<<

Journal of South American Earth Sciences 82 (2018) 76e90

Contents lists available at ScienceDirect

Journal of South American Earth Sciences

journal homepage: www.elsevier.com/locate/jsames

The southernmost record of a large erethizontid (: Erethizontoidea) in the of South America: Biogeographic and paleoenvironmental implications

* Raúl I. Vezzosi a, , Leonardo Kerber b a Laboratorio de Paleontología de Vertebrados, Centro de Investigaciones Científicas y Transferencia de Tecnología a la Produccion, Consejo Nacional de Investigaciones Científicas y Tecnicas, Materi y Espana,~ E3105BWA, Diamante, Argentina b CAPPA - Centro de Apoio a Pesquisa Paleontologica da Quarta Colonia,^ Universidade Federal de Santa Maria, Sao~ Joao~ do Pol^esine, Rua Maximiliano Vizzotto, 598, CEP 97230-000, Brazil article info abstract

Article history: The South American (Erethizontidae) are included in two genera: Chaetomys and Coendou. Received 19 October 2017 The latter is a very speciose taxon, with about 13 living species. During at least the late Plioceneeearly Received in revised form Pleistocene, erethizontids immigrated to Central and North America during the Great American Biotic 23 December 2017 Interchange. Although some Pleistocene have been reported, the Quaternary history of this Accepted 24 December 2017 is still understudied. The only known extinct species is Coendou magnus. In this work, a of a Available online 30 December 2017 is reported from an Upper Pleistocene fluvial sedimentary sequence cropping out in the Northern Pampa geomorphological region, Santa Fe Province, Argentina. Despite this group having Keywords: Fossil record different living forms widely distributed in South American Neotropical woodland , the Pleis- Quaternary tocene occurrences of Erethizontidae are scarce and limited to Upper Pleistocene deposits from Bolivia, Regional extinction Brazil, and Uruguay. Currently, the specimen here reported represents the only Pleistocene porcupine Distribution displacement from Argentina with a stratigraphical context. The morphological characters as well as the dimensions Environmental changes indicate that it is close to the Pleistocene erethizontid Coendou magnus. In this context, the presence of this erethizontid in such a southern locality, together with other taxa recorded from this site and the associated geological and paleoenvironmental evidence, indicates subtropical conditions, compared with the current conditions, which may have allowed a southern displacement of taxa more related to woodlands and xeric subtropical environments. © 2017 Elsevier Ltd. All rights reserved.

1. Introduction Patterson, 2015). Commonly known as porcupines, or ‘puercoes- pines’ in the Spanish language, this group is restricted to the Among , the Erethizontidae (the New Americas. The living representatives of this clade include three World porcupines) is a clade morphologically disparate from other living genera allocated to two ‘subfamilies’ that collectively range caviomorphs, which has led some authors to suppose that they from boreal North America (Alaska and northern Canada) to sub- were the first lineage to differentiate from other forms during the tropical South America (Uruguay and northern Argentina): Coendou early evolutionary history of (Bugge, 1971; Woods, Lacep ede, 1799, Erethizon Cuvier, 1822 and Chaetomys Gray, 1843 1972; Bryant and McKenna, 1995; Candela, 1999). However, with (see Tate, 1935; Woods, 1973; Alberico et al., 1999; Bonvicino et al., the increase in the resolution of time-calibrated phylogenies based 2002; Voss, 2011; Voss et al., 2013). From a taxonomical approach, on molecular data, today they are considered the sister-group to at least 13 living Neotropical species of Coendou inhabit Central to Cavioidea, with a simultaneous period of diversification of the South America in tropical and subtropical moist and dry forests other higher-level within Caviomorpha (Upham and from sea level to about 3500 m (Voss and Angermann, 1997; Voss and da Silva, 2001; Voss, 2015). The semi-arboreal Erethizon dor- satum (Linnaeus, 1758) is the only monotypic extant species in * Corresponding author. temperate North America, from northern Mexico to Alaska and E-mail addresses: [email protected] (R.I. Vezzosi), leonardokerber@gmail. Canada (Roze, 1989). The southernmost distribution of Coendou is com (L. Kerber). https://doi.org/10.1016/j.jsames.2017.12.015 0895-9811/© 2017 Elsevier Ltd. All rights reserved. R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90 77 recorded in northern Argentina and Uruguay (Anderson, 1997; Here, we expand the fossil record of South American Quaternary Emmons, 1997; Barquez et al., 2006; Gonzalez and Martínez erethizontids and report the first undoubted occurrence for the Lanfranco, 2010). These forms are strictly adapted to an arboreal Pleistocene of Argentina, recovered from fluvial sedimentary de- life, thereby restricting their home range. Nevertheless, there are posits of the Upper Pleistocene sequence in the Carcaran~a River also species distributed in open and transitional areas such as the fossiliferous area. Moreover, we discuss the relevance of Erethi- Cerrado and Caatinga in Brazil, the Venezuelan plains in , zontidae in the austral temperate plains. and the austral Chaco in Bolivia and northern Argentina (Roze, This area is an interesting fossiliferous site that has yielded a 1989; Anderson, 1997; Parera, 2002; Candela and Morrone, 2003; large number of megamammal specimens for many years Barquez et al., 2006). In this sense, the particular adaptation of (Frenguelli, 1928; Castellanos, 1943; Bordas, 1942; Brandoni and the Neotropical erethizontids to a particular environment such as McDonald, 2015; Vezzosi, 2015). However, many of them are woodlands (Candela and Morrone, 2003) could suggest that their without an accurate stratigraphical context (see discussion in evolution and geographical distribution were driven by this life- Vezzosi, 2015; Vezzosi et al., 2017). The specimen here described is style, which is strongly associated with these environments. possibly related to the only extinct species of Quaternary erethi- Fossil records are known from the late to middle zontid from South America. This taxon was erected in the nine- of , the Oligocene of Bolivia, and from the middle teenth century based on a few records from Brazilian Holocene Miocene of in Colombia (Ameghino, 1887; Simpson, 1950; caves and is the largest extinct South American porcupine that lived Wood and Patterson, 1959; Hoffstetter and Lavocat, 1970; Walton, in PleistoceneeHolocene times (Lund, 1839; Winge, 1887). 1997; Candela, 1999, 2002). During the late Miocene (Huay- querian SALMA or Tortonian Global Stage/Age; Bossi and Muruaga, 2. Materials and methods 2009) the taxonomic richness and distribution of the group decreased drastically in southern South America; only the giant In to identify and define anatomical and proportional porcupines Neosteiromys bombifrons Rovereto, 1914 and Neo- differences in the fossil from Santa Fe, we studied numerous den- steiromys pattoni Candela, 2004 survived in northwestern taries and teeth series of fossil and living erethizontids, which have Argentina, as well as the monospecific Paradoxomys cancrivorus sufficient anatomical complexity to permit the recognition of Ameghino, 1885 from northeastern Argentina (‘Conglomerado consistent differences between the genera and species. Osífero’, lower member of the Ituzaingo Fm., Stage/ Age; Frenguelli, 1920; Vucetich and Candela, 2001; Brunetto et al., 2.1. Anatomical terminology 2013). PlioePleistocene (Stage/Age late Blancaneearly Irvingtonian) The anatomical nomenclature follows Woods and Howland erethizontids from North America belong only to the genus Ere- (1979), Frazier (1981), Perez (2010), and Sussman (2011) for the thizon (Frazier, 1981; Simpson, 1950; Webb, 1976; Morgan and dentary, and Marivaux et al. (2004) for the tetralophodont molars: Hulbert, 1995; Hulbert, 1997). However, many Erethizon species Afd, anterofossetid; chin, posterior joint of the symphysis; cp, have been assigned to the South American genus Coendou with coronoid process; cop, condylar process; hc, horizontal crest; hg, some new species (White, 1968, 1970; Sussman et al., 2016); hystricognathous groove, Hfd, hypoflexid; Hld, hypolophid; HD, although, the assignments of extinct species to this genus (versus height of dentary; i, ; ln, lunar notch; LS, length of the dental Erethizon) are sometimes controversial (Sussman, 2011). series; LLW, labio-lingual width; MDW, mesio-distal width; m; Erethizon dorsatum is well recorded in the loweremiddle molar; mc, masseteric crest; maf, mandibular foramen; mf, men- Pleistocene (Stage/Age middle Irvingtonian) and Holocene of North tonian foramen; mn, mandibular notch; Med I, metalophid I; Med America (Frazier, 1981; Hulbert, 1997). In contrast, the reliable fossil II, metalophid II; Mfd, metaflexid; Msd, mesoflexid; pma, record of South American porcupines is very scarce towards the alveolus; ptc, pterygoid crest; Psd, posterolophid; rf, retromolar southern portion of the continent, encompassing the extinct spe- ; sys, symphysis. cies Coendou magnus Lund, 1839 from the middleelate Pleistocene of Bolivia (Tarija Valley; Hoffstetter, 1963), late Pleistoceneeearly 2.2. Institutional abbreviations Holocene of Brazil (Lund, 1839:227; Winge, 1887:61; Kerber et al., 2016) and late Pleistocene of Uruguay (Sopas Fm.; Ubilla, 1994:44, AMNH, American Museum of Natural History, New York, New 1996:69). An additional older record from the late of York; AWC, Arizona Western College, Yuma, Arizona; F:AM, Frick northwestern Argentina (Jujuy Province), with uncertain strati- Collection, American Museum of Natural History, New York, New graphical context (see Castellanos, 1950:51, 1953; Reguero et al., York; FCeCZv, Coleccion Zoologica de la Facultad de Ciencias, 2007, tab. 4), was interpreted as the southernmost fossil occur- Montevideo, Uruguay; FUMDHAM, Fundaçao~ Museu do Homem rence of the ‘Erethizon’ genus in the Uquía Formation (SubStage/ Americano, Sao~ Raimundo Nonato, Brazil; IGM, Instituto de Geo- SubAge VorhoueaneSanandresian; Reguero et al., 2007). Never- logía, Universidad Nacional Autonoma de Mexico, Mexico , theless, a recent taxonomic revision referred this porcupine spec- Mexico; MACNePv, Museo Argentino de Ciencias Naturales Ber- imen to cf. Coendou (Sussman, 2011), because its morphology and nardino Rivadavia, Coleccion Paleontología de Vertebrados, Buenos dimensions are clearly very close to the Brazilian C. magnus from Aires, Argentina; MFAePv, Museo Provincial de Ciencias Naturales the late PleistoceneeHolocene fossil assemblages recovered from “Florentino Ameghino”, Coleccion Paleontología de Vertebrados, caves of Lagoa Santa in Minas Gerais, Brazil (Lund, 1839). Santa Fe, Argentina; MGT, Museo de Geociencias Tacuarembo, Recently, the taxonomic revision of E. dorsatum remains from Uruguay; MMH, Museo de Monte Hermoso, Buenos Aires, North America and Mexico provided new information on the his- Argentina; MNHNM, Museum National d’Historie Naturelle, Paris, tory of this group for the middleelate Pleistocene (Irvingtonian France; MNHNMeMa, Museo Nacional de Historia Natural de NALMA, Bell et al., 2004; Sussman et al., 2016). These results led to Montevideo, Coleccion de Mastozoología, Montevideo, Uruguay; recognition of the presence of both Coendou and Erethizon genera in PIMUZ,Palaontologisches€ Institut und Museum der Universitat€ the fossil record and an alternative model for the origin of the North Zürich; UF, Florida Museum of Natural History, Gainesville, Florida; American genus, with two different migration pathways through UMMP, University of Michigan Museum of Paleontology, Ann Ar- Mexico after the establishment of the Panamanian land bridge bor, Michigan; UO, University of Oregon Condon Museum of Ge- (Sussman et al., 2016). ology, Eugene, Oregon; USNM, National Museum of Natural History, 78 R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90

