers to an acid reacting with water to produce the conjugate + base of the acid and the hydronium ion (H3O ). For a general weak acid HA, the Ka reaction is: − + − HA(aq) + H2O(l) ⇌ A (aq) + H3O (aq) where A = conjugate base of the acid HA This reaction is often abbreviated as: HA(aq) ⇌ H+(aq) + A−(aq) b. The Ka equilibrium constant is the equilibrium constant for the Ka reaction of some sub- stance. For the general Ka reaction, the Ka expression is: − + + − [A ][H3O ] [H ][A ] Ka = or K = (for the abbreviated Ka reaction) [HA] a [HA] c. The Kb reaction alwlays refers to a base reacting with water to produce the conjugate acid − of the base and the hydroxide ion (OH ). For a general base, B, the Kb reaction is: + − + B(aq) + H2O(l) ⇌ BH (aq) + OH (aq) where BH = conjugate acid of the base B [BH+ ][OH− ] d.
    [Show full text]
  • Hydrochloric Acid
    TECHNICAL BULLETIN 19 Motivation Dve Wangara, WA, 6065 AUSTRALIA T +61 8 9302 4000 | FREE 1800 999 196 | F +61 8 9302 5000 HYDROCHLORIC ACID A NON-OXIDIZING ACID MATERIAL & FUNCTION HYDROCHLORIC ACID is a clear, colourless, fuming, poisonous, highly acidic aqueous solution of hydrogen chloride (chemical symbol HCl). It is used as a chemical intermediate and in petroleum production, ore reduction, food processing, TECHNICAL BULLETIN 19 Motivation Dve Wangara, WA, 6065 AUSTRALIA T +61 8 9302 4000 | FREE 1800 999 196 | F +61 8 9302 5000 pickling, and metal cleaning. It is found in the stomach in dilute form. Synonyms: muriatic acid; chlorohydric acid; hydrochloride; spirits of salts Chemical properties: HYDROCHLORIC ACID is one of the most corrosive of the non-oxidizing acids in contact with copper alloys and is handled in dilute solutions. Contact with metals produces hydrogen gas which creates the chance of an explosion. It produces poisonous gas, including chlorine, in a fire. It is soluble in benzene, alcohol and ether It is insoluble in hydrocarbons and incompatible or reactive with metals, hydroxides, amines and alkalis. HYDROCHLORIC ACID’S fumes have an acid, penetrating odour. Aqueous solutions of HYDROCHLORIC ACID attack and corrode nearly all metals, except mercury, silver, gold, platinum, tantalum, and certain alloys. It may be coloured yellow by traces of iron, chlorine and organic matter. The physical properties of HYDROCHLORIC ACID, such as boiling and melting points, density and pH depend on the concentration or molarity of HCl in the acid solution. They can range from those of water at 0% HCl to values for fuming HYDROCHLORIC ACID at over 40% HCl.
    [Show full text]