Myxomycetes in Turkey – a Checklist
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Fungi of Slapton Ley National Nature Reserve and Environs
THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546). -
Biodiversity of Plasmodial Slime Moulds (Myxogastria): Measurement and Interpretation
Protistology 1 (4), 161–178 (2000) Protistology August, 2000 Biodiversity of plasmodial slime moulds (Myxogastria): measurement and interpretation Yuri K. Novozhilova, Martin Schnittlerb, InnaV. Zemlianskaiac and Konstantin A. Fefelovd a V.L.Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, b Fairmont State College, Fairmont, West Virginia, U.S.A., c Volgograd Medical Academy, Department of Pharmacology and Botany, Volgograd, Russia, d Ural State University, Department of Botany, Yekaterinburg, Russia Summary For myxomycetes the understanding of their diversity and of their ecological function remains underdeveloped. Various problems in recording myxomycetes and analysis of their diversity are discussed by the examples taken from tundra, boreal, and arid areas of Russia and Kazakhstan. Recent advances in inventory of some regions of these areas are summarised. A rapid technique of moist chamber cultures can be used to obtain quantitative estimates of myxomycete species diversity and species abundance. Substrate sampling and species isolation by the moist chamber technique are indispensable for myxomycete inventory, measurement of species richness, and species abundance. General principles for the analysis of myxomycete diversity are discussed. Key words: slime moulds, Mycetozoa, Myxomycetes, biodiversity, ecology, distribu- tion, habitats Introduction decay (Madelin, 1984). The life cycle of myxomycetes includes two trophic stages: uninucleate myxoflagellates General patterns of community structure of terrestrial or amoebae, and a multi-nucleate plasmodium (Fig. 1). macro-organisms (plants, animals, and macrofungi) are The entire plasmodium turns almost all into fruit bodies, well known. Some mathematics methods are used for their called sporocarps (sporangia, aethalia, pseudoaethalia, or studying, from which the most popular are the quantita- plasmodiocarps). -
Slime Molds: Biology and Diversity
Glime, J. M. 2019. Slime Molds: Biology and Diversity. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 3-1-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SLIME MOLDS: BIOLOGY AND DIVERSITY TABLE OF CONTENTS What are Slime Molds? ....................................................................................................................................... 3-1-2 Identification Difficulties ...................................................................................................................................... 3-1- Reproduction and Colonization ........................................................................................................................... 3-1-5 General Life Cycle ....................................................................................................................................... 3-1-6 Seasonal Changes ......................................................................................................................................... 3-1-7 Environmental Stimuli ............................................................................................................................... 3-1-13 Light .................................................................................................................................................... 3-1-13 pH and Volatile Substances -
(Uplb- Mnh) Mycological Herbarium
