Suprafamilial Relationships Among Rodentia and the Phylogenetic Effect of Removing Fast-Evolving Nucleotides in Mitochondrial, Exon and Intron Fragments

Total Page:16

File Type:pdf, Size:1020Kb

Suprafamilial Relationships Among Rodentia and the Phylogenetic Effect of Removing Fast-Evolving Nucleotides in Mitochondrial, Exon and Intron Fragments BMC Evolutionary Biology BioMed Central Research article Open Access Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments Claudine Montgelard*1,3, Ellen Forty1, Véronique Arnal1,3 and Conrad A Matthee2 Address: 1Institut des Sciences de l'Evolution de Montpellier (UMR 5554), Université de Montpellier II, Place Eugène Bataillon, 34095 Montpellier cedex, France, 2Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa and 3Current address : Biogéographie et Ecologie des Vertébrés (EPHE), Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175), 1919 Route de Mende, 34293 Montpellier cedex 5, France Email: Claudine Montgelard* - [email protected]; Ellen Forty - [email protected]; Véronique Arnal - [email protected]; Conrad A Matthee - [email protected] * Corresponding author Published: 26 November 2008 Received: 24 April 2008 Accepted: 26 November 2008 BMC Evolutionary Biology 2008, 8:321 doi:10.1186/1471-2148-8-321 This article is available from: http://www.biomedcentral.com/1471-2148/8/321 © 2008 Montgelard et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using ~7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics. Results: Taxonomic sampling included multiple representatives of all five rodent suborders described. Fast-evolving positions for each dataset were identified individually using a discrete gamma rate category and sites belonging to the most rapidly evolving eighth gamma category were removed. Phylogenetic tree reconstructions were performed on individual and combined datasets using Parsimony, Bayesian, and partitioned Maximum Likelihood criteria. Removal of fast-evolving positions enhanced the phylogenetic signal to noise ratio but the improvement in resolution was not consistent across different data types. The results suggested that elimination of fastest sites only improved the support for nodes moderately affected by homoplasy (the deepest nodes for introns and more recent nodes for exons and mitochondrial genes). Conclusion: The present study based on eight DNA fragments supports a fully resolved higher level rodent phylogeny with moderate to significant nodal support. Two inter-suprafamilial associations emerged. The first comprised a monophyletic assemblage containing the Anomaluromorpha (Anomaluridae + Pedetidae) + Myomorpha (Muridae + Dipodidae) as sister clade to the Castorimorpha (Castoridae + Geomyoidea). The second suprafamilial clustering identified a novel association between the Sciuromorpha (Gliridae + (Sciuridae + Aplodontidae)) and the Hystricomorpha (Ctenodactylidae + Hystricognathi) which together represents the earliest dichotomy among Rodentia. Molecular time estimates using a relaxed Bayesian molecular clock dates the appearance of the five suborders nearly contemporaniously at the KT boundary and this is congruent with suggestions of an early explosion of rodent diversity. Based on these newly proposed phylogenetic relationships, the evolution of the zygomasseteric pattern that has been used for a long time in rodent systematics is evaluated. Page 1 of 16 (page number not for citation purposes) BMC Evolutionary Biology 2008, 8:321 http://www.biomedcentral.com/1471-2148/8/321 Background [4,11,21,25] and this agrees with Winge [26] and Tullberg Since the pioneer work of Brandt [1], a wealth of literature [24]. However, a recent paper by Horner et al. [27] based has been devoted to suprafamilial relationships among on the coding regions of the mitochondrial genome disa- rodents. To date, however, no consensus has been reached grees with these suggestions and places Anomaluridae based on morphological or paleontological evidence. (Pedetidae was not included) as a sister taxon of Hystri- Nearly a century after Brandt [1], Simpson ([2], p. 197) cognathi. referred to the order Rodentia and stated that "their rela- tionships are involved in an intricate web of convergence, Evolutionary associations among these five suborders are divergence, parallelism, and other taxonomic pitfalls." not well resolved [3] and even the monophyly of the order has been questioned in the past based on mtDNA analyses The addition of molecular data contributed significantly [28,29]. The notion of paraphyly of the Rodentia, how- in constructing a species tree for the order Rodentia and ever, was short lived and never supported by morphology the most up to date taxonomic arrangement includes at and more comprehensive genetic studies [13,20,30,31]. least 2277 species distributed among 33 families and five Based on available evidence, Carleton and Musser [3], suborders [3]. Recently Huchon et al. [4] recognized the suggested that Sciuromorpha, Myomorpha and Hystrico- Laotian rock rat (Laonastes aenigmamus) from Laos [5] as morpha are well established while the monophyly and/or an additional family Diatomyidae closely related to the phylogenetic position of Castorimorpha and Anomaluro- Ctenodactylidae. Despite this new addition, the number morpha is less secure. Subsequent retroposed SINEs pro- of initially recognized rodent families by Simpson [2] and vided additional evidence for the monophyly of Wood [6] remained fairly stable (for review see [3]). The Myomorpha, Anomaluromorpha and Hystricomorpha number of rodent clades identified above the familial whereas no SINE has been identified for Castorimorpha level, however, led to numerous inconsistencies and con- or Sciuromorpha. A clade including Myomorpha, Anom- troversies (see [7-9]). In the present study we adopted the aluromorpha and Castorimorpha (the "mouse-related most up to date suprafamilial classification as reviewed by clade" as defined by Huchon et al. [20]) was also con- Carleton and Musser [3] who recognize five suborders firmed by several unique SINE insertions [11,32]. Unfor- (Sciuromorpha, Castorimorpha, Myomorpha, Anoma- tunately, no SINE has been found for any relationships luromorpha and Hystricomorpha). among the three members of the "mouse-related clade" (Myomorpha, Anomaluromorpha and Castorimorpha). Hystricomorpha contains 19 families (78 genera and 291 Finally the phylogenetic relationships among the three species), and includes the previously problematic Cteno- major rodent groups: Sciuromorpha, "mouse-related dactylidae [3] and the newly discovered Diatomyidae [4]. clade" and Hystricomorpha are as yet unresolved. The two latter families were identified as the sister taxon of the 17 traditional families comprising the infraorder The introduction of phylogenomics and whole organism Hystricognathi [4,10]. The monophyly of Hystricomor- genome sequencing (thousands of nucleotides or amino pha is currently supported by morphological, paleonto- acids), coupled to the use of probabilistic methods based logical and molecular data (see review in [10-13]). on models of sequence evolution, implicitly led to the Sciuromorpha includes Gliridae, Aplodontidae and Sciu- belief that inconsistency in tree reconstructions will soon ridae. The latter two families are closely related based on be something of the past. However, it is clear now that hard and soft morphological features [14-17], albumin increasing the number of nucleotides does not always immunology [18] and sequence data (for example see solve incongruence in phylogenetics [33-35]. Even phyl- [13,19-21]). The myomorphous Gliridae is regarded as an ogenomic reconstructions can result in biases, and as a early offshoot of Sciuromorpha and this is supported by consequence, produce well supported incorrect tree topol- middle ear anatomy [14], arterial patterns [22]) and pre- ogies (for example [33]). In addition, gene tree recon- vious molecular investigations (for example [19,21,23]). structions are based on numerous implicit assumptions Castorimorpha also comprises three families, Castoridae, that are seldom tested (for example gene orthology, Heteromyidae and Geomyidae. This association was first reversible time homogeneous substitution process, sta- suggested by Tullberg [24] and, although not well sup- tionarity of base composition through time). Violations ported by morphology, has fairly strong molecular sup- of these assumptions may lead to compositional bias, port (for example see [13,19-21]). The two superfamilies, contrasted patterns of saturation and heterogeneous evo- Dipodoidea and Muroidea (including one and six fami- lutionary rates among genes and lineages. Current phylo- lies, respectively) comprise the
Recommended publications
  • Redalyc.A Distinctive New Cloud-Forest Rodent (Hystriocognathi: Echimyidae) from the Manu Biosphere Reserve, Peru
    Mastozoología Neotropical ISSN: 0327-9383 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Patterson, Bruce D.; Velazco, Paul M. A distinctive new cloud-forest rodent (Hystriocognathi: Echimyidae) from the Manu Biosphere Reserve, Peru Mastozoología Neotropical, vol. 13, núm. 2, julio-diciembre, 2006, pp. 175-191 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Available in: http://www.redalyc.org/articulo.oa?id=45713202 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Mastozoología Neotropical, 13(2):175-191, Mendoza, 2006 ISSN 0327-9383 ©SAREM, 2006 Versión on-line ISSN 1666-0536 www.cricyt.edu.ar/mn.htm A DISTINCTIVE NEW CLOUD-FOREST RODENT (HYSTRICOGNATHI: ECHIMYIDAE) FROM THE MANU BIOSPHERE RESERVE, PERU Bruce D. Patterson1 and Paul M. Velazco1, 2 1 Department of Zoology, Field Museum of Natural History, 1400 S. Lake Shore Dr, Chicago IL 60605-2496 USA. 2 Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St, Chicago IL 60607 USA ABSTRACT: Recent surveys in Peru’s Manu National Park and Biosphere Reserve uncovered a new species of hystricognath rodent, a spiny rat (Echimyidae) with dense, soft fur. Inhabiting Andean cloud-forests at 1900 m, the new rodent belongs to a radiation of “brush- tailed tree rats” previously known only from the Amazon, Orinoco, and other lowland river drainages. Phylogenetic analysis of morphology (cranial and dental characters) unambiguously allies the new species with species of Isothrix.
    [Show full text]
  • Classification of Mammals 61
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Classification © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FORof SALE MammalsOR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2ND PAGES 9781284032093_CH04_0060.indd 60 8/28/13 12:08 PM CHAPTER 4: Classification of Mammals 61 © Jones Despite& Bartlett their Learning,remarkable success, LLC mammals are much less© Jones stress & onBartlett the taxonomic Learning, aspect LLCof mammalogy, but rather as diverse than are most invertebrate groups. This is probably an attempt to provide students with sufficient information NOT FOR SALE OR DISTRIBUTION NOT FORattributable SALE OR to theirDISTRIBUTION far greater individual size, to the high on the various kinds of mammals to make the subsequent energy requirements of endothermy, and thus to the inabil- discussions of mammalian biology meaningful.
    [Show full text]
  • Hystrix Africaeaustralis)
    Reproduction in captive female Cape porcupines (Hystrix africaeaustralis) R. J. van Aarde Mammal Research Institute, University ofPretoria, Pretoria 0002, South Africa Summary. Captive females attained sexual maturity at an age of 9\p=n-\16months and con- ceived for the first time when 10\p=n-\25months old. Adult females were polyoestrous but did not cycle while lactating or when isolated from males. The length of the cycle varied from 17 to 42 days (mean \m=+-\s.d. 31\m=.\2\m=+-\6\m=.\5days; n = 43) and females experienced 3\p=n-\7 sterile cycles before conceiving. Pregnancy lasted for 93\p=n-\94days (93\m=.\5\m=+-\0\m=.\6days; N = 4) and litter intervals varied from 296 to 500 days (385 \m=+-\60\m=.\4;n = 10). Litter size varied from 1 to 3 (1\m=.\5\m=+-\0\m=.\66;n = 165) and the well-developed precocial young weighed 300\p=n-\400g (351 \m=+-\47\m=.\4g; n= 19) at birth. Captive females reproduced throughout the year with most litters (78\m=.\7%;n = 165) being produced between August and March. Introduction Cape porcupines (Hystrix africaeaustralis) inhabit tropical forests, woodlands, grassland savannas, semi-arid and arid environments throughout southern Africa. Despite this widespread distribution little attention has been given to these nocturnal, Old World hystricomorph rodents, which shelter and breed in subterranean burrows, rock crevices and caves. Some information on reproduction in female porcupines has been published on the crested porcupine (H. cristata) (Weir, 1967), the Himalayan porcupine (H. hodgsoni) (Gosling, 1980) and the Indian porcupine (H.
    [Show full text]
  • The Beaver's Phylogenetic Lineage Illuminated by Retroposon Reads
    www.nature.com/scientificreports OPEN The Beaver’s Phylogenetic Lineage Illuminated by Retroposon Reads Liliya Doronina1,*, Andreas Matzke1,*, Gennady Churakov1,2, Monika Stoll3, Andreas Huge3 & Jürgen Schmitz1 Received: 13 October 2016 Solving problematic phylogenetic relationships often requires high quality genome data. However, Accepted: 25 January 2017 for many organisms such data are still not available. Among rodents, the phylogenetic position of the Published: 03 March 2017 beaver has always attracted special interest. The arrangement of the beaver’s masseter (jaw-closer) muscle once suggested a strong affinity to some sciurid rodents (e.g., squirrels), placing them in the Sciuromorpha suborder. Modern molecular data, however, suggested a closer relationship of beaver to the representatives of the mouse-related clade, but significant data from virtually homoplasy- free markers (for example retroposon insertions) for the exact position of the beaver have not been available. We derived a gross genome assembly from deposited genomic Illumina paired-end reads and extracted thousands of potential phylogenetically informative retroposon markers using the new bioinformatics coordinate extractor fastCOEX, enabling us to evaluate different hypotheses for the phylogenetic position of the beaver. Comparative results provided significant support for a clear relationship between beavers (Castoridae) and kangaroo rat-related species (Geomyoidea) (p < 0.0015, six markers, no conflicting data) within a significantly supported mouse-related clade (including Myodonta, Anomaluromorpha, and Castorimorpha) (p < 0.0015, six markers, no conflicting data). Most of an organism’s phylogenetic history is fossilized in their heritable genomic material. Using data from genome sequencing projects, particularly informative regions of this material can be extracted in sufficient num- bers to resolve the deepest history of speciation.
    [Show full text]
  • Gliding Behavior of Japanese Giant Flying Squirrels (Petaurista Leucogenys)
    Journal of Mammalogy, 83(2):553-562, 2002 GLIDING BEHAVIOR OF JAPANESE GIANT FLYING SQUIRRELS (PETAURISTA LEUCOGENYS) BRIAN J. STAFFORD,* RICHARD W. THORINGTON, JR., AND TAKEO KAWAMICHI Department of Anatomy, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059 (BJS) Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0108 (BJS, RWT) Department of Biology, Osaka City University, Sugimoto, Osaka, Sumiyoshi-ku 558•8585, Japan (TK) Gliding behavior of Japanese giant flying squirrels, Petaurista leucogenys, was studied at Nara Park, Japan. We observed 150 glides. We were able to calculate glide ratios on 57 glides and airspeeds on 29 glides. Glide ratios (distance/faltitude lost]) averaged 1.87, and a glide ratio of 3•3.5 seems to represent an upper performance limit for P. leucogenys. Airspeeds (4.39•9.47 m/s) were substantially lower than reported in other studies, and glide angles were higher (17.74•34.99°). Aspect ratios of the animals in mid-glide averaged 1.42. Key words: aerodynamics, flying squirrels, gliding, locomotion, musasabi, Petaurista, Pteromyinae Gliding is a common adaptation in mam- 1990; Jackson 2000; Russell and Dijkstra mals. It has evolved independently in at 2001; Scholey 1986; Stafford 1999; Thor- least 6 extant taxa: Volitantia (the dermop- ington et al. 1996 and references therein). terans and bats), Pteromyinae (true gliding Morphological studies of flying squirrels in- squirrels), Anomaluridae (scaly-tail "flying clude examinations of skeletal proportions squirrels"), Acrobates (feather-tail gliders), (Stafford 1999; Thorington and Heaney Petaurus (lesser gliding possums), and Pe- 1981), myology (Endo et al.
    [Show full text]
  • Hopping and Running on Two Legs Or Four from R
    Nature Vol. 287 18 September 1980 187 Hopping and running on two legs or four from R. McNeil/ Alexander MOST mammals run on all fours but some run on just two legs (like men) or hop (like kangaroos). Some birds run, some hop and some do both. What are the relative merits of the different gaits? Do they differ in energy cost? Energy costs of running and hopping can be inferred from measurements of oxygen consumption. Some of the difficulties of physiological experimentation on moving animals can be avoided by training the Dipodomys deserti hopping on a moving belt to assess energy consumption. Experimental details animal to run on a moving belt as are given by Thompson et al. on p.223 of this issue of Nature. shown. Data has been collected for mammals ranging from mice to horses and different for animals of different sizes. running because it involves larger fluc­ lions, and for many birds (summarized by Until recently the data seemed to indicate tuations of potential energy (Alexander & 0 6 Fedak & Seeherman Nature 282, 713; that k was proportional to (body mass) · Goldspink Mechanics and energetics of 1979). Nearly all of it conforms to a simple for quadrupeds but to (body mass)0·8 for animal locomotion, 1977). rule: the power Prequired for level running bipeds. Consequently bipedalism was more Similar calculations grossly under­ at speed u is given by economical than quadrupedalism for small estimate the power requirements of small animals, but less economical for large ones. runners and hoppers, such as mice and P(.u)=P(O)+ku (1) Why, then, are there small quadrupeds quail: indeed they predict that k should be (such as mice) and large bipeds (such as proportional to (body mass)1.
    [Show full text]
  • Dental Homologies and Evolutionary Transformations In
    Dental homologies and evolutionary transformations in Caviomorpha (Hystricognathi, Rodentia): new data from the Paleogene of Peruvian Amazonia Myriam Boivin, Laurent Marivaux To cite this version: Myriam Boivin, Laurent Marivaux. Dental homologies and evolutionary transformations in Caviomor- pha (Hystricognathi, Rodentia): new data from the Paleogene of Peruvian Amazonia. Historical Biology, Taylor & Francis, 2020, 32 (4), pp.528-554. 10.1080/08912963.2018.1506778. hal-01870927 HAL Id: hal-01870927 https://hal.umontpellier.fr/hal-01870927 Submitted on 17 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Page 1 of 118 Historical Biology 1 2 3 Dental homologies and evolutionary transformations in Caviomorpha (Hystricognathi, 4 5 Rodentia): new data from the Paleogene of Peruvian Amazonia 6 7 8 9 10 a* a 11 Myriam Boivin and Laurent Marivaux 12 13 14 15 a Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M), c.c. 16 For Peer Review Only 17 18 064, Université de Montpellier, CNRS, IRD, EPHE, place Eugène Bataillon, F-34095 19 20 Montpellier Cedex 05, France. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 *Corresponding author.
    [Show full text]
  • Multiple Molecular Evidences for a Living Mammalian Fossil
    Multiple molecular evidences for a living mammalian fossil Dorothe´ e Huchon†‡, Pascale Chevret§¶, Ursula Jordanʈ, C. William Kilpatrick††, Vincent Ranwez§, Paulina D. Jenkins‡‡, Ju¨ rgen Brosiusʈ, and Ju¨ rgen Schmitz‡ʈ †Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; §Department of Paleontology, Phylogeny, and Paleobiology, Institut des Sciences de l’Evolution, cc064, Universite´Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France; ʈInstitute of Experimental Pathology, University of Mu¨nster, D-48149 Mu¨nster, Germany; ††Department of Biology, University of Vermont, Burlington, VT 05405-0086; and ‡‡Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved March 18, 2007 (received for review February 11, 2007) Laonastes aenigmamus is an enigmatic rodent first described in their classification as a diatomyid suggests that Laonastes is a 2005. Molecular and morphological data suggested that it is the living fossil and a ‘‘Lazarus taxon.’’ sole representative of a new mammalian family, the Laonastidae, The two research teams also disagreed on the taxonomic and a member of the Hystricognathi. However, the validity of this position of Laonastes. According to Jenkins et al. (2), Laonastes family is controversial because fossil-based phylogenetic analyses is either the most basal group of the hystricognaths (Fig. 2A)or suggest that Laonastes is a surviving member of the Diatomyidae, nested within the hystricognaths (Fig. 2B). According to Dawson a family considered to have been extinct for 11 million years. et al. (3), Laonastes and the other Diatomyidae are the sister According to these data, Laonastes and Diatomyidae are the sister clade of the family Ctenodactylidae (i.e., gundies), a family that clade of extant Ctenodactylidae (i.e., gundies) and do not belong does not belong to the Hystricognathi, but to which it is to the Hystricognathi.
