Heteromys Gaumeri Cheryl A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Systematics of Spiny Pocket Mice (Subfamily Heteromyinae) Inferred from Mitochondrial and Nuclear Sequence Data
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2009-04-17 Molecular Systematics of Spiny Pocket Mice (Subfamily Heteromyinae) Inferred from Mitochondrial and Nuclear Sequence Data Melina Crystal Williamson Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biology Commons BYU ScholarsArchive Citation Williamson, Melina Crystal, "Molecular Systematics of Spiny Pocket Mice (Subfamily Heteromyinae) Inferred from Mitochondrial and Nuclear Sequence Data" (2009). Theses and Dissertations. 1718. https://scholarsarchive.byu.edu/etd/1718 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. MOLECULAR SYSTEMATICS OF SPINY POCKET MICE (SUBFAMILY HETEROMYINAE) INFERRED FROM MITOCHONDRIAL AND NUCLEAR SEQUENCE DATA by Melina C. Williamson A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Biology Brigham Young University August 2009 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Melina C. Williamson This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. Date Duke S. Rogers, Chair Date Leigh A. Johnson Date Jack W. Sites, Jr. BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of Melina C. Williamson in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library. -
Special Publications Museum of Texas Tech University Number 63 18 September 2014
Special Publications Museum of Texas Tech University Number 63 18 September 2014 List of Recent Land Mammals of Mexico, 2014 José Ramírez-Pulido, Noé González-Ruiz, Alfred L. Gardner, and Joaquín Arroyo-Cabrales.0 Front cover: Image of the cover of Nova Plantarvm, Animalivm et Mineralivm Mexicanorvm Historia, by Francisci Hernández et al. (1651), which included the first list of the mammals found in Mexico. Cover image courtesy of the John Carter Brown Library at Brown University. SPECIAL PUBLICATIONS Museum of Texas Tech University Number 63 List of Recent Land Mammals of Mexico, 2014 JOSÉ RAMÍREZ-PULIDO, NOÉ GONZÁLEZ-RUIZ, ALFRED L. GARDNER, AND JOAQUÍN ARROYO-CABRALES Layout and Design: Lisa Bradley Cover Design: Image courtesy of the John Carter Brown Library at Brown University Production Editor: Lisa Bradley Copyright 2014, Museum of Texas Tech University This publication is available free of charge in PDF format from the website of the Natural Sciences Research Laboratory, Museum of Texas Tech University (nsrl.ttu.edu). The authors and the Museum of Texas Tech University hereby grant permission to interested parties to download or print this publication for personal or educational (not for profit) use. Re-publication of any part of this paper in other works is not permitted without prior written permission of the Museum of Texas Tech University. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for per- manence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 18 September 2014 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 63 Series Editor: Robert J. -
Biological Notes and Descriptions of Two New Moths Phoretic on Spiny Pocket Mice in Costa Rica (Lepidoptera, Tineoidea)
PROC. ENTOMOl. SOC. WASH. 88(1). 1986, pp. 98-109 NEOTROPICAL TlNEIDAE, U: BIOLOGICAL NOTES AND DESCRIPTIONS OF TWO NEW MOTHS PHORETIC ON SPINY POCKET MICE IN COSTA RICA (LEPIDOPTERA, TINEOIDEA) DoNALD R. DAVIS, DALE H . CLAYTON, DANIEL H . J ANZEN, AND ANNE P. BROOKE (DRD) Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D. C. 20560; (DHC) Committee on Evo lutionary Biology, University of Chicago, Chicago, lIIinois 60637; (DHJ) De partment of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 191 04; (APB) Museum of Vertebrate Zoology, Uni versity of Cali fomi a, Berkeley, California 94720. Abstract. - Two new species of tineid moths discovered riding on the backs of two species of spiny pocket mice (Heteromyidae) in Costa Rica are described. Amydria selvae. new species, was found on Heteromys desmarestianus Gray in the rainforest at Finca La Selva and Ptilopsaltis santarosae. new species, occurred on Liomys salvini (Thomas) in the dry forest at Santa Rosa National Park. Only female moths were observed and collected. Biological observations on both moths and their hosts in phoresy are summarized. Recent live-trapping of spiny pocket mice in Costa Rican forests has revealed the association of three species of ph ore tic moths of the family Tineidae. The life histories of the moths are still poorly understood and only the females are known to be phoretic. No males of any of the three species have been discovered. Exca vations of the burrows of the two species of spiny mice are now underway, which we hope will reveal not only the presence of males with associated immatures but also the larval biology. -
