Further Studies on Corticolous Myxomycetes from Within

Total Page:16

File Type:pdf, Size:1020Kb

Further Studies on Corticolous Myxomycetes from Within FURTHER STUDIES ON CORTICOLOUS MYXOMYCETES FROM WITHIN THE CITY LIMITS OF ATLANTA, GEORGIA A THESIS SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY BY LEVESTER PENDERGRASS DEPARTMENT OF BIOLOGY ATLANTA, GEORGIA Y 1976 -1 ABSTRACT B IOLOGY PENDERGRASS, LEVESTER 13.5., Morris College, 1969 M.S.,, Atlanta University, 1972 Further Studies on Corticolous Myxomycetes from Within the City Limits of Atlanta, Georgia Advisor: Dr. Lafayette Frederick Doctor of Philosophy degree conferred May 17, 1976 Thesis dated May, 1976 During a two—year period, beginning in the summer of 1973 and ending in the summer of 1975, a study was conducted on myxomycete bionta from bark of living trees growing in five widely separated localities within the Atlanta city limits. The objectives of the study were to determine (1) whether bark of living trees is a natural substratum for certain kinds of myxomycetes; (2) whether certain myxomycetes manifest affinities for certain species of trees; (3) whether seasonal variations exist in corticolous myxomycete occur rence; and (4) whether any correlation exists between the distribu tion of corticolous myxomycetes and tree habitats. Since two earlier studies of limited scope represent the only reports of systematic studies on corticolous myxomycetes of Georgia, a need has existed for more extensive information on this myxomycete bionta of the state. This study was undertaken in order to fulfill 111 that need. To accomplish the objectives a total of 171 trees, repre senting 12 genera and 21 species, growing in five selected areas within the city limits of Atlanta, were chosen for the study. The genus and species of the trees used were Acer g4o and A. sacchari— num, Carya illinoensis and C. ovata, Cedrus deodara, Cornus florida, Diospyros virginiana, Liquidambar styraciflua, Liriodendron tulipif era, Ostrya virginiana, Pinus echinata and P. taeda, Prunus serotina, Quercus alba, Q. falcata, Q. nigra, Q. phellos, Q. stellata, and Q. velutina, Ulmus alata and U. americana. The five different localities used in this study included three relatively undisturbed wooded areas and two open park areas. The localities were (1) a wooded area in the Highpoint section; (2) a wooded hillside in the Collier Heights section; (3) a wooded ravine in the Beecher Circle section; and (4) two city parks, namely, Washington and Piedmont Parks. Specific plots were selected within each locality for sampling. Each plot was approximately 15 meters square and contained at least one tree of each species that was to be studied. In two of the localities, viz., Collier Heights and Beecher Circle, fallen debris on the forest floor was periodically examined in the field. Five different techniques were used to create conditions favor able for myxomycete development. These techniques were as follows: (1) a modification of the moist chamber technique originally used by Gilbert and Martin; (This modification involved the gradual soaking of bark pieces in sterile petri dishes by adding small volumes of sterile water intermittently as it was absorbed by the bark, This iv practice reduced the possibility of spores being discarded, as may happen when the method of Gilbert and Martin is used.) (2) the plac ing of bark samples in polyethylene bags and attaching these bags to the sides of the trees from which they were collected; (Sterile distilled water was added to the bags in order to first saturate the bark pieces and subsequently maintain a high humidity.) (3) the removal of bark samples from trees and the incubation of these samples in petri dish moist chambers that were left in the field at