Washington, D.C.; ZMK, Zoological Museum of Copenhagen, specimen MFAePv 1706 in comparison to the sample of living and Copenhagen, Denmark; ZMUZ, Zoological Museum der Universitat€ fossil taxa (Appendix 1). The selection of taxa and the variables Zürich. expressed on a log10 scale for the statistical analyses and linear regressions were based on dentary morphology, discarding 2.3. Other abbreviations incomplete specimens (Supplementary Electronic Data). Using Sussman's measurements (Sussman et al., 2016) we calculated the NALMA, North American Land Age; SALMA, South ratios of the size of the molars of C. magnus compared with fossil American Land Mammal Age. Quaternary American erethizontids, which are presented in Table 2. Quaternary and living erethizontids not available for direct com- parison e Coendou kleini (Frazier, 1981), Coendou melanurus 2.4. Morphological and morphometric analysis (Wagner, 1842), Coendou pruinosus Thomas, 1905, Coendou quichua Thomas, 1899, Coendou poyeri (Hulbert, 1997), Erethizon bathy- Comparative dentary specimens are listed in Appendix 1 and gnathum Wilson, 1935, and Erethizon cascoensis White, 1970 e were come from different Quaternary localities: Coendou magnus compared using published illustrations and descriptions (Frazier, (Bolivia, Brazil, Uruguay); Coendou sp. (USA, Mexico); Coendou 1981; Hulbert, 1997; Voss, 2011; Sussman et al., 2016). poyeri (USA); C. kleini (USA) and Coendou. cf. kleini (Mexico); Ere- thizon bathygnatum (USA); E. cascoensis (USA); and E. dorsatum (USA, Mexico). The measurements were taken with a digital caliper 3. Geological remarks accurate to 0.01 mm and are expressed in millimeters. Table 1 provides dentary measurements with their averages, numbers of The fossil-bearing horizon, informally the “Belgranense” levels individuals measured, standard deviations, coefficient of variation, (Castellanos, 1943), is situated on the left bank of the Carcaran~a and ranges. River, downstream from La Ribera Village, Santa Fe Province, A statistical multivariate analysis was performed using the free Argentina (Fig. 1). Although the “Belgranense” is not recognized in software INFOSTAT 1.1 (2002). We performed a principal compo- current stratigraphic nomenclature, it can be correlated with part nents analysis (PCA) to evaluate the morphological variation of of the Pleistocene sequence that here is assigned to the Timbúes

Table 1 Linear measurements (mm) of the dentaries of the sample of living and fossil erethizontids included in the PCA statistical analysis: a, measurement of the alveolus; ca (circa), measurement preserved; *, measurements from Candela (2004:738; tab. 3).

Specimens MDW m1 LLW m1 MDW m2 LLW m2 MDW m3 LLW m3 HD LS

Coendou magnus MFAePv 1706 7.25 6.49 7.34 6.76 7.64 6.61 17.48 21.86 MNHNeTAR 695 5.76 6.23 6.58 7.08 7.13 7.14 17.37 18.68 MNHNeTAR 695 5.53 6.14 6.39 6.95 7.52 7.11 16.91 19.47 MNHNeTAR 696 6.80 ca 6.30 7.39 6.96 7.95 7.22 14.52 22.61 ca MGT 573 7.7 6.7 8.1 7.3 7.7 7.2 15.9 23.5 ca ZMK 9424 7.59 7.13 7.52 7.10 8.01 6.96 ee ZMK 9429 8.1 6.63 8.4 6.96 7.8 6.74 a e 26.28 ZMK 9430 7.55 6.77 7.82 6.46 7.64 6.83 e 23.25 ZMK 9433 7.5 6.51 7.37 6.78 7.31 6.89 e 21.62 ZMK 9437 6.59 6.48 7.28 7.26 eeee ZMK 9435 7.25 6.04 8.34 a 7.39 a 8.79 a 6.93 a e 24.36 ca ZMK 9438 6.89 6.14 6.90 6.68 7.57 6.99 ee ZMK 9441 7.59 6.50 eeee ee ZMK 9443a 6.68 6.54 7.25 7.04 eeee ZMK 9443b 6.68 e 7.44 6.91 eeee ZMK 9443c 7.47 6.93 7.19 6.83 7.68 6.57 ee ZMK 9443d ee 7.74 7.07 7.62 7.29 ee FUMDHAM 113-145817 6.82 6.06 7.42 7.09 eeee

Mean 7.06 6.47 7.38 6.95 7.63 6.98 n 161616161211 SD ±0.70 ±0.31 ±0.50 ±0.22 ±0.24 ±0.24 CV 0.09 0.05 0.07 0.03 0.03 0.03 Range 5.53e7.7 6.04e7.13 6.39e8.4 6.46e7.3 7.13e8.01 6.57e7.29

Erethizontidae MACNePv 5376 7.97 a 7.17 a 6.90 a 6.92 a 7.34 a 6.00 a e 34.05 a

Neosteromys bombifrons MACNePv 8200* 8.29 8.15 8.79 8.70 8.80 8.33 e 26.22 N. pattoni MNH 91e1e1* 7.37 7.80 7.87 8.40 7.50 7.44 e 23.18

Coendou spinosus FHCeCZv 14 4.01 3.65 4.06 3.88 4.18 3.54 10.57 12.39

Coendou prehensilis FUMDHAM 179 5.53 4.85 5.72 4.99 eeee FUMDHAM 343 4.91 5.07 5.33 5.48 eeee MNHNMeMa 3954 6.23 5.29 5.89 5.56 5.62 5.21 14.03 17.13

Coendou sp. MNHNMeMa 1338 6.27 5.71 6.17 6.05 5.75 4.84 13.24 18.2 R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90 79

Table 2 Ratio of the size of the molars (mm) of Coendou magnus compared with fossil erethizontids from the Quaternary of Central and North America. Measurements of USA and Mexico fossil specimens and living E. dorsatum are from Sussman et al. (2006). Data entries, in order, are means, numbers of individuals measured, standard deviations, coefficient of variation, and ranges. All data entries of Tarija (Bolivia), Uruguay and Santa Fe specimens are include in the first rows. Because these inedit data is used in the statistical analyzes with all the sample of Coendou magnus known from Brazil.

Specimen MDWm1 x LLW m1 MDWm2 x LLW m2 MDWm3 x LLW m3

MFAePv 1706 47.05 49.62 50.50 MGT 573 51.59 59.13 55.44 MNHNeTAR 695 32.08 (r) e 33.95 (l) 46.58 (r) e 44.41 (l) 50.90 (r) e 53.46 (l) MNHNeTAR 696 42.84 51.43 57.39

Coendou magnus Mean 47.59 52.74 53.58 n131410 SD ±4.57 ±4.31 ±3.31 CV 0.09 0.71 1.13 Range 41.33e54.12 46.09e61.63 50.37e60.91

Coendou kleini Mean 32.4 34.55 29.57 n554 SD ±4.04 ±0.80 ±2.43 CV 0.12 0.02 0.08 Range 28.1e38.9 33.6e35.4 26.5e31.8

Coendou poyeri UF 121740 holotype 45.9 52.9 38.4

Coendou spp. Mean 43.16 47.10 43.47 n332 SD ±1.12 ±2.14 ±3.75 CV 1.01 0.94 Range 42.2e44.4 44.8e49.0 40.9e46.2

Erethizon bathygnathum Mean 50.90 52.62 51.01 n553 SD ±2.32 ±2.39 ±3.09 CV 0.16 0.88 1.60 Range 48.2e53.3 50.3e56.2 48.9e54.6

Erethizon cascoensis F:AM 17883-2 42.8 39.6 Erethizon dorsatum Mean 40.1 41.5 43.3 n767365 SD ±3.1 ±4.0 ±3.8 Range 34.2e47.6 34.0e51.1 35.4e51.8

Formation from the Northern Pampa geomorphological unit Hystricomorpha Brandt, 1855 (Iriondo and Krohling,€ 2009; Vezzosi, 2015). The sedimentary Hystricognathi Tullberg, 1899 characteristics, deposits with sandy levels and facies of small con- Erethizontidae Thomas, 1897 glomerates, indicate a fluvial origin for the Timbúes Formation Coendou Lacep ede, 1799 generated by the Carcaran~a River and indicate the position of its Coendou cf. magnus (Lund, 1839) previous mouths into the Parana River (Iriondo and Krohling,€ 2009; Vezzosi et al., 2017). Thermoluminescence radiometric ages from the middle section of the upper unit (i.e., Carcaran~a Formation) 4.1.1. species upstream to the fossiliferous area, as well as in the same strati- Sphigggurus magnus Lund, 1839: Pl. IV: Figs. 1e4, Pl. V: graphic position outside of the area (i.e., Marull Fluvial Sands), Figs. 1e12. indicated that the upper deposits of the sequence were deposited during the late Pleistocene (45e52 kyr BP; Krohling,€ 1999; Krohling€ and Iriondo, 1999; Iriondo, 2010). Thus, the fossiliferous horizon 4.1.2. Type specimen underlying the Carcaran~a Formation (Vezzosi, 2015) is assigned to ZMK Lund 9424. the Upper Pleistocene (Global Stage/Age; Cohen et al., 2013; updated). 4.1.3. Material referred A right mandibular fragment with the incisor root and m1em3 series, MFAePv 1706 (Fig. 2AeE). 4. Results

4.1. Systematic paleontology 4.1.4. Locality and horizon Upper Pleistocene beds of the Carcaran~a River fossiliferous area Mammalia Linnaeus, 1758 (Vezzosi, 2015; Vezzosi et al., 2017), downstream from La Ribera Rodentia Bowdich, 1821 Village, Santa Fe Province, Argentina (32380S e 60480W). 80 R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90

Fig. 1. Location map of the Coendou cf. magnus record from the Pleistocene of Santa Fe Province (black triangle) and Plio-Pleistocene records from South America (black circles): 1, Toca do Serrote das Moendas, Serra da Capivara, Piauí e Brazil (Kerber et al., 2016); 2, Caves of Bahia e Brazil (Cartelle, 1999; Lessa et al., 2008); 3, Lagoa Santa, Minas Gerais e Brazil (Winge, 1887); 4, Sopas Formation e northern Uruguay (Ubilla, 1996); 5, Tarija e Bolivia (middleelate Pleistocene; Hoffstetter, 1963); 6, Uquia Formation, Juguy e Argentina (Reguero et al., 2007; Sussman, 2011). Current distribution of living species: A, Coendou prehensilis;B,C. spinosus;C,C. bicolor;D,C. speratus;E,C. ichillus;F,C. melanurus;G,C. insidiosus;H,C. nycthemera;I,C. quichua;J,C. rufescens;K,C. pruinosus;L,C. vestitus;M,C. rossmalenorum. Based on Voss and da Silva (2001), Barquez et al. (2006), Voss et al. (2013) and Voss (2015).

4.2. Anatomical description metaflexid are open. The anterofossetid is wide in the 3 M, and more labio-lingually elongated in the m3. The hypoflexid is slightly The dentary has the m1em3 series preserved, with a posterior oblique and its lingual end reaches to the tip of mesoflexid in the portion of the incisor (Fig. 2). The body of the dentary is deep m2 and m3. The ectolophid of the m1 is wider in the m2 and m3. (Table 1). The coronoid process is at the level of the m3, such as in The mesoflexid has the largest lingual opening. The lingual opening other Coendou specimens (Figs. 2, 4e6). The fragment of incisor of the metaflexid of the m3 (which is less worn) is also large. The shows a subtriangular section and is projected posteriorly to the anteroflexid and metaflexid are longer than the mesoflexid, sur- distal end of the m3 (Fig. 2A). The cheek teeth are brachyodont and passing the midline of the . tetralophodont (Fig. 2E). The m1 is the most worn tooth, followed by the m2 and m3, respectively. The mesoflexid is open in all mo- 4.3. Taphonomy lars. In the m1, the first lingual flexid is closed (anterofossetid), the mesoflexid is open, and the metaflexid is almost closed (Fig. 2A). In In a taphonomic framework, MFAePv 1706 shows no evidence the m2 and m3, there is an anterofossetid, and the mesoflexid and of abrasion produced by transport, probably resulting from a very R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90 81

Fig. 2. Dentary of Coendou cf. magnus from Santa Fe: A, lingual view; B, labial view; C and E, occlusal view; D, detail of sedimentary matrix of the fossil-bearing unit. Scales 5 mm and 10 mm. For anatomical abbreviations, see Material and Methods. short transport time prior to deposition. Moreover, the specimen bathygnathum, and are larger than any modern and middle Pleis- has part of the sedimentary matrix attached lingually to the den- tocene Coendou species from Central and North America, and tary that is composed of sandy levels in a small particle size E. dorsatum (Table 2). However, C. poyeri has dimensions very close conglomerate (Fig. 2D). to the smallest specimens of C. magnus. All fossils of Coendou sp. from northern areas have a similar size, although they are clearly 4.4. Dentary dimensions smaller than C. magnus. Furthermore, none of the molars of Coen- dou sp. have dimensions similar to South American forms, or are Labio-lingual width of the incisor (LLW) of MFAePv somewhat larger than a ratio value of 50 as in some North American 1706 ¼ 4.98 mm; LLW of MACNePv 5376 ¼ 5.58 mm, MDW of species (Table 2). It is clear that these records from North America MACNePv 5376 ¼ 5.18 mm. The ratio of the size of the molars in and Mexico assigned to Coendou show anatomical evidence and Coendou magnus is larger than in the Quaternary forms from North dimensions that would suggest a new taxon, smaller than C. poyeri, America and Mexico (Table 2), even more than the average di- but larger than C. kleini (Sussman et al., 2016). mensions of living Neotropical Coendou species (Sussman et al., Among Erethizon species, E. bathygnathum is considered the 2016; tab. 1). It is noteworthy that MFAePV 1706 presents a largest taxon from the northern region of America (Wilson, 1935; molar size ratio within the dental variation of C. magnus (Fig. 3). Frazier, 1981; Sussman et al., 2016), but not as large as the C. In addition, it is important to note that fossils of Coendou from magnus specimens studied here (Tables 1 and 2). Thus, C. magnus is southern and southwestern South America (i.e., Brazil and a large erethizontid among the Coendou and Erethizon species and Uruguay) have the same size or are somewhat larger than the shows a size and proportions very close to the Miocene species Pliocene specimen, both Bolivian fossils, C. poyeri and Erethizon from Patagonia. 82 R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90

Fig. 3. Principal components analysis and linear regression expressed on log10 scale for lower m1em3: A) Biplot of PCA between the dentary of the sample of erethizontids and the fossil specimen from Santa Fe, Argentina: 1, MFAePv 1706 (black star); 2e14, Coendou magnus (Cm, white circles); 15, Neosteromys bombifrons (Nb, black rhomb); 16, N. pattoni (Np, black rhomb); 17, C. spinosus (Cs, white pentagon); 18e19, C. prehensilis (Cp, white triangle); 20, Pliocene Erethizontidae from Jujuy, Argentina (E, inverted black triangle); 21, C. poyeri (Cpo, white square); 22e26, Coendou sp. from North America and Mexico (Csp, white rhombus); 27e29, C. kleini (Ck, white hexagons); 30, Coendou cf. C. kleini (black hexagon); 31e34, Erethizon bathygnathum (Eb, black circles); 35e39, E. dorsatum (Ed, black squares); B) MDW/LLW relation of m1; C) MDW/LLW relation of m2; D) MDW/LLW relation of m3; CmSF, fossil from Santa Fe; CmT, fossil from Tarija (Bolivia); CmU, fossil from Uruguay. Data between dotted lines are within the 95% confidence interval.