The Beaver's Phylogenetic Lineage Illuminated by Retroposon Reads
www.nature.com/scientificreports OPEN The Beaver’s Phylogenetic Lineage Illuminated by Retroposon Reads Liliya Doronina1,*, Andreas Matzke1,*, Gennady Churakov1,2, Monika Stoll3, Andreas Huge3 & Jürgen Schmitz1 Received: 13 October 2016 Solving problematic phylogenetic relationships often requires high quality genome data. However, Accepted: 25 January 2017 for many organisms such data are still not available. Among rodents, the phylogenetic position of the Published: 03 March 2017 beaver has always attracted special interest. The arrangement of the beaver’s masseter (jaw-closer) muscle once suggested a strong affinity to some sciurid rodents (e.g., squirrels), placing them in the Sciuromorpha suborder. Modern molecular data, however, suggested a closer relationship of beaver to the representatives of the mouse-related clade, but significant data from virtually homoplasy- free markers (for example retroposon insertions) for the exact position of the beaver have not been available. We derived a gross genome assembly from deposited genomic Illumina paired-end reads and extracted thousands of potential phylogenetically informative retroposon markers using the new bioinformatics coordinate extractor fastCOEX, enabling us to evaluate different hypotheses for the phylogenetic position of the beaver. Comparative results provided significant support for a clear relationship between beavers (Castoridae) and kangaroo rat-related species (Geomyoidea) (p < 0.0015, six markers, no conflicting data) within a significantly supported mouse-related clade (including Myodonta, Anomaluromorpha, and Castorimorpha) (p < 0.0015, six markers, no conflicting data). Most of an organism’s phylogenetic history is fossilized in their heritable genomic material. Using data from genome sequencing projects, particularly informative regions of this material can be extracted in sufficient num- bers to resolve the deepest history of speciation. -
Genus Heteromys) Inferred from Mitochondrial
PHYLOGENETIC RELATIONSHIPS OF FOREST SPINY POCKET MICE (GENUS HETEROMYS) INFERRED FROM MITOCHONDRIAL AND NUCLEAR MARKERS WITH IMPLICATIONS FOR SPECIES BOUNDARIES by Malinda W González A thesis submitted to the faculty of Brigham Young University In partial fulfillment of the requirements for the degree of Master of Science Department of Zoology Brigham Young University April 2005 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a dissertation submitted by Malinda W. González This dissertation has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. Date Duke S. Rogers, Chair Date Keith A. Crandall Date Jack W. Sites ii BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of Malinda W. Gonzalez in its final form and have found that (1) its format, citations, and bibliographical style are consistedn and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is staisfactory to the graduate committee and is ready for submission to the university library. Date Duke S. Rogers Accepted for the Department Mark C. Belk Graduate Coordinator Accepted for the College R. Kent Crookston Dean, College of Biology and Agriculture iii ABSTRACT PHYLOGENETIC RELATIONSHIPS OF FOREST SPINY POCKET MICE (GENUS HETEROMYS) INFERRED FROM MITOCHONDRIAL AND NUCLEAR MARKERS WITH IMPLICATIONS FOR SPECIES BOUNDARIES Malinda W. González Department of Zoology Master of Science I constructed a best estimate phylogeny based on congruence of multiple data sources. In recent years molecular data has been used both to construct phylogenies of taxonomic groups and to aid in the delimitation of new species. -
Native Bei'eromyid Rodents As Pests of Commercial Jojoba