the base of the tree from which the samples were removed; (4) the attaching of large water—filled polyethylene bags to trees at about breast height; (The bags were perforated at the bottom by puncturing the corners and the middle with a few pin holes. This enabled water to slowly drip onto the bark below the bag and consequently keep the trunk in that region continuously moist.) and (5) the periodic examination of undisturbed bark of standing trees with a lOX hand lens in a search for naturally developing slime molds. Field examinations of leaf litter were also made in order to determine whether myxomycetes that developed in moist chamber on bark samples also developed naturally on plant debris on the forest floor. A total of 46 species of myxomycetes was found during the two years of the study. Forty species of myxomycetes, representing 16 genera, appeared on collected bark samples during the course of the study, and six other species representing six genera were found on field observed leaf litter. The following species of myxomycetes were found: ya carnea, A. cinerea and A. nutans, Badhamia nitens and B. obovata, metallica, fruticulosa, v j j H F-h jw H- rt d H- CD CD F-h H- CD- H lcD 5 ‘—s H CD S CD CD 0 H H 0 CD H V H- H- CD IH- H • CD H H- CD 0 CD CD H CF CD CD H H’ H d H- CD CD 0 F- CD CD CD H- H- H CD H <1 > Ci) F-h CD H CD CD CD < H H H CD H H- CD- Irt CD CD 0 H H’ CD 5 Ci) Ci) H 0 CD CD CD CD H H’ H’ rt H CD Ci) Ci) CF H CD CD CD S Cl) 0 Ci) CF 0 CD CD CD CD CD H CD Hi H CD 0 H- H- 0 H CD CD CD Ci) CD Ci) CD H’ H CD- t- H CD Ci) 0 Ci) C) CD H CD CD H CF Ci) 0 CD Ci) F-h Hi CD 0 CD H CD CD CD CD CD H 0 Hi CD Hi CD H 0 CD H’ CD CD CD CD CD S H CF CF CD CD 0 H’ S CD- CD CD H CF t CD- CD Hi 0 CD Hi CD- CD 5 5 S H- CF Hi H H 5 CD CD Hi CF Ci) H CD 0 H CD- CD CD CD- H’ CD CD CD CD CD CD S CD CD 0 CD M Ci) H’ H H CD CD j CD CD CD- Ci) H CD CD CD H CD CD - Ci) H H- CD lZ Hi CD H CD lCD- H CD H’ CD IC’) CD H, CD • H CD- 0 CD IC’) S - CD CD CD CD IC) CD 0 Hi S CD CD IC) CD CD Ci) ‘ Hi CD CD CD CD lH CD Ci) CD - CD CD ‘ Hi CD H- CD 5 Ci) Ci) Hi CD H lCD H CD F-h 5 Ci) Hi F-h H- IH’ CD H- CD. CD- CD d H Hi H H CD H H Hi CD H IH ‘ <1 H Ci) CD H M Ci) D 0 H- CD 0 CD 0 lCD H’ CD 0 CD CD CD r-< C H H I H- F-h CD CD Ci) Ci) CD- CD CF H CD j H- CF CD H- CD CD Ci) H 5 H 5 CD - - 0 CD H CD CD lCD CD H- ICi) CD CD CD CD H- H CD H S Hi CD CD CF 0 0 CD H Hi CD 0 Hi CD- CD • CD H F-h CD CD CD 5 CD CD S CD d H CD CD 0 Hi H- H H H 0 CD 5 CF Cl) H- -d CD H CD H- rt Ci) H CD CD H CD F-h H’ CD CD Hi 0 CD l- CD d CD CD CD H’ Hi Ci) Cl) H D CD Cl H CD. CD CD t< l H- CD CD- 0 CD 0 H CD CD H Ci) Ci) CD CD H- CD C) H- H’ CD S CD H CD- 5 H’ CF CD H CD 0 Cl) H 0 CD Ci) H’ Cl) CD 0 CD CD- CD H’ CD CD - Cl) Fi CD 5 0 ct CD H c F-h CD H l CD CD 5 H Hi -I C) CD Ci) IH- CD- S H’ CD • CD CD CD CD 0 H CD H CF F-h • CF CD CD CD CD- CD- 5 H- CD CD CD 5 H CD CD Hi CF CD- IC) CD H Hi CD CD H- CD Hi CD H- H 0 t-zl CD t - H 0 CD CD Ci) CD rt Ci) H’ Hi H’ Ci) CD CD CD CD H H’ H 5 < CD CD- F-h 5 CF Ci) - H- H CF H- CD Hi H CD H- CD CD H- d H H’ CD CD lCD CD 0 CD- Ct Cl) CD H Hi CD H- Hi 0 H- CD CD Hi CD 0 Ci) H Hi CD IH Hi CD ‘ Hi H CI) H CD CD Hi - CD CD 0 H’ CD 5 H CD H CD CD 5 lCD CD H’ CD CD H- H Hi 0 H- H- H’ H- H H’ S CD lox) CD- 0 CD CD CD Ci) Cl) Ci) H CD Ci) H- H CD H- CD- H CD CD CD CD Hi S Hi CD Hi CD P H Ci) CF CD H’ CD CD CD CD Hi H CF CD CD CD H CD CD Ci) H- H- lCD Ci) Hi CD Hi Hi CD CD- 5 CD Hi 5 CD H H H- CD 5 CI CD Ci) CD Ci) CD l< CD CD CD CD H- lox) 5 CD CD- CD H- CD CD 5 CD CD- CD H’ 0 CF H’ CD CD S CD CD ‘ 0 Ct CD 5 CD H CI) H Ci) Ci) H- CD CI) H CD CD 0 H CD 0 CD CD H 5 Ci) - C)) - d CD- CF H- CF CD F-h H H 0 CD CD H CD H 5 li CD- H CD I Hy 0 H- CD H H’ H- CD H’ Ci) H’ CD 0 CD- Hi - CD lCD d Ci) Ci) CD H CD CD CD IH H F-h Ci) 0 H > CD CD.