4.5. Statistical analyses r ¼ 0.90241; p < .0001) and m2 (N ¼ 40.Chi2 ¼ 0.03169; r ¼ 0.87954; p < .0001) show that the fossil from Santa Fe groups A principal components analysis (PCA) of correlations among inside of the 95% bootstrapped confidence interval in the center of variables was used to evaluate variation in size and shape between the plot and close to the Coendou records from the Pleistocene of the fossil specimens and other erethizontids. This analysis shows Brazil (Fig. 3B and C). However, the regression for the m3 shows the 96% of the total variance present in the sample between PC1 and best fit(N¼ 23, Chi2 ¼ 0.01173; r ¼ 0.85733; p < .0001), although PC2 (Supplementary Electronic Data), grouping the specimen in- the sample is smaller because not all of the m3 are present in the side the morphospace of Coendou magnus with a clear division dental series analyzed (Fig. 3D). On the other hand, the dimensions among the other taxa (Fig. 3A). Thus, the PC1 essentially represents for the molars (alveolus) of the Pliocene erethizontid is grouped in a size (Reyment 1991; Baxter 1995), explaining 91% of total variance different position on the plot. In the case of m1, it is further away to of the PCA, without a key difference among the variables in this the larger specimen of the South American Coendou and Erethizon component. The PC2 represents variation in the form (Reyment bathygnathum (Fig. 3B), while the dimensions of m2 show more 1991; Baxter 1995), explaining 5% of the total variation. Both affinities with the smaller Quaternary specimens (Fig. 3C), but not MDW variables in the molars have importance in this analysis, the m3, which is outside of the 95% confidence interval (Fig. 3D). although different scores have more importance in this analysis, with positive loading for the variable MDWm1 (0.26). In contrast, the variable LLWm2 shows the highest score, but has negative 5. Discussion loading (0.59). The same is observed in the morphospace of the e biplot for the late Pliocene Erethizontidae specimen from north- 5.1. Taxonomic remarks on MFA Pv 1706 and C. magnus lower western Argentina and the sample of indeterminate Coendou spp. cheek tooth morphology from North America and Mexico, both falling inside the Coendou magnus group (Fig. 3A). In turn, fossil dentaries of Erethizon bath- Besides the small Chaetomys, other living and Quaternary fossil ygnathum are closer to some C. magnus from Brazil and Uruguay erethizontids from South America are included in the genus than the living E. dorsatum. Coendou (see Voss, 2011; Sussman, 2011; Vezzosi, 2015). As stated Both linear regressions for m1 (N ¼ 38, Chi2 ¼ 0.02649; above, the only known extinct species of Coendou recognized in Quaternary beds is C. magnus, the largest Quaternary South R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90 83

Fig. 4. Dentary of Uquian Erethizontidae (late Pliocene) from Jujuy, Argentina: A, lingual view; B, labial view; C, occlusal view showing the alveolus of pm4em3 series; D, distal view; E, fragment of incisor. Scale 10 mm. For anatomical abbreviations, see Material and Methods.

American porcupine. The dentary of MFAePv 1706 possesses the teeth, and they have the definitive premolar (p4). The specimens combination of a Coendou-type molar morphology and in some ZMK 11845-9424 (Fig. 7K), ZMK 11845-9430 (Fig. 7H), ZMK 11845- ways incisor procumbence, laterally directed cheek-tooth axes, and 9435 (Fig. 7I), and ZMK 11845-9429 (Fig. 7J) represent the most the absence of any traits definitely restricted to Erethizon (Sussman, advanced ontogenetic stages of this sample from the late Pleisto- 2011; Sussman et al., 2016). The linear measurements used in the cene of Lagoa Santa, Brazil, because the dentine is more exposed on statistical analyses reveal a strong affinity and close relation of the the molars than in the other specimens. size and shape of MFAePv 1706 with Coendou magnus from Brazil, The premolar of C. magnus is tetralophodont. However, ZMK Uruguay, and in some ways with the Uquian specimen from the 11845-9424 shows an additional lophid between the second and Pliocene of Argentina and the specimens from Bolivia (Table 1, third (?mesolophid), and ZMK 11845-9433 shows a small fossetid Fig. 4). However, in a preliminary comparison with cheek teeth mesial to the metalophid I (Fig. 7). MGT 573, the specimen assigned series of C. magnus from Lagoa Santa, Brazil (Fig. 5) and Tarija valley, to C. aff. magnus by Ubilla (1996, fig. 10A) from the Sopas Formation, Bolivia (Table 2, Fig. 6), some differences in the timing of flexid has a similar morphology to ZMK 11845-9435, ZMK 11845-9442, closure are observed (Fig. 8, Supplementary Electronic Data). and ZMK 11845-9443, showing the anterofossetid closed and both The specimens ZMK 11845-9442 (Fig. 7A) and ZMK 11745-9443 the meso and metaflexid open. Unfortunately, MFAePv 1706 and (Fig. 7B) have the first tooth more worn than the molars (m1em2). MNHNeTAR 696 do not preserve this tooth. In addition, both The dentine of this tooth in both specimens is more exposed than in dentary series of MNHTeTAR 695 show a p4 with advanced the other cheek teeth. This suggests that these specimens still have occlusal wear, thus do not permit the study of the occlusal the deciduous premolar, which erupts after or almost simulta- morphology (Fig. 6C). neously with the m3. The other specimens that have the first tooth Regarding the molars, ZMK 11845-9442 shows the m1 broken preserved (i.e. ZMK 11845-9433, Fig. 7D; ZMK 11845-9437, Fig. 7E; labially. The anteroflexid and metaflexid of this tooth are closed and ZMK 11845-9424, Fig. 7G; ZMK 11845-9430, Fig. 7H; ZMK 11845- the mesoflexid is open. The m2 shows the first lingual flexid closed, 9435, Fig. 7I; ZMK 11845-9429, Fig. 7J) show less or similar wear in the second open, and the third in the process of closure (Fig. 7A). this tooth than in m1em2, suggesting that it erupted after both ZMK 11845-9443 shows the m1em2 with the first and third flexids 84 R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90

Fig. 5. Dentaries of Coendou magnus from the Quaternary of Lapa da Escrivania nº 5, Lagoa Santa, Brazil, in lateral and medial views. Scale 10 mm. closed (Fig. 7B). In ZMK 11845-9438, there is an anterofossetid on and m2 with only the mesoflexid as the only lingual flexid open the m1em3, and the mesoflexid and metaflexid are still open (Fig. 7G). In the m3, there is an anterofossetid, mesoflexid, and the (Fig. 7C). ZMK 11845-9433 shows the m1 and m2 with the first and metaflexid in the process of closure. In ZMK 11845-9430, the m1 last flexids almost closed (Fig. 7D). In the m3, the first flexid is and m2 show the first and last flexids almost closed, and the closed, and the last flexid is still open. In ZMK 11845-9437, the first mesoflexid is open. In the m3, the first flexid is closed, while the and third flexids are closed in the m1em2 and the mesoflexid is second and third are open (Fig. 7H). ZMK 11845-9435 shows an open (Fig. 7E). In the m1 of ZMK 11845-9434, the first flexid is not anterofossetid and metafossetid on the m1 (Fig. 7I). ZMK 11845- totally closed and the third is closed. In the m2 the first and third 9429, which has cheek teeth that are more worn than in other are closed, and the mesoflexid is open (Fig. 7F). In the m3, the first specimens, shows the m1 and m2 with the first and third flexids flexid is closed but the third is open. ZMK 11845-9424 shows m1 closed, while the mesoflexid is in the process of closure (Fig. 7J). R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90 85

Fig. 6. Dentaries of late Pleistocene Erethizontidae from Tarija, Bolivia (AeC, MNHNeTAR 695; D, MNHNeTAR 696). A, lateral view of right and left dentaries of MNHNeTAR 695; B, medial view of both dentaries; C, occlusal view showing pm4em3 series; D, occlusal (left) and lateral views (right) of MNHNeTAR 696. Scale 10 mm. For anatomical abbreviations, see Material and Methods.

In the drawing of the occlusal series of C. aff. magnus from anterofossetid, and metafossetid. The mesoflexid is in the process Uruguay (Ubilla, 1996, fig. 10A), in the m1em2, the anteroflexid is of closure. The m2em3 show the first and third lingual flexids closed, the mesoflexid is open, and the metaflexid is closing (more closed, while the second is open. open in the m2). In the m3, the mesoflexid is completely open, and With wear, the area of the ectolophid of the molars becomes the first and third lingual flexids are in the process of closure. In the wider, which is observed in comparative specimens and MFAePv specimens from Bolivia from Tarija, MNHNeTAR 695 shows the m1 1706. totally worn (Fig. 6C). The m2 is quite worn, and only a small and Analyzing the occlusal morphology of the molars of the above- open metaflexid and two small fossetids remaining from the first mentioned specimens assigned to C. magnus, it is possible to and third flexids are present. In the m3, which is less worn, the first observe that most of them have a general pattern of lingual flexid flexid and third are closed whereas the second is open. MNHNeTAR closure. Although some variations are found, such as ZMK 11845- 696 shows the m1 very worn (Fig. 6D), with a small hypofossetid, 9438, which has little wear and the metaflexid is not closed in the 86 R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90

Fig. 7. Occlusal surface of lower dental series of Coendou magnus from Brazil: A, right dp4em2; B, right dp4em2; C, left m1em3; D, right p4em3; E, right p4em2; F, left m1em3; G, left p4em3; H, left p4em3; I, left p4em1; J, left p4em2. Scale 5 mm. R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90 87

3 M, in most of specimens, the metaflexid closes slightly after the phases in the center of Argentina. anteroflexid (almost simultaneously), and the mesoflexid closes It is important to note that the distribution of living species of very late. In some m3s that are less worn, the metaflexid is not Coendou does not include the region where the fossil here studied totally closed (ZMK 11845-9424), but the other molars (erupted was collected. Likewise, no historical records of extant Neotropical before) show an anterofossetid and a metafossetid, or the meta- porcupines are reported from lowlands between 32 to 33ºS lati- flexid is almost closed. A similar timing of closure between the first tude, such as Santa Fe (see Paucke, 1749e1767 [In Wernicke, and last flexids was also observed in some specimens of C. villoses 1942e1944]; Azara, 1850; Pautasso, 2008; Barquez et al., 2006). (PIMUZ 2437), C. prehensilis (PIMUZ 2422), Coendou sp. (PIMUZ The most austral records of living species in Argentina are reported 2413, 2418), and Erethizon dorsatum (PIMUZ 16758). On the other in the northwestern Yungas eco-region of Jujuy and Salta provinces, hand, MFAePv 1706 has a considerable degree of wear and the 3 M consisting of Coendou bicolor and C. prehensilis (Burkart et al., 1999; show the first flexid closed, but the third one is still open. That is, Alvarez and Martínez, 2006). Furthermore, in the northeast, C. the closure of the anteroflexid and the metaflexid is slightly prehensilis and C. spinosus are mentioned from the Paranense and different from most specimens of C. magnus and other erethi- Campos and Malezales eco-regions in Corrientes and Misiones zontids. Some specimens of C. magnus show the m2 and m3 (e.g., provinces (Alvarez and Martínez, 2006). Hence, our record suggests ZMK 11845-9433) with the first flexid closed and the third still a regional extinction of Coendou to 32ºS latitude, possibly related to open, but no specimen of Coendou magnus from Brazil and Bolivia climatic changes following the MIS5 Substage during the late has similar traits to the fossil from Santa Fe, in that it possesses a Pleistocene, which clearly changed the environmental conditions of considerable degree of wear and the molars show the ante- the dry tropical forest and xeric seasonally woody vegetation be- rofossetid closed and the metaflexid still open. In most cases, when tween 32 and 34ºS latitude. the m3 shows the third flexid closing, the third flexid of m1 and m2 Moreover, the Quaternary model of the potential distribution are already closed (Fig. 8, Supplementary Electronic Data). that this Neotropical rodent would have had is consistent with the The specimen from Santa Fe shows a slightly distinct pattern of distributions of contemporary seasonally dry tropical forest species flexid closure during ontogeny compared to other specimens in Amazonia, the austral Chaco and the Espinal of the Northern assigned to C. magnus. At this moment, based on a unique spec- Pampa in Argentina (Pennington et al., 2000). If our interpretation imen, we cannot discern if this trait represents intraspecific varia- is correct, it has been present in the temperate plains of Argentina tion in C. magnus or if it could characterize a new taxonomic unit. at least since 120e50 kyr BP. However, its fossil occurrence is More complete specimens are required to test this interpretation; predominantly from the late Pleistoceneeearly Holocene in in addition, the taxonomic unit of C. magnus from the tropical re- Neotropical areas of Brazil, with the northernmost record linked to gion of Brazil and other fossils from Bolivia and Uruguay assigned to seasonally dry Neotropical vegetation in the Caatingas (Pennington it need reviewing, and the sequence of wear also must be analyzed et al., 2000). in a wider context. Vezzosi (2016) and Vezzosi et al. (2017) have noted that, regarding the faunal assemblage of the Carcaran~a River basin in the 5.2. Fossil record of Coendou in the PleistoceneeHolocene Upper Pleistocene, a more tropical and subtropical biogeographic environmental context affinity of some (e.g., caviomorph rodents, siluriform fish, semi-aquatic birds and chelonians, among others) agrees with On geographical grounds, tropical living erethizontids are that suggested for certain sedimentary environments (i.e., Tim- distributed across tropical and subtropical environments of búes/Puerto San Martín Formations). The temporal and physical northeastern and western South America, south to Peru and Bolivia austral dispersion of Coendou from warm and tropical xeric envi- and eastern Brazil (Voss, 2011, 2015). ronments raises the possibility that this was part of a dispersal In an overall context for the Quaternary, no records of erethi- event related to the occurrence and evolution of the seasonally dry zontids have been reported from the Pleistocene of Argentina. Only tropical forests during the Late Quaternary in the north of one record assigned to cf. Coendou sp. known from the late Pliocene Argentina (Pennington et al., 2000). of northwestern Argentina is probably the southernmost occur- rence (Sussman, 2011, Fig. 4). Thus, the record of Coendou, with 6. Conclusions affinities to C. magnus, from Santa Fe Province corresponds to the most austral presence of this taxon in Pleistocene deposits, sug- The record of an erethizontid in Pleistocene deposits implies the gesting some woodland environments extended into the Northern first fossil evidence of this group for the eastern area of Argentina Pampa region during interglacial conditions. Taking into consider- and the southernmost record of this genus during this epoch. ation the geological sequence, chronological dates from Mid- According to Candela (2000, 2004), Miocene erethizontids are dleeUpper Pleistocene deposits in neighboring areas, and related to a more abrasive diet and rough pastures with some de- chronostratigraphic analyses (see Iriondo and Krohling,€ 2009; gree of seasonality. In this sense, they are more adapted to dwelling Iriondo, 2010; Vezzosi et al., 2017), this record could belong to a in open temperate areas than in tropical and subtropical Miocene phase of the last fluvial cycles, mainly during the interglacial pe- environments. On the other hand, Coendou species have a type of riods (Brunetto et al., 2010, 2014, 2015, 2017a, 2017b; Vezzosi, diet that is less abrasive and more related to subtropical environ- 2015). This inference is compatible with the interpretation of the ments with a predominance of open gallery forests linked to water sediments from which the fossil material was recovered, which bodies, such as is observed today in the fluvial valley of the Parana were deposited under more humid conditions than present. In turn, River System. the fossil occurrence of semi-aquatic rodents (Hydrochoeridae and Likewise, the presence of this taxon in the center of Argentina Myocastorinae) in association with Toxodontidae and Gompho- increases its geographical range up to 32 south in South America. theriidae ungulates and also Nothrotheriinae sloths with affinities We think that the parallelisms found among the present and past to North American Pleistocene forms (Brandoni and McDonald, histories of Coendou species may be explained by the role played by 2015; Vezzosi, 2016; Vezzosi et al., 2017), would suggest the pres- the presence of woody xeric southern environments in the ence of heterogeneous complex environments with semi-aquatic pampean area during the Late Pleistocene related to some warmer systems and plains with wooded grasslands related to more hu- and wet climatic pulses. However, more complete and accurate mid conditions than present during the Pleistocene last interglacial data provided by paleontological and geological studies would be 88 R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90 useful to test these hypotheses. Argentina); Pliocene specimen from Uquía (Jujuy, Argentina): We conclude that this specimen should be assigned to the MACNePv 5376. Neotropical genus Coendou and further, due to its overall similarity Recent taxa: Coendou sp.: MNHNeMa 1338; Coendou bicolor: to C. magnus, we assign it to Coendou cf. magnus, pending the dis- AMNH 15459, AMNH 214610, AMNH 214611, AMNH 214612, AMNH covery of more diagnostic material to help clarify the species 214615, AMNH 23472, LACM 27376, AMNH 41204; Coendou mex- designation. Moreover, the wider distribution of this large extinct icanus: AMNH 29821, AMNH 123272, AMNH 123274, AMNH intertropical porcupine displays undoubtedly novel and substantial 143969, AMNH 145983, AMNH 190417, AMNH 190419, AMNH paleoenvironmental and ecomorphological conditions to be tested 190421, AMNH 190422, AMNH 190423, AMNH 190424, AMNH in the stratigraphic Pleistocene sequence from the Northern Pampa 190425, AMNH 190426, AMNH 190427; Coendou nycthemera: region. The Quaternary erethizontids need to be reviewed. Today, AMNH 96324, AMNH 96325, AMNH 96326, AMNH 96327, AMNH more than 10 species included in Coendou have been described 96328, AMNH 134075, AMNH 134076, AMNH 134211; Coendou (Voss, 2015), and the diversification process of this genus occurred prehensilis: AMNH 61785, AMNH 70204, AMNH 70296, AMNH during the Quaternary. Hence, a review of the fossil record of this 73680, AMNH 134062, AWC 2, FUMDHAM 179, FUMDHAM 343, group could provide insights into this evolutionary process. MNHNMeMa 3954, MNHN A2859; PIMUZ A/V 2424, ZMK 521, ZMK L43, ZMK L44; Coendou rufescens: AMNH 73678, AMNH 150028, Acknowledgments AMNH 181483, AMNH 181484; Coendou spinosus: FHCeCZv 14; Erethizon dorsatum: AMNH 6740, AMNH 9890, AMNH 18066, For assisting us during study visits and allowing access to ma- AMNH 20773, AMNH 20774, AMNH 21849, AMNH 21891, AMNH terial under their care, we thank Andres Pautasso and Leonardo 22705, AMNH 64358, AMNH 64359, AMNH 64360, AMNH 67215, Leiva (Museo Provincial de Ciencias Naturales “Florentino Ame- AMNH 67890, AMNH 120470, AMNH 120573, AMNH 120574, ghino”), Pablo Teta and Sergio Lucero (Museo Argentino de Ciencias AMNH 120575, AMNH 121895, AMNH 121896, AMNH 122663, Nautrales “Bernardino Rivadavia”, Coleccion Mastozoología), Ale- AMNH 122664, AWC 1, ZMUZ 16758, ZMUZ 17285; Sphiggurus jandro Kramarz (Museo Argentino de Ciencias Nautrales “Bernar- insidiosus: PIMUZ A/V 2434; S. villoses: PIMUZ A/V 2437. dino Rivadavia”, Coleccion Paleontología de Vertebrados), Itatí Olivares and Diego Verzi (Museo de La Plata, Universidad Nacional Appendix A. Supplementary data de La Plata, Buenos Aires), Martín Ubilla (Coleccion Zoologica de la Facultad de Ciencias de Montevideo y Museo de Geociencias de Supplementary data related to this article can be found at Tacuarembo, Uruguay), Enrique Gonzalez (Division de Mastozoo- https://doi.org/10.1016/j.jsames.2017.12.015. logía, Museo Nacional de Historia Natural de Montevideo, Uruguay), Niede Guidon (Fundaçao~ Museu do Homen Americano, References Sao~ Raimundo Nonato, Brazil), Kasper Lykke Hansen (Zoological € Museum der Universitat Zürich), Guillaume Billet (Museum Na- Alberico, M., Rojas-Díaz, V., Moreno, J.G., 1999. Aporte sobre la taxonomía y dis- tional d'Historie Naturelle, París, Francia), and Martina Schenkel tribucion de los puercoespines (Rodentia: Erethizontidae) en Colombia. Rev. Acad. Colomb. Ciencias Exactas, Fis. Nat. 23 (spec. suppl), 595e612. (Zoologisches Museum, University of Zurich); and Kristian Gre- Alvarez, M.R., Martínez, R.A., 2006. Familia Erethizontidae and . In: gersen (Centre for GeoGenetics and Zoological Museum of Copen- Barquez, R.M., Díaz, M.M., Ojeda, R.A. (Eds.), Mamíferos de Argentina: Sis- hagen, Copenhagen, Denmark). We thank the reviewers Itatí tematica y distribucion. Sociedad Argentina para el Estudio de los Mamíferos, Olivares and Ruben Guzman for providing useful reviews, as well as Tucuman, pp. 202e205. Ameghino, F., 1887. Enumeracion sistematica de las especies de mamíferos fosiles the Regional Editor Francisco J. Vega for their comments on the coleccionados por Carlos Ameghino en terrenos eocenos de Patagonia austral y manuscript; Katarzyna Piper, for the English review. This research depositados en el Museo de La Plata. Boletín del Museo de La Plata 1, 1e26. was supported partially by CONICET (Argentina) and CNPq (Con- Anderson, S., 1997. of Bolivia, and distribution. Bull. Am. . Nat. Hist. 231, 1e652. selho Nacional de Pesquisa e Tecnologia) Process CNPq 201356/ ~ Azara, F., 1850. Viajes por la America del Sur de Don Felix de Azara (B. Rivadavia, 2015-5 and Edital de Missoes Curtas UFRGS 2012 for the financial Trad.) Montevideo, Comercio del Plata (Original published in 1802). support (L.K.). Barquez, R.M., Díaz, M.M., Ojeda, R.A., 2006. Mamíferos de Argentina: Sistematica y distribucion. Sociedad Argentina para el Estudio de los Mamíferos, Tucuman, 359 pp. Appendix 1. Comparative specimens Baxter, M.J., 1995. Standardization and transformation in principal component analysis, with applications to archaeometry. Applied Statistics 44, 513e527. Fossil taxa: Coendou magnus: FUMDHAM 113e145817 (Brazil), Bell, C.J., Lundelius Jr., E.L., Barnosky, A.D., Graham, R.W., Lindsay, E.H., Ruez Jr., D.R., e e Semken Jr., H.A., Webb, S.D., Zakrzewski, R.J., 2004. The , irvingtonian, MGT 573 (Uruguay), MNHN TAR 695 (Bolivia), MNHN TAR 696 and rancholabrean mammal ages. In: Woodburne, M.O. (Ed.), Late (Bolivia), ZMK 11845-9424 (type, Brazil), ZMK 11845-9429 (Brazil), and Mammals of North America. Columbia University Press, New ZMK 11845-9430 (Brazil), ZMK 11845-9433 (Brazil), ZMK 11845- York, pp. 232e295. Bonvicino, C.R., Penna-Firme, V., Braggio, E., 2002. Molecular and karyologic evi- 9434 (Brazil), ZMK 11845-9435 (Brazil), ZMK 11845-9438 (Brazil), dence of the taxonomic status of Coendou and Sphiggurus (Rodentia: Hys- ZMK 11845-9441 (Brazil), ZMK 11845-9442 (Brazil), ZMK 11845 tricognathi). J. Mammal. 83, 1071e1076. 9443 (Brazil); Coendou poyeri: UF 121740 (holotype, Florida, USA), Bordas, A.F., 1942. Observaciones sobre algunos Nothrotheriinae (Gravigrada). Physis 19, 173e179. UF 121747; Coendou kleini: UF 21473 (holotype, Florida, USA), UF Bossi, G.E., Muruaga, C.M., 2009. Estratigrafía e inversion tectonica del ‘rift’ neogeno 21474 (Florida, USA), UF 21475 (Florida, USA); Coendou cf. kleini: en el Campo del Arenal, Catamarca, NO Argentina. Andean Geol. 36, 311e341. AWC 10858 (Sonora, Mexico), AWC 12197 (Sonora, Mexico), AWC Brandoni, D., McDonald, G.H., 2015. An enigmatic Nothrotheriinae (, tar- e 12540 (Sonora, Mexico), AWC 13592 (Sonora, Mexico), AWC 14810 digrada) from the Pleistocene of Argentina. Ameghiniana 52 (2), 294 302. Brunetto, E., Iriondo, M., Zamboni, L., Gottardi, M.G., 2010. Quaternary deformation (Sonora, Mexico), IGM 10199 (Sonora, Mexico); Coendou sp.: UF around the palo negro area, Pampa norte, Argentina. J. S. Am. Earth Sci. 29, 21490 (Florida, USA), UF 21492 (Florida, USA), UF 124632 (Florida, 627e641. USA), UF 11776 (Florida, USA), UMMP V-47106 (Aguas calientes, Brunetto, E., Noriega, J.I., Brandoni, D., 2013. Sedimentología, estratigrafía y edad de la Formacion Ituzaingo en la provincia de Entre Ríos, Argentina. In: Brandoni, D., Mexico); Erethizon bathygnathum: USNM 13684 (holotype, Idaho, Noriega, J.I. (Eds.), El Neogeno de la Mesopotamia Argentina. Asociacion Pale- USA), UO F-16271 (Idaho, USA), UO F-16272 (Idaho, USA), IVCM 309 ontologica Argentina, vol. 14. Special publication, pp. 13e27. € (California, USA); Erethizon cascoensis: F:AM 17883-2 (California, Brunetto, E., Krohling, D., Francisconi, C., 2014. La geomorfología de una region e representativa de Pampa Norte y sur de la Mesopotamia en el contexto de los USA); Neosteromys bombifrons:MACN Pv 8200 (holotype, Cata- procesos endogenos. In: Aportes para el mapeo de areas de llanura. XIX Con- marca, Argentina); N. pattoni: MNH 91e1e1 (holotype, Catamarca, greso Geologico Argentino, pp. S13eS30. R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90 89