NATIVE BEI'EROMYID RODENTS AS PESTS OF COMMERCIAL JOJOBA REX 0. BAKER, Department of Plant and Soil Science, California State Polytechnic University, Pomona, California 91768. ABSTRACT: After crop losses of 5 to 60% were noted on two 500-acre Jojoba (Simmondsia chinensis) plantin~ in a desert area of southern California, a study was conducted to identify the animals responsible. Various population census and pest identilication techniques were utilized. Four native rodents of the Heteromyid family, not previously known to be pests of Jojoba, were found to be present in sufficiently high numbers to cause severe economic crop loss. The Bailey's pocket mouse (Perognathus baileyi) was the only rodent previously known to survive on Jojoba beans as a food source. A natural chemical, cyanogenic glucoside, was thought to be the plant protective material responsible for previous failure of rodents to survive on Jojoba in field and laboratory studies. Most of the rodent species found in this investigation were also observed in the laboratory and survived on a ration consisting almost entirely of Jojoba beans for 6 to 10 months. The ability of these rodents to survive on Jojoba beans suggests the possible co-evolutionary development of detoxification mechanisms. Cultural and population reduction practices were recommended and implemented following this study resulting in greatly reduced crop losses. Proc. 14th Vcrtcbr. Pest Conr. (LR. Davis and R.E. Marsh, Eds.) Published at Univ. of Calif., Davis. 1990. INTRODUCTION the build-up of rodents in the plantations. When prices for The purpose of this study was to determine which native Jojoba seed products rebounded in 1988, growers prepared animals were responsible for losses of from 5 to 60% of the to harvest Jojoba fields that had not been totally abandoned. -
Variation in Habitat Use of Coexisting Rodent Species in a Tropical Dry Deciduous Forest
Mammalian Biology 77 (2012) 249–257 Contents lists available at SciVerse ScienceDirect Mammalian Biology journal homepage: www.elsevier.de/mambio Original Investigation Variation in habitat use of coexisting rodent species in a tropical dry deciduous forest Cassie J. Poindexter a, Gary D. Schnell a,∗, Cornelio Sánchez-Hernández b, María de Lourdes Romero-Almaraz c, Michael L. Kennedy d, Troy L. Best e, Michael C. Wooten e, Robert D. Owen f,g a Sam Noble Oklahoma Museum of Natural History and Department of Zoology, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK 73072, USA b Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, A.P. 70-153, Coyoacán, México, D.F. 04510, Mexico c Escuinapa No. 92 bis. Col. Pedregal de Santo Domingo, C.P. 04360, México, D.F., Mexico d Ecological Research Center, Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA e Department of Biological Sciences, 331 Funchess Hall, Auburn University, AL 36849, USA f Department of Biological Sciences, Box 43131, Texas Tech University, Lubbock, TX 79409, USA g Martín Barrios 2230 c/Pizarro, Barrio Republicano, Asunción, Paraguay article info abstract Article history: Use of habitat is a critical component related to structure of small-mammal communities, with parti- Received 3 May 2011 tioning occurring primarily along dimensions of microhabitat, although use of microhabitat often does Accepted 5 March 2012 not explain fully use at a macrohabitat level. Through grid studies of small mammals in coastal Colima, Mexico (during January 2003–2005), we appraised influence of available habitat, species richness, abun- Keywords: dance, and cumulative abundance of other small mammals on variation in habitat used by species. -
INSIGHTS INTO RELATIONSHIPS AMONG RODENT LINEAGES BASED on MITOCHONDRIAL GENOME SEQUENCE DATA a Dissertation by LAURENCE JOHN FR
INSIGHTS INTO RELATIONSHIPS AMONG RODENT LINEAGES BASED ON MITOCHONDRIAL GENOME SEQUENCE DATA A Dissertation by LAURENCE JOHN FRABOTTA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2005 Major Subject: Zoology INSIGHTS INTO RELATIONSHIPS AMONG RODENT LINEAGES BASED ON MITOCHONDRIAL GENOME SEQUENCE DATA A Dissertation by LAURENCE JOHN FRABOTTA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Rodney L. Honeycutt Committee Members, James B. Woolley John W. Bickham James R. Manhart Head of Department, Vincent M. Cassone December 2005 Major Subject: Zoology iii ABSTRACT Insights into Relationships among Rodent Lineages Based on Mitochondrial Genome Sequence Data. (December 2005) Laurence John Frabotta, B.S.; M.S., California State University, Long Beach Chair of Advisory Committee: Dr. Rodney L. Honeycutt This dissertation has two major sections. In Chapter II, complete mitochondrial (mt DNA) genome sequences were used to construct a hypothesis for affinities of most major lineages of rodents that arose quickly in the Eocene and were well established by the end of the Oligocene. Determining the relationships among extant members of such old lineages can be difficult. Two traditional schemes on subordinal classification of rodents have persisted for over a century, dividing rodents into either two or three suborders, with relationships among families or superfamilies remaining problematic. The mtDNA sequences for four new rodent taxa (Aplodontia, Cratogeomys, Erethizon, and Hystrix), along with previously published Euarchontoglires taxa, were analyzed under parsimony, likelihood, and Bayesian criteria. -
Mammal Diversity Before the Construction of a Hydroelectric Power Dam in Southern Mexico
Animal Biodiversity and Conservation 42.1 (2019) 99 Mammal diversity before the construction of a hydroelectric power dam in southern Mexico M. Briones–Salas, M. C. Lavariega, I. Lira–Torres† Briones–Salas, M., Lavariega, M. C., Lira–Torres†, I., 2018. Mammal diversity before the construction of a hydroelectric power dam in southern Mexico. Animal Biodiversity and Conservation, 42.1: 99–112, Doi: https:// doi.org/10.32800/abc.2019.42.0099 Abstract Mammal diversity before the construction of a hydroelectric power dam in southern Mexico. Hydroelectric power is a widely used source of energy in tropical regions but the impact on biodiversity and the environment is significant. In the Río Verde basin, southwestern of Oaxaca, Mexico, a project to build a hydroelectric dam is a potential threat to biodiversity. The aim of this work was to determine the parameters of mammals in the main types of vegetation in the Río Verde basin. We studied richness, relative abundances, and diversity of the community in general and among groups (bats, small mammals and medium and large–sized mammals). In the temperate forests, small mammals were the most diverse while medium–sized mammals and large mammals were the most diverse in land transformed by humans. As the Río Verde basin shelters 15 % of the land mammal species of Mexico, if the hydroelectric power dam is constructed, mitigation measures should include rescue programs, protection of the nearby similar forests, and population monitoring, particularly for endangered species (20 %) and endemic species (14 %). In a future scenario, whether the dam is constructed or not, management measures will be necessary to increase forest protection, vegetation corridors and corridors within the agricultural matrix in order to conserve the current high mammal diversity in the region. -
Heteromys Anomalus (Trinidad Spiny Pocket Mouse)
UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Heteromys anomalus (Trinidad Spiny Pocket Mouse) Family: Heteromyidae (Pocket Mice and Kangaroo Rats) Order: Rodentia (Rodents) Class: Mammalia (Mammals) Fig. 1. Trinidad spiny pocket mouse, Heteromys anomalus. [http://www.mammalogy.org/heteromys-anomalus-086, downloaded 1 November 2012] TRAITS. The Trinidad spiny pocket mouse (or Caribbean spiny pocket mouse) has light brown fur on its back with streaks of thin hairs of a darker-shaded brown along the spinal column (Anderson & Timm, 2006). This is how part of the name spiny pocket mouse is derived. Their underbellies are an even lighter shade of brown (Fig. 1) and their long tails (almost longer than their body length) also have these contrasting light-brown colours. The adults in this species have long, slender bodies with large, round ears; large hind legs and feet (Anderson & Timm, 2006). H. anomalus are characterized by long, tough skulls and are one of the biggest types of pocket mouse in existence (Anderson 1999). Anderson (1999) explained that the shapes of their skulls change over time as the mice grow, even past the point of reaching adult age. He also explained that the males and females differ in shapes and sizes (Anderson, 1999). Their bodies range from 3-12 inches in length (Pioneer, 2012) or approximately 275 mm. UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour ECOLOGY. Apart from Trinidad, this species is also found in South America (Anderson & Timm, 2006) in countries such as Colombia, Venezuela and Margarita as studied by Anderson (1999). -
Over 40% of All Mammal Species in the Next 2 Labs
Rodents Class Rodentia 5 (depends) Suborders 33 (maybe more) Families about 481 genera, 2277+ species Over 40% of all mammal species in the next 2 labs Sciuromorpha: squirrels, dormice, mountain beaver, and relatives Castorimorpha: beavers, gophers, kangaroo rats, pocket mice, and relatives Myomorpha: mice, rats, gerbils, jerboas, and relatives Anomaluromorpha: scaly-tailed squirrels and springhares Hystricomorpha: hystricognath rodents...lots of South American and African species, mostly Because rodents are such a Why rodents are evil... diverse and speciose group, their higher-level taxonomy keeps being revised. Hard to keep up! In recent decades, there have been 2, 3, 4 or 5 Suborders, depending on the revision, and Families keep getting pooled and split. We’ll just focus on some of the important Families and leave their relationships to future generations. They are a diverse and Why rodents are fun... speciose group, occur in just about every kind of habitat and climate, and show the broadest ecological diversity of any group of mammals. There are terrestrial, arboreal, scansorial, subterranean, and semiaquatic rodents. There are solitary, pair-forming, and social rodents. There are plantigrade, cursorial, You could spend your whole fossorial, bipedal, swimming life studying this group! and gliding rodents. (Some do.) General characteristics of rodents •Specialized ever-growing, self-sharpening incisors (2 upper, 2 lower) separated from cheek teeth by diastema; no canines •Cheek teeth may be ever-growing or rooted, but show a variety of cusp patterns, often with complex loops and folds of enamel and dentine reflecting the diet; cusp patterns also often useful taxonomically •Mostly small, average range of body size is 20-100 g, but some can get pretty large (capybara is largest extant species, may reach 50 kg) •Mostly herbivorous (including some specialized as folivores and granivores) or omnivorous •Females with duplex uterus, baculum present in males •Worldwide distribution, wide range of habitats and ecologies And now, on to a few Families.. -
Pika and Vole Mitochondrial Genomes Increase Support for Both Rodent Monophyly and Glires
Gene 294 (2002) 119–129 www.elsevier.com/locate/gene Pika and vole mitochondrial genomes increase support for both rodent monophyly and glires Yu-Hsin Lin*, Peter J. Waddell1, David Penny Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand Received 4 December 2001; received in revised form 28 March 2002; accepted 14 May 2002 Received by T. Gojobori Abstract Complete mitochondrial genomes are reported for a pika (Ochotona collaris) and a vole (Volemys kikuchii) then analysed together with 35 other mitochondrial genomes from mammals. With standard phylogenetic methods the pika joins with the other lagomorph (rabbit) and the vole with the other murid rodents (rat and mouse). In addition, with hedgehog excluded, the seven rodent genomes consistently form a homogeneous group in the unrooted placental tree. Except for uncertainty of the position of tree shrew, the clade Glires (monophyletic rodents plus lagomorphs) is consistently found. The unrooted tree obtained by ProtML (Protein Maximum Likelihood, a program in MOLPHY) is compatible with a reclassification of mammals [Syst. Biol. 48, 1–5 (1999)] which is also supported by other recent studies. However, when this tree is rooted with marsupials plus platypus, the outgroup often joins the lineage leading to the three murid rodents, so the rodents are no longer monophyletic. Apart from misplacing the root, the presence of the outgroups also distorts other parts of the unrooted tree. Either constraining the tree to maintain rodents monophyletic, or omitting murids, maintains the ingroup tree and sees the outgroup join on the edge to Xenarthra, to Afrotheria, or to these two groups together.