Recommended publications
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • (Uplb- Mnh) Mycological Herbarium
    Philippine Journal of Systematic Biology Vol. III (June 2009) Review STATUS OF THE MYXOMYCETE COLLECTION AT THE UPLB-MUSEUM OF NATURAL HISTORY (UPLB- MNH) MYCOLOGICAL HERBARIUM THOMAS EDISON E. DELA CRUZ1*, RUDOLF V. KUHN1, ANTON OLIVER M. JAVIER1, CHRISTIAN M. PARRA1 AND TRICITA H. QUIMIO2 1Department of Biological Sciences, College of Science University of Santo Tomas, España 1015 Manila, Philippines 2UPLB-MNH Mycological Herbarium, University of the Philippines-Los Baños, College 4031 Laguna, Philippines Email: [email protected] ABSTRACT The Philippines is considered one of the world’s megahotspots of biodiversity. Among the country’s fungal species, about 4,698 species belonging to 1,031 genera are currently known or described, of which only a small number of myxomycetes were included. At the UPLB-MNH Mycological Herbarium, one of the country’s premier depository institutions of fungal collections, only about 446 myxomycete specimens were recorded. In this review paper, progress made in myxomycete diversity in the Philippines is reported. The conservation status of the myxomycetes specimens deposited at the UPLB-MNH Mycological Herbarium is also assessed. Furthermore, hindrances to the discovery of new myxomycete species and challenges encountered by local researchers are also discussed. Keywords: myxomycetes, slime molds, biodiversity, conservation INTRODUCTION The Philippines is a vast archipelago of 7,107 islands located in the Southeast Asian region. Some 50 million years ago, the islands rose from the tectonic plates in the Pacific. Its coastlines now can be up to 17,500 km. Only the island of Palawan is believed to be previously connected to Mainland Asia (Vesilind, 2002).
    [Show full text]
  • Myxomyceten (Schleimpilze) Und Mycetozoa (Pilztiere) - Lebensform Zwischen Pflanze Und Tier 7-37 © Biologiezentrum Linz/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stapfia Jahr/Year: 2000 Band/Volume: 0073 Autor(en)/Author(s): Nowotny Wolfgang Artikel/Article: Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere) - Lebensform zwischen Pflanze und Tier 7-37 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere) - Lebensformen zwischen Pflanze und Tier W. NOWOTNY Abstract Myxomycetes (slime molds) and Myce- structures is described in detail. In the tozoa (fungal animals) - Intermediate chapters "Distribution and Phenology" as forms between plant and animal. well as "Habitats and Substrata" mainly Myxomycetes and Mycetozoa are extra- own experiences from Upper Austria are ordinary, but not widely known largely taken into account. Relations to other or- microscopic organisms. Some terminologi- ganisms including humans could only be cal considerations are followed by a short exemplified. A glossary and a classification history of research. The complex life cycle of subclasses, orders, families and genera including spores, myxoflagellates, plasmo- of myxomycetes should fasciliate a basic dia and fructifications with their particular overview. Inhalt 1. Einleitung 8 2. Entwicklungszyklus der Myxomyceten 9 2.1. Sporen 11 2.2. Myxoflagellaten und Mikrozysten 13 2.3. Plasmodium und Sklerotium 14 2.4- Bildung der Fruktifikationen 16 2.4.1. Sporocarpien, Plasmodiocarpien, Aethalien und Pseudoaethalien 17 2.4.2. Strukturen der Fruktifikationen 19 3. Verbreitung und Phänologie 25 4- Lebensraum und Substrate 28 4-1. Myxomyceten auf Borke lebender Bäume in feuchter Kammer 29 42. Nivicole Myxomyceten 30 5. Beziehung zu anderen Lebewesen 31 6. Nomenklatur 32 7. Glossar 33 Stapfia 73, 8.