    [Show full text]
  • Chromosomal Numbers in African Giant Rat (Cricetomysgambianus, Waterhouse-1840)
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 18, Issue 7 Ser. 6 (July. 2019), PP 26-31 www.iosrjournals.org Chromosomal Numbers in African Giant Rat (Cricetomysgambianus, Waterhouse-1840) Ahmad, Im1, Musa, Sa2, Nzalak, Jo3 1Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, UsmanuDanfodiyo University, Sokoto, Nigeria. 2Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria. 3Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria. Kaduna, Nigeria. Corresponding Author: Ahmad, IM Abstract: Background: Karyotypic studies were carried out on the African giant rat, Cricetomysgambianus, Waterhouse-1840 with the aim of determining its chromosome diploid numbers and autosomal fundamental numbers. Methods: The chromosomes were prepared from the conventional bone marrow of two (2) African giant rats – a male and a female treated intra-peritoneally with 2 ml of 0.04% colchicines for 3 hours. Chromosomes in well spread mitotic metaphase cells were counted and measured using KaryoType computer software. Chromosomal numbers were identified. Ideograms were also constructed from the measurements. Data were collected and analysed using SPSS version 20. Results: A diploid chromosome number of 2n = 80 with an autosomal fundamental number (NFa) of 66 and 95 were obtained for the species of C. gambianus used in this study. The X chromosomes were medium-sized metacentric and small acrocentric while the Y chromosome was small acrocentric. Conclusion: Cricetomysgambianus was found to have an identifiable autosomal diploid number,The findings resembled those in Benin, Senegal, Niger, Cameroun and other countries.
    [Show full text]
  • Rodentia: Erethizontidae) Therya, Vol
    Therya E-ISSN: 2007-3364 [email protected] Asociación Mexicana de Mastozoología México LEON-ALVARADO, OMAR DANIEL; RAMÍREZ-CHAVES, HÉCTOR E. Morphological description of the glans penis and baculum of Coendou quichua (Rodentia: Erethizontidae) Therya, vol. 8, núm. 3, 2017, pp. 263-267 Asociación Mexicana de Mastozoología Baja California Sur, México Available in: http://www.redalyc.org/articulo.oa?id=402352772011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative THERYA, 2017, Vol. 8 (3): 263-268 DOI: 10.12933/therya- 17-495 ISSN 2007-3364 Morphological description of the glans penis and baculum of Coendou quichua (Rodentia: Erethizontidae) OMAR D ANIEL LEON-ALVARA DO 1* AN D H ÉCT OR E. RAMÍREZ -CHAVES 2 1 Laboratorio de Sistemática y Biogeografía, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander. Carrera 27 9, A. A. 678, Bucaramanga, Colombia. E-mail: [email protected] (ODLA) 2 Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas. Calle 65 26-10, A. A. 275, Manizales, Colombia. E-mail: [email protected] * Corresponding author External morphology of the glans and baculum are important characters for specic delimitation, especially for rodents (Simson et al. 1995). However, for Erethizontidae there are few descriptive works; in fact, for Neotropical porcupines of the genus Coendou there is just one brief contribution for an indeterminate species by Pocock in 1922.