Philippine Journal of Systematic Biology Vol. III (June 2009) Review STATUS OF THE MYXOMYCETE COLLECTION AT THE UPLB-MUSEUM OF NATURAL HISTORY (UPLB- MNH) MYCOLOGICAL HERBARIUM THOMAS EDISON E. DELA CRUZ1*, RUDOLF V. KUHN1, ANTON OLIVER M. JAVIER1, CHRISTIAN M. PARRA1 AND TRICITA H. QUIMIO2 1Department of Biological Sciences, College of Science University of Santo Tomas, España 1015 Manila, Philippines 2UPLB-MNH Mycological Herbarium, University of the Philippines-Los Baños, College 4031 Laguna, Philippines Email: [email protected] ABSTRACT The Philippines is considered one of the world’s megahotspots of biodiversity. Among the country’s fungal species, about 4,698 species belonging to 1,031 genera are currently known or described, of which only a small number of myxomycetes were included. At the UPLB-MNH Mycological Herbarium, one of the country’s premier depository institutions of fungal collections, only about 446 myxomycete specimens were recorded. In this review paper, progress made in myxomycete diversity in the Philippines is reported. The conservation status of the myxomycetes specimens deposited at the UPLB-MNH Mycological Herbarium is also assessed. Furthermore, hindrances to the discovery of new myxomycete species and challenges encountered by local researchers are also discussed. Keywords: myxomycetes, slime molds, biodiversity, conservation INTRODUCTION The Philippines is a vast archipelago of 7,107 islands located in the Southeast Asian region. Some 50 million years ago, the islands rose from the tectonic plates in the Pacific. Its coastlines now can be up to 17,500 km. Only the island of Palawan is believed to be previously connected to Mainland Asia (Vesilind, 2002). -
Myxomyceten (Schleimpilze) Und Mycetozoa (Pilztiere) - Lebensform Zwischen Pflanze Und Tier 7-37 © Biologiezentrum Linz/Austria; Download Unter
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stapfia Jahr/Year: 2000 Band/Volume: 0073 Autor(en)/Author(s): Nowotny Wolfgang Artikel/Article: Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere) - Lebensform zwischen Pflanze und Tier 7-37 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere) - Lebensformen zwischen Pflanze und Tier W. NOWOTNY Abstract Myxomycetes (slime molds) and Myce- structures is described in detail. In the tozoa (fungal animals) - Intermediate chapters "Distribution and Phenology" as forms between plant and animal. well as "Habitats and Substrata" mainly Myxomycetes and Mycetozoa are extra- own experiences from Upper Austria are ordinary, but not widely known largely taken into account. Relations to other or- microscopic organisms. Some terminologi- ganisms including humans could only be cal considerations are followed by a short exemplified. A glossary and a classification history of research. The complex life cycle of subclasses, orders, families and genera including spores, myxoflagellates, plasmo- of myxomycetes should fasciliate a basic dia and fructifications with their particular overview. Inhalt 1. Einleitung 8 2. Entwicklungszyklus der Myxomyceten 9 2.1. Sporen 11 2.2. Myxoflagellaten und Mikrozysten 13 2.3. Plasmodium und Sklerotium 14 2.4- Bildung der Fruktifikationen 16 2.4.1. Sporocarpien, Plasmodiocarpien, Aethalien und Pseudoaethalien 17 2.4.2. Strukturen der Fruktifikationen 19 3. Verbreitung und Phänologie 25 4- Lebensraum und Substrate 28 4-1. Myxomyceten auf Borke lebender Bäume in feuchter Kammer 29 42. Nivicole Myxomyceten 30 5. Beziehung zu anderen Lebewesen 31 6. Nomenklatur 32 7. Glossar 33 Stapfia 73, 8. -
The Myxomycetes of Athens Conty, Ohio
The Myxomycetes of Athens County, Ohio1 DAKKIN L. RUIJINO2 AND JAMKS C. CAVI;NI)KR, Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 ABSTRACT. The goal of this study was to document all reported collections of myxomycetes (slime molds) from Athens County, OH (USA). The compilation of several published and unpublished studies of myxomycete records from Athens County resulted in a total of 52 species. The species were distributed among 6 orders, 9 families, and 25 genera and represent 24% of the myxomycetes known from Ohio and approximately 15% of those recorded for North America. No new collections for the state of Ohio were reported. OHIO J SCI 102 (2):27-29, 2002 INTRODUCTION both authors. Nomenclature follows that of Keller and Although widely distributed, myxomycetes (true slime Braun (1999) [which closely follows the treatment of molds, acellular slime molds, or plasmodial slime molds) Martin and others (1983) and the synonymy of Martin have not been fully studied throughout Ohio. Despite and Alexopoulos (1969)]- major taxonomic works by Fulmer (1921) and Keller Collections made by Udall (1951) were from a beech- and Braun (1999), the distribution and ecology of the maple forest in Lee Township, and collections made by myxomycetes in several Ohio counties are not well Jones (1943) were from Athens Township (mesic forests known. For example, of the 88 counties in the state, only and Ohio University Campus). Jones' and Udall's theses 64 have recorded myxomycete collections, and many of are available from the Department of Environmental these counties have fewer than five recorded species and Plant Biology, Ohio University, Athens, OH. -