Brunetto, E., Ferrero, B., Noriega, J.I., 2015. Late Pleistocene lithostratigraphy and extrait de quelques memoires presentes a l'Academie Royale des Sciences de sequences in the south-western mesopotamia (Argentina): evidences of the last Copenhague. Annales des Sciences Naturelles (Zoologie, 2) 11, 214e234. interglacial stage. J. S. Am. Earth Sci. 58, 111e128. https://doi.org/10.1016/ Marivaux, L., Vianey-Liaud, M., Jaeger, J.-J., 2004. High-level phylogeny of early j.jsames.2014.12.003. Tertiary rodents: dental evidence. Zool. J. Linn. Soc. 142, 105e132. Brunetto, E., Krohling,€ D.M., Zalazar, M.C., Francisconi, C., 2017a. Analysis of the Morgan, G.S., Hulbert, R.C., 1995. Overview of the geology and bio- interaction between neotectonic and surface processes in a low-land intra- chronology of the leisey shell pit local fauna, hillsborough county, Florida. Bull. cratonic setting of South America. Quat. Int. 438, 141e159. https://doi.org/ Fla. Mus. Nat. Hist. 37, 1e92. 10.1016/j.quaint.2016.06.018. Parera, A., 2002. Los mamíferos de Argentina y la region austral de Sudamerica. Brunetto, E., Sobrero, F., Gimenez, M.E., 2017b. Quaternary deformation and stress Editorial El Ateneo, Buenos Aires, Argentina, 458 pp. field in the Río de la Plata Craton (Southeastern South America). J. S. Am. Earth Pautasso, A.A., 2008. Mamíferos de la provincia de Santa Fe, Argentina. Comuni- Sci. (in press) https://doi.org/10.1016/j.jsames.2017.04.010. caciones del Museo Provincial de Ciencias Naturales "Florentino Ameghino" 13 Bryant, J.D., McKenna, M.C., 1995. Cranial anatomy and phylogenetic position of (2), 1e248. altaicus (Mammalia: Rodentia) from the Pennington, R.T., Prado, D.E., Pendry, C.A., 2000. Neotropical seasonally dry forests (Oligocene), Mongolia. American Museum Novitates 3156, 1e42. and Quaternary vegetation changes. J. Biogeogr. 27, 261e273. Bugge, J., 1971. The cephalic arteries in sciuromorphs with special reference to the Perez, M.E., 2010. A new rodent (Cavioidea, Hystricognathi) from the middle systematic classification of rodents. Acta Anat. 80, 336e361. Miocene of Patagonia, mandibular homologies, and the origin of the crown Burkart, R., Barbaro, N.O., Sanchez, R.O., Gomez, D.A., 1999. Ecorregiones de la group Cavioidea sensu strict. J. Vertebr. Paleontol. 30 (6), 1848e1859. Argentina. Administracion de Parques Nacionales. Programa Desarrollo Insti- Reguero, M.A., Candela, A., Alonso, R., 2007. Biochronology and biostratigraphy of tucional Ambiental, Buenos Aires, Argentina, pp. 1e43. the Uquía formation (PlioceneeEarly Pleistocene, NW Argentina) and its sig- Candela, A.M., 1999. The evolution of the molar pattern of the Erethizontidae nificance in the great American biotic interchange. J. S. Am. Earth Sci. 23, 1e16. (rodentia, Hystricognathi) and the validity of parasteiromys Ameghino, 1904. Reyment, R.A., 1991. Multidimensional Palaeobiology. Pergamon Press, Oxford, 377 Palaeovertebrata 28 (1), 53e73. pp. Candela, A.M., 2000. Los Erethizontidae (Rodentia, Hystricognathi) fosiles de Rovereto, C., 1914. Los estratos araucanos y sus fosiles. Anales del Museo Nacional Argentina. Sistematica e historia evolutiva y biogeografica. [Erethizontidae de Historia Natural de Buenos Aires 25, 1e247. (Rodentia, Hystricognathi) fossil form Argentina, Systematic and evolutionary Roze, U., 1989. The . Smithsonian Institution Press, and biogeographic history] [Ph. D. thesis]. Facultad de Ciencias Exactas y Nat- Washington, DC, 296 pp. urales, Universidad Nacional de La Plata, La Plata, Buenos Aires, pp. 1e357. Simpson, G.G., 1950. History of the fauna of Latin America. Am. Sci. 38, 361e389. Candela, A.M., 2002. Lower deciduous tooth homologies in Erethizontidae Sussman, D.R., 2011. The erethizontid fossil from the Uquia Formation of Argentina (Rodentia, Hystricognathi): evolutionary significance. Acta Palaeontol. Pol. 47, should not be referred to the genus Erethizon. J. S. Am. Earth Sci. 31, 475e478. 717e723. Sussman, D.R., Croxen III, F.W., McDonald, G.H., Shaw, C.A., 2016. Fossil porcupine Candela, A.M., 2004. A new giant porcupine (Rodentia, Erethizontidae) from the late (Mammalia, Rodentia, Erethizontidae) from El Golfo de Santa Clara, Sonora, Miocene of Argentina. J. Vertebr. Paleontol. 24 (3), 732e741. Mexico, with a review of the taxonomy of the North American erethizontids. Candela, A.M., Morrone, J.J., 2003. Biogeografía de puercoespines neotropicales Contributions in Science. Natural History Museum of Los Angeles County 524, (Rodentia, Hystricognathi): integrando datos fosiles y actuales a traves de un 1e29. enfoque panbiogeografico. Ameghiniana 40, 361e378. Tate, G.H.H., 1935. The taxonomy of the genera of neotropical hystricoid rodents. Cartelle, C., 1999. Pleistocene mammals of the Cerrado and Caatinga of Brazil. In: Bull. Am. Mus. Nat. Hist. 68, 295e447. Eisenberg, J.F., Redford, K.H. (Eds.), Mammals of the Neotropics. The University Thomas, O., 1899. Descriptions of new rodents from the Orinoco and Ecuador. Ann. of Chicago Press, Chicago, USA, pp. 27e46. Mag. Nat. Hist., ser 7 (4), 378e383. Castellanos, A., 1943. El Preensenadense ¿es un horizonte geologico o una facies? Thomas, O., 1905. New neotropical chrotopterus, , , Coendou, Pro- Publicaciones del Instituto de Fisiografía y Geología 18, 1e83. echimys, and Marmosa. Ann. Mag. Nat. Hist., ser 7 (16), 308e314. Castellanos, A., 1950. El Uquiense. Sedimentos neogenos de Uquía (Senador Perez) Ubilla, M., 1994. Coendou cf. C. magnus (Rodentia, Erethizontidae) en el Pleistoceno de la Provincia de Jujuy (Argentina). Universidad Nacional del Litoral. Facultad superior de Uruguay (Fm. Sopas). In: VI Congreso Argentino de Paleontología y de Ciencias Matematicas, Físicas, Químicas y Naturales 36, 1e55. Bioestratigrafía, p. 44 (Trelew, Chubut, Argentina). Castellanos, A., 1953. Descripcion de restos de Paraglyptodon uquiensis n. sp. de Ubilla, M., 1996. Paleozoología del Cuaternario continental de la Cuenca Norte del Uquía (Senador Perez) de Jujuy. Memorias del Museo de Entre Ríos 32, 1e30. Uruguay: Biogeografía, Cronología y aspectos climatico-ambientales. [Paleozo- Cohen, K.M., Finney, S.C., Gibbard, P.L., Fan, J.X., 2013. The ICS international chro- ology of continental Quaternary from Northern basin of Uruguay: Biostratig- nostratigraphic chart (updated). Episodes 36, 199e204. raphy, Chronology and environmental climatic aspect] [Ph. D. thesis]. Facultad Emmons, L.H., 1997. Neotropical Rainforest Mammals: a Field Guide, second ed. The de Ciencias, Universidad de la República, Montevideo, Uruguay, pp. 1e232. University of Chicago Press, Chicago and London, p. 307. Upham, N.S., Patterson, B.D., 2015. Evolution of the caviomorph rodents: a complete Frazier, M.K., 1981. A revision of the fossil Erethizontidae of north America. Bulletin phylogeny and timetree of living genera. In: Vassalo, A.I., Antenucci, D. (Eds.), of the Florida state Museum. Biol. Sci. 27, 1e76. Biology of Caviomorph Rodents: Diversity and Evolution. SAREM Series a, Frenguelli, J., 1920. Contribucion al conocimiento de la geología de Entre Ríos. pp. 63e120 (Buenos Aires). Boletín Academia Nacional de Ciencias de Cordoba 24, 55e256. Vezzosi, R.I., 2015. Diversidad de los mamíferos del Pleistoceno de la Provincia de Frenguelli, J., 1928. Sobre un perfil geologico del río Carcaran~a. Anales Facultad de Santa Fe, Argentina: aspectos taxonomicos, bioestratigraficos y paleo- Ciencias de la Educacion de Parana3,101 e130. biogeograficos relacionados. [Diversity of mammals from the Pleistocene of Gonzalez, E.M., Martínez Lanfranco, J.A., 2010. Mamíferos de Uruguay. Guía de Santa Fe Province, Argentina: Taxonomic, biostratigraphic and paleobiogeo- campo e introduccion a su estudio y conservacion. Ediciones de la Banda Ori- graphic aspect related] [Ph.D. thesis]. Facultad de Ciencias Exactas y Naturales, ental, 464 pp. Montevideo, Uruguay. Universidad Nacional de La Plata, La Plata, Buenos Aires, pp. 1e870. Hoffstetter, R., 1963. La faune Pleistoc ene de Tarija (Bolivie), note preliminaire. Vezzosi, R.I., 2016. Diversidad de los mamíferos del Pleistoceno de la Provincia de Bulletin du Museum National d'Historie Naturelle 35 (2), 194e203. Santa Fe, Argentina: aspectos taxonomicos, bioestratigraficos y paleo- Hoffstetter, R., Lavocat, R., 1970. Decouverte dans le Dese adien de Bolivie de genres biogeograficos relacionados. Mastozool. Neotrop. 23, 215e217. pentalopholdontes appuyant les affinites Africaines des rongeurs caviomorphs. Vezzosi, R.I., Brunetto, E., Zalazar, M.C., 2017. El registro fosil de vertebrados del C. r. hebd. Seanc. Acad. Sci. (Paris) 271, 172e175. Cuaternario de Santa Fe (Argentina): primera Actualizacion (in press). In: Hulbert, R.C., 1997. A new late Pliocene porcupine (rodentia: Erethizontidae) from Zurita, A., Esteban, G., Chiesa, J., Nasiff, N., Georgierr, S. (Eds.), Mioceno al Florida. J. Vertebr. Paleontol. 17, 623e626. Pleistoceno del Centro y Norte de Argentina. Opera Lillioana. Capítulo 4. InfoStat, 2002. InfoStat, version 1.1. Manual del Usuario, first ed. Universidad Tucuman, Argentina. Nacional de Cordoba, Grupo InfoStat, FCA. Editorial Brujas. Voss, R.S., 2011. Revisionary notes on Neotropical porcupines (Rodentia: Erethi- Iriondo, M.H., 2010. Geología del Cuaternario de Argentina. Museo Provincial de zontidae). 3. An annotated checklist of species of Coendou Lacep ede, 1799. Am. Ciencias Naturales “Florentino Ameghino”. Moglia Ediciones, 437 pp. Santa Fe, Mus. Novit. 3720, 1e36. Argentina. Voss, R.S., 2015. Family Erethizontidae bonaparte, 1845. In: Patton, J.L., Iriondo, M.H., Krohling,€ D.M., 2009. From Buenos Aires to Santa Fe: darwin's ob- Pardinas,~ U.F.J., D’Elía, G. (Eds.), Mammals of South America. The University of servations and modern knowledge. Raduga 64 (1), 109e123. Chicago Press, Chicago, pp. 786e805. Kerber, L., Mayer, E.L., Ribeiro, A.M., Vucetich, M.G., 2016. Late Quaternary cav- Voss, R.S., Angermann, R., 1997. Revisionary notes on Neotropical porcupines iomorph rodents (Rodentia: Hystricognathi) from the Serra da Capivara, (Rodentia: Erethizontidae). 1. Type material described by Olfers (1818) and Kuhl northeastern Brazil, with description of a new taxon, vol. 4, pp. 439e458. (1820) in the Berlin Zoological Museum. Am. Mus. Novit. 3214, 1e44. https://doi.org/10.1080/08912963.2014.967766. Voss, R.S., da Silva, M.N.F., 2001. Revisionary notes on Neotropical porcupines Krohling,€ D.M., 1999. Upper quaternary geology of the lower carcarana basin, north (Rodentia: Erethizontidae). 2. A review of the Coendou vestitus group with Pampa, Argentina. Quat. Int. 57/58, 135e148. descriptions of two new species from Amazonia. Am. Mus. Novit. 3351, 1e36. Krohling,€ D.M., Iriondo, M., 1999. Upper quaternary palaeoclimates of the mar Voss, R.S., Hubbard, C., Jansa, S.A., 2013. Phylogenetic relationships of New World chiquita area, north Pampa, Argentina. Quat. Int. 57/58, 149e163. porcupines (Rodentia, Erethizontidae): implications for taxonomy, morpho- Lessa, G., Cartelle, C., Manduca, E.G., 2008. Reevaluation of rodent assemblages from logical evolution, and biogeography. Am. Mus. Novit. 3769, 1e36. Pleistocene/Holocene of Bahia, Brazil: morphologic and environmental con- Vucetich, M.G., Candela, A.M., 2001. Paradoxomys cancrivorus Ameghino, 1885 siderations. In: Resúmenes III Congreso Latinoamericano de Paleontología de (rodentia, Hystricognathi, Erethizontidae): the first porcupine from the “mes- Vertebrados, p. 137 (Neuquen, Argentina). opotamian” (late Miocene). Ameghiniana 38, 147e150. Lund, P.W., 1839. Coup d’oeil sur les especes eteintes de mammiferes du Bresil; Walton, A.H., 1997. Rodents. In: Kay, R.F., Madden, R.H., Cifelli, R.L., Flynn, J.J. (Eds.), 90 R.I. Vezzosi, L. Kerber / Journal of South American Earth Sciences 82 (2018) 76e90