    [Show full text]
  • Animal Health Requirements for Importation of Rodents, Hedgehogs, Gymnures and Tenrecs Into Denmark
    INTERNATIONAL TRADE DIVISION ANIMAL HEALTH REQUIREMENTS FOR IMPORTATION OF RODENTS, HEDGEHOGS, GYMNURES AND TENRECS INTO DENMARK. La 23,0-2111 These animal health requirements concern veterinary import requirements and certification re- quirements alone and shall apply without prejudice to other Danish and EU legislation. Rodents, hedgehogs, gymnures and tenrecs meaning animals of the Genera/Species listed below: Order Family Rodentia Sciuridae (Squirrels) (except Petaurista spp., Biswamoyopterus spp., Aeromys spp., Eupetaurus spp., Pteromys spp., Glaucomys spp., Eoglaucomys spp., Hylopetes spp., Petinomys spp., Aeretes spp., Trogopterus spp., Belomys, Pteromyscus spp., Petaurillus spp., Iomys spp.), Gliridae (Dormous’), Heteromyidae (Kangaroo rats, kangaroo mice and rock pocket mice), Geomyidae (Gophers), Spalaci- dae (Blind mole rats, bamboo rats, root rats, and zokors), Calomyscidae (Mouse-like hamsters), Ne- somyidae (Malagasy rats and mice, climbing mice, African rock mice, swamp mice, pouched rats, and the white-tailed rat), Cricetidae (Hamsters, voles, lemmings, and New World rats and mice), Muridae (mice and rats and gerbils), Dipodidae (jerboas, jumping mice, and birch mice), Pedetidae (Spring- hare), Ctenodactylidae (Gundis), Diatomyidae (Laotian rock rat), Petromuridae (Dassie Rat), Thryon- omyidae (Cane rats), Bathyergidae (Blesmols), Dasyproctidae (Agoutis and acouchis), Agoutidae (Pacas), Dinomyidae (Pacarana), Caviidae (Domestic guinea pig, wild cavies, mara and capybara), Octodontidae (Rock rats, degus, coruros, and viscacha rats), Ctenomyidae (Tuco-tucos), Echimyidae (Spiny rats), Myocastoridae (Coypu ), Capromyidae (Hutias), Chinchillidae (Chinchillas and visca- chas), Abrocomidae (Chinchilla rats). Erinaceomorpha Erinaceidae (Hedgehogs and gymnures) Afrosoricida Tenrecidae (Tenrecs) The importation of rodents, hedgehogs, gymnures and tenrecs to Denmark (excluding import to ap- proved bodies, institutes and centres as defined in Art. 2, 1, (c) of Directive 92/65/EEC) must comply with the requirements of Danish order no.
    [Show full text]
  • Curriculum Vitae -Cody W
    CURRICULUM VITAE -CODY W. THOMPSON- Department of Ecology & Evolutionary Biology and Museum of Zoology University of Michigan · 1109 Geddes Avenue · Ann Arbor, Michigan 48109 Office: (734) 615-2810 · Cell: (319) 290-6386 · Email: [email protected] Website: codythompson.org · Google Scholar: https://goo.gl/KQpykU EDUCATION Doctor of Philosophy in Zoology, Texas Tech University-Lubbock (May 2013) Dissertation topic – Implications of hybridization between the Rio Grande ground squirrel (Ictidomys parvidens) and the thirteen-lined ground squirrel (I. tridecemlineatus) Graduate advisor – Dr. Robert D. Bradley Master of Science in Biology, Fort Hays State University-Hays, Kansas (May 2008) Thesis topic – Identification and characterization of the contact zone between two species of short-tailed shrews (Blarina) in southern Iowa and northern Missouri Graduate advisor – Dr. Elmer J. Finck Honorable Mention Thesis/Field Study Bachelor of Arts in Biology: Ecology and Systematics; Minor in Chemistry, University of Northern Iowa-Cedar Falls (May 2004) Undergraduate research topic – The reintroduction of the plains pocket gopher (Geomys bursarius) to the University of Northern Iowa’s Prairie Preserve Undergraduate research mentor – Dr. James W. Demastes Graduated Cum Laude ACADEMIC APPOINTMENTS University of Michigan-Ann Arbor 9/2013-present Assistant Research Scientist, Department of Ecology and Evolutionary Biology 6/2013-present Research Collections Manager, Mammal Division, Museum of Zoology Texas Tech University-Lubbock 8/2007-5/2013
    [Show full text]