    [Show full text]
  • The Myxomycetes of Athens Conty, Ohio
    The Myxomycetes of Athens County, Ohio1 DAKKIN L. RUIJINO2 AND JAMKS C. CAVI;NI)KR, Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 ABSTRACT. The goal of this study was to document all reported collections of myxomycetes (slime molds) from Athens County, OH (USA). The compilation of several published and unpublished studies of myxomycete records from Athens County resulted in a total of 52 species. The species were distributed among 6 orders, 9 families, and 25 genera and represent 24% of the myxomycetes known from Ohio and approximately 15% of those recorded for North America. No new collections for the state of Ohio were reported. OHIO J SCI 102 (2):27-29, 2002 INTRODUCTION both authors. Nomenclature follows that of Keller and Although widely distributed, myxomycetes (true slime Braun (1999) [which closely follows the treatment of molds, acellular slime molds, or plasmodial slime molds) Martin and others (1983) and the synonymy of Martin have not been fully studied throughout Ohio. Despite and Alexopoulos (1969)]- major taxonomic works by Fulmer (1921) and Keller Collections made by Udall (1951) were from a beech- and Braun (1999), the distribution and ecology of the maple forest in Lee Township, and collections made by myxomycetes in several Ohio counties are not well Jones (1943) were from Athens Township (mesic forests known. For example, of the 88 counties in the state, only and Ohio University Campus). Jones' and Udall's theses 64 have recorded myxomycete collections, and many of are available from the Department of Environmental these counties have fewer than five recorded species and Plant Biology, Ohio University, Athens, OH.
    [Show full text]
  • A Checklist of Egyptian Fungi: I
    Mycosphere 4 (4): 794–807 (2013) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2013 Online Edition Doi 10.5943/mycosphere/4/4/15 A checklist of Egyptian fungi: I. Protozoan fungal analogues Abdel-Azeem AM1* and Salem Fatma M1 1Laboratory of systematic Mycology, Botany and Microbiology Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt. e-mail: [email protected], [email protected] Abdel-Azeem AM, Salem Fatma M 2013 – A checklist of Egyptian fungi: I. Protozoan fungal analogues. Mycosphere 4(4), 794–807, Doi 10.5943/mycosphere/4/4/15 Abstract Records of Egyptian fungi are scattered through a wide array of journals, books, dissertations, and preliminary annotated checklists and compilations. By screening all available sources of information, it was possible to delineate 61 taxa, including 3 varieties, belonging to 29 genera of protozoan fungal analogues that have been reported from Egypt. A provisional key to the identification of reported taxa is given. This is the first species list of protozoan fungus-like analogues from Egypt. Key words – Amoebozoa – biodiversity – Cercozoa – documentation – Liceida – Mycobiota – Physarum Introduction For Egypt, only very few comprehensive assessments of local fungi have been published (e.g. El-Abyad and Abu-Taleb 1993; El-Abyad 1997; Abdel-Azeem, 2010). Documentation of the Egyptian fungi may be dated back to 4500 B.C., when ancient Egyptians produced a number of hieroglyphic reliefs of plants (many of which are psychedelic) on walls and within texts throughout Egypt (Abdel-Azeem 2010). Abdel-Azeem has traced the history of scientific work with fungi in Egypt from its earliest beginnings, almost 200 years ago, through to the present day and published a full review of the history of mycology in Egypt, together with updated assessment of 2281 species of fungi for the country, and an expectation of future perspectives for mycology in Egypt.
    [Show full text]
  • Western Australia's Journal of Systematic Botany Issn 0085–4417
    Nuytsia WESTERN AUSTRALIA'S JOURNAL OF SYSTEMATIC BOTANY ISSN 0085–4417 Knight, K.J. & Brims, M.H. Myxomycota census of Western Australia Nuytsia 20: 283–307 (2010) All enquiries and manuscripts should be directed to: The Managing Editor – NUYTSIA Western Australian Herbarium Telephone: +61 8 9334 0500 Dept of Environment and Conservation Facsimile: +61 8 9334 0515 Locked Bag 104 Bentley Delivery Centre Email: [email protected] Western Australia 6983 Web: science.dec.wa.gov.au/nuytsia AUSTRALIA All material in this journal is copyright and may not be reproduced except with the written permission of the publishers. © Copyright Department of Environment and Conservation NuytsiaK.J. Knight 20: 283–307& M.H. Brims, (2010) Myxomycota census of Western Australia 283 Myxomycota census of Western Australia Karina J. Knight and Margaret H. Brims Western Australian Herbarium, Department of Environment & Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Abstract Knight, K.J. & Brims, M.H. Myxomycota census of Western Australia. Nuytsia 20: 283–307 (2010). A census of the slime mould species found in Western Australia, based on publications recording slime mould species and collections housed at the Western Australian Herbarium (PERTH), is presented. A total of 159 species in 37 genera and 12 families are recorded. Introduction The phylum Myxomycota is comprised of plasmodial slime moulds which are fungi-like organisms with a two stage life cycle; the plasmodium (a slime-like single celled amoeboid stage) and sporangia (a multicellular spore producing organ required for identification) (Figure 1). This census is comprised of both classes of Myxomycota; Myxomycetes and Protosteliomycetes (Hawksworth et al.
    [Show full text]
  • Myxomycetes (Myxogastria) of Nampo Shoto (Bonin & Volcano Islands)
    Bull. Natl. Mus. Nat. Sci., Ser. B, 43(3), pp. 63–68, August 22, 2017 Myxomycetes (Myxogastria) of Nampo Shoto (Bonin & Volcano Islands) (3) Tsuyoshi Hosoya1,*, Kentaro Hosaka1 and Yukinori Yamamoto2 1 Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, Japan 2 1010–53 Ohtsu-ko, Kochi, Kochi 781–5102, Japan *E-mail: [email protected] (Received 18 April, 2017, accepted 28 June, 2017) Abstract In an exploration of Nampo Shoto (Southern Islands, consisting of the Ogasawara and Volcano islands) in June 2009, 22 myxomycete taxa were documented based on 44 specimens. Of these, Fuligo candida and Stemonitis pallida were newly documented. Key words : Kita-Iwojima Island, taxonomy. mately 200 km south of the Ogasawara Islands. Introduction Although Minami-Iwojima has been uninhabited To date, approximately 1000 taxa of myxomy- since recorded history, Kita-Iwojima was colo- cetes have been described worldwide, with some nized in 1899, but has been uninhabited since 400 taxa being recorded in Japan (Yamamoto, 1944 when the inhabitants were forced to evacu- 1998). The majority of the Japanese records are ate the island during the war. Because of their based on Japan’s main islands, whereas smaller geographical isolation and the relative lack of islands have not been well surveyed, with the human activity, the natural life on both islands exception some areas that have been surveyed has been receiving attention from researchers. with special attention (e.g., the islands of Yaku- However, because of severe geographical and shima and Iriomote). environmental conditions, approaching these Located in the mid-Pacific Ocean, the so- islands is generally extremely difficult.
    [Show full text]
  • A Guide to the Biology and Taxonomy of the Echinosteliales
    Mycosphere 7 (4): 473–491 (2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/4/7 Copyright © Guizhou Academy of Agricultural Sciences A guide to the biology and taxonomy of the Echinosteliales Haskins EF1 and Clark J2 1 Department of Biology, University of Washington, Seattle, Washington 98195 2 Department of Biology, University of Kentucky, Lexington, Kentucky 40506 Haskins EF, Clark J 2016 – A guide to the biology and taxonomy of the Echinosteliales. Mycosphere 7(4), 473–491, Doi 10.5943/mycosphere/7/4/7 Abstract This guide is an attempt to consolidate all information concerning the biology of the Echinosteliales, including uniform species descriptions for all of the species, and to make this available to interested persons in an open access journal. The Echinosteliales are a small group of myxomycetes with relatively minute sporangia and a unique plasmodial trophic stage (a protoplasmodium). These protoplasmodia, which are a defining characteristic of the order, are relatively small (20-150 μm in diameter) amoeboid stages with sluggish protoplasmic streaming and plasmodial movement which, as far as it is known, do not form a reticulum or undergo fusion with other plasmodia, but do undergo binary plasmotomy after reaching an upper size limit with each plasmodium produces a single sporangium. The minute sporangia produce a relatively limited number of spores and, except for one stalk-less species, they have a distinctive stalk consisting of a fibrillose tube having amorphous material in the lower region and closing at the upper end to produce a solid region. This morphology, along with developmental and DNA studies indicate that this order is probably the evolutionary basal group of the dark-spored myxomycetes.
    [Show full text]
  • A4 a KEY to the CORTICOLOUS MYXOMYCETES by David Mitchell
    A KEY TO THE CORTICOLOUS MYXOMYCETES. David W. Mitchell This key was published in Bulletin of the British Mycological Society Part I: Bull. BMS 12 (1)April 1978 Part II Bull. BMS 12 (2) October 1978 Part III: Bull. BMS 13(1) April 1979 The present document is designed to be printed out as an A5 booklet, to mimic the formatting of the original, hence the blank pages at the back. A KEY TO THE CORTICOLOUS MYXOMYCETES. Part I. David W. Mitchell The Corticolous Myxomycetes comprise a group of slime-moulds that grow primarily, if not exclusively, on the bark of living trees (Keller and Brooks, 1973) with representatives from the five endosporous Orders.The slime-moulds that live in this habitat are small and are difficult to detect in the field, their small size enabling them to take rapid advantage of short periods of rainy weather. This characteristic of rapid development may be used by the mycologist who wishes to study them for, when bark is wetted and placed in a damp chamber, plasmodia quickly become active and sporulate in response to the humid conditions provided. Gilbert and Martin (1933) inadvertently launched the bark culture method when they set up damp chambers to demonstrate the algae that grew on the bark of living trees to their botany classes. They found, to their surprise, that many sporangia of two undescribed species of slime-moulds had grown on the surface of the bark. Since that time, the moist chamber method has become well established in the study of Myxomycetes for it has the advantage of simplicity and often produces a rewarding variety of species even at times of the year when there is little else around to interest the mycologist.
    [Show full text]
  • Towards a Phylogenetic Classification of the Myxomycetes
    Phytotaxa 399 (3): 209–238 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.399.3.5 Towards a phylogenetic classification of the Myxomycetes DMITRY V. LEONTYEV1*¶, MARTIN SCHNITTLER2¶, STEVEN L. STEPHENSON3, YURI K. NOVOZHILOV4 & OLEG N. SHCHEPIN4 1Department of Botany, H.S. Skovoroda Kharkiv National Pedagogical University, Valentynivska 2, Kharkiv 61168 Ukraine. 2Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University Greifswald, Soldmannstr. 15, Greifswald 17487, Germany. 3Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA. 4Laboratory of Systematics and Geography of Fungi, The Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street 2, 197376 St. Petersburg, Russia. * Corresponding author E-mail: [email protected] ¶ These authors contributed equally to this work. In memoriam Irina O. Dudka Abstract The traditional classification of the Myxomycetes (Myxogastrea) into five orders (Echinosteliales, Liceales, Trichiales, Stemonitidales and Physarales), used in all monographs published since 1945, does not properly reflect evolutionary re- lationships within the group. Reviewing all published phylogenies for myxomycete subgroups together with a 18S rDNA phylogeny of the entire group serving as an illustration, we suggest a revised hierarchical classification, in which taxa of higher ranks are formally named according to the International Code of Nomenclature for algae, fungi and plants. In addition, informal zoological names are provided. The exosporous genus Ceratiomyxa, together with some protosteloid amoebae, constitute the class Ceratiomyxomycetes. The class Myxomycetes is divided into a bright- and a dark-spored clade, now formally named as subclasses Lucisporomycetidae and Columellomycetidae, respectively.
    [Show full text]
  • Conhecimento, Conservação E Uso De FUNGOS Presidente Da República Jair Messias Bolsonaro
    EDITORES Luiz Antonio de Oliveira Maria Aparecida de Jesus Ani Beatriz Jackisch Matsuura Luadir Gasparotto Juliana Gomes de Souza Oliveira Reginaldo Gonçalves de Lima-Neto Liliane Coelho da Rocha Conhecimento, conservação e uso de FUNGOS PRESIDENTE DA REPÚBLICA Jair Messias Bolsonaro MINISTRO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO Marcos César Pontes DIRETORA DO INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA Antonia Maria Ramos Franco Pereira EDITORES Luiz Antonio de Oliveira Maria Aparecida de Jesus Ani Beatriz Jackisch Matsuura Luadir Gasparotto Juliana Gomes de Souza Oliveira Reginaldo Gonçalves de Lima-Neto Liliane Coelho da Rocha Conhecimento, conservação e uso de FUNGOS Manaus 2019 Copyright © 2019, Instituto Nacional de Pesquisas da Amazônia. Todos os direitos reservados. Nenhuma parte desta obra pode ser reproduzida, arqui- vada ou transmitida, em qualquer forma ou por qualquer meio, sem permissão escrita da organização do evento. EDITORES EDITORA INPA Oliveira, L.A., Jesus, M.A., Jackisch-Matsuura, A.B., Gasparotto, Editor: Mario Cohn-Haft. L., Oliveira, J.G.S, Lima-Neto, R.G., Rocha, L.C. Produção editorial: Rodrigo Verçosa, Shirley Ribeiro Cavalcante, Tito Fernandes. EDIÇÃO TÉCNICA Bolsistas: Alan Alves, Luiza Veloso, Mariana Franco, Luiz Antonio de Oliveira, Maria Aparecida de Jesus, Mirian Fontoura, Neoliane Cardoso, Stefany de Castro. Luadir Gasparotto, Ani Beatriz Jackisch Matsuura e Liliane Coelho da Rocha CAPA REVISÃO TÉCNICA Rodrigo Verçosa LuizAntonio de Oliveira, Luadir Gasparotto e Maria Aparecida de Jesus DIAGRAMAÇÃO Juliana Gomes de Souza Oliveira e Rodrigo Verçosa FOTOGRAFIAS As fotos dos fungos da capa dos anais foram as selecionadas no EDITORAÇÃO ELETRÔNICA concurso de fotografia “Maria Eneyda Pacheco Kauffman Fidalgo” Rodrigo Verçosa Todos os resumos publicados neste livro fornecidos pelos autores e o conteúdo dos textos é de exclusiva responsabilidade dos mesmos.
    [Show full text]
  • Biosystems Diversity, 29(2), 94–101
    ISSN 2519-8513 (Print) ISSN 2520-2529 (Online) Biosystems Biosyst. Divers., 2021, 29(2), 94–101 Diversity doi: 10.15421/012113 Ecological assemblages of corticulous myxomycetes in forest communities of the North-East Ukraine A. V. Kochergina, T. Y. Markina H. S. Skovoroda Kharkiv National Pedagogical University, Kharkiv, Ukraine Article info Kochergina, A. V., & Markina, T. Y. (2021). Ecological assemblages of corticulous myxomycetes in forest communities of the North- Received 08.01.2021 East Ukraine. Biosystems Diversity, 29(2), 94–101. doi:10.15421/012113 Received in revised form 10.02.2021 Corticulous myxomycetes remain one of the least surveyed ecological groups of terrestrial protists. These organisms develop on the Accepted 11.02.2021 bark of trees, mostly feeding on bacteria and microalgae. Their microscopic size and fast developmental cycle (3–5 days) complicate the study of these organisms, and therefore data their on ecological relationships and patterns of biodiversity corticulous myxomycetes remain H. S. Skovoroda Kharkiv controversial. On the territory of the southwest spurs of the Central Russian Upland (Northeast Ukraine), no special studies on these or- National Pedagogical ganisms have been conducted. During 2017–2020, in nine forest sites located in this territory, we collected samples of bark of 16 species University, Valentynivska st., 2, of tree plants, on which sporulating myxomycetes were then identified using the moist chamber technique in laboratory conditions. A Kharkiv, 61168, Ukraine. Tel.: +38-057-267-69-92. total of 434 moist chambers was prepared, and 267 (61.5%) of which were found to contain myxomycete fruiting bodies. In total, we E-mail: made 535 observations, finding 20,211 sporocarps.
    [Show full text]