Vertebrate Paleontology in the Neotropics: the Miocene Fauna of La Venta, Winge, H., 1887. Jordfundne og nulevende gnavere (Rodentia) fra Lagoa Santa, Colombia. Smithsonian Institution Press, Washington, pp. 392e409. Minas Geraes, Brasilien. E Museo Lundii. Copenhagen 1 (3), 1e220. Wagner, J.A., 1842. Beschreibung einiger neuer oder minder bekannter. Nager. Arch. Wilson, R.W., 1935. A new species of porcupine from the later Cenozoic of Idaho. Naturgesch 8 (1), 1e33. J. Mammal. 16, 220e222. Webb, S.D., 1976. Mammalian faunal dynamics of the great american biotic inter- Wood, A.E., Patterson, B., 1959. The rodents of the of Patagonia and the change. Paleobiology 2 (3), 216e234. beginnings of South American rodent evolution. Bull. Mus. Comp. Zool. 120 (3), Wernicke, E., 1942e1944. Introduction by the translator. In: Paucke, F. (Ed.), To- 279e428. wards and There. A Stay between the Mocovíes Indians, vol. I. University of Woods, C.A., 1972. Comparative myology of jaw, hyoid and pectoral appendicular Tucuman, Tucuman, Argentina, pp. 1749e1767. regions of New and Old World hystricomorph rodents. Bull. Am. Mus. Nat. Hist. White, J.A., 1968. A new porcupine from the middle Pleistocene of the Anza Borrego 147, 115e198. Desert of California, with notes on mastication in Coendou and Erethizon. Woods, C.A., 1973. Erethizon dorsatum. Mamm. Species 29, 1e6. Contrib. Sedimentol. 136, 1e15. Woods, C.A., Howland, E.B., 1979. of capromyid rodents: anat- White, J.A., 1970. Late cenozoic porcupines (mammalia, Erethizontidae) of north omy of the masticatory apparatus. J. Mammal. 60, 95e116. America. Am. Mus. Novit. 2421, 1e15.