International Congress on the Systematics and Ecology of Myxomycetes
THE 8th INTERNATIONAL CONGRESS ON THE SYSTEMATICS AND ECOLOGY OF MYXOMYCETES 12-15 August 2014 Changchun,China ICSEM8 - 2014.08 ORGANIZATION Organized by Chinese Academy of Engineering Mycological Society of China Co-organized by Jilin Agricultural University Jilin Association for Science and Technology Associate Co-organizers: Changchun University of Science and Technology Jiangsu Alphay Biological Technology Co. Ltd. Chengdu Rongzhen Mushrooms Co. Ltd. Sponsor: Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China I ICSEM8 - 2014.08 BOARD OF DIRECTIONS Organizing Committee Chairman: Shouhua Feng (China, CAS member) Yu Li (China, CAE member) Vice-Chairman: Guixin Qin (China), Zhongqi Gao (China) Member (Alphabetically): Chengshu Wang (China), Harold W. Keller (USA), Jianhua Li (China), Laise de Holanda Cavalanti (Brazil), Qi Wang (China), Zhongmin Su (China) Secretary-General: Qi Wang (China), Wentao Zhang (China) Executive Committee Chairman: Guixin Qin Vice-Chairman: Aijun Sun, Jun Yin, Dianda Zhang Member (Alphabetically): Changtian Li, Chengzhang Wang, Chunzi Li, Guoning Liu, Hai Huang, Miping Zhou, Pu Liu, Qi Wang, Qingdong Ding, Shuanglin Chen, Shuyan Liu, Wenfa Lv, Xiaojun Zhang, Xiaozhong Lan, Xueshan Song, Yanming Liu, Yunguo Yu Secretary-General: Hai Huang II ICSEM8 - 2014.08 Scientific Committee Chairman: Dr. Yu Li (China, CAE member) Members(Alphabetically): Dr. Anna Maria Fiore-Donno (Germany), Dr. Arturo Estrada Torres (Mexico), Dr. Carlos Lado (Spain), Dr. Diana Wrigley de Basanta (Spain), Dr. Gabriel Moreno (Spain), Dr. Harold W.Keller (USA), Dr. Indira Kalyanasundaram (India), Dr. Martin Schnittler (Germany), Dr. Qi Wang (China), Dr. Shuanglin Chen (China), Dr. Shuyan Liu (China), Dr. Steven Stephenspn (USA), Dr. -
A Checklist of Egyptian Fungi: I
Mycosphere 4 (4): 794–807 (2013) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2013 Online Edition Doi 10.5943/mycosphere/4/4/15 A checklist of Egyptian fungi: I. Protozoan fungal analogues Abdel-Azeem AM1* and Salem Fatma M1 1Laboratory of systematic Mycology, Botany and Microbiology Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt. e-mail: [email protected], [email protected] Abdel-Azeem AM, Salem Fatma M 2013 – A checklist of Egyptian fungi: I. Protozoan fungal analogues. Mycosphere 4(4), 794–807, Doi 10.5943/mycosphere/4/4/15 Abstract Records of Egyptian fungi are scattered through a wide array of journals, books, dissertations, and preliminary annotated checklists and compilations. By screening all available sources of information, it was possible to delineate 61 taxa, including 3 varieties, belonging to 29 genera of protozoan fungal analogues that have been reported from Egypt. A provisional key to the identification of reported taxa is given. This is the first species list of protozoan fungus-like analogues from Egypt. Key words – Amoebozoa – biodiversity – Cercozoa – documentation – Liceida – Mycobiota – Physarum Introduction For Egypt, only very few comprehensive assessments of local fungi have been published (e.g. El-Abyad and Abu-Taleb 1993; El-Abyad 1997; Abdel-Azeem, 2010). Documentation of the Egyptian fungi may be dated back to 4500 B.C., when ancient Egyptians produced a number of hieroglyphic reliefs of plants (many of which are psychedelic) on walls and within texts throughout Egypt (Abdel-Azeem 2010). Abdel-Azeem has traced the history of scientific work with fungi in Egypt from its earliest beginnings, almost 200 years ago, through to the present day and published a full review of the history of mycology in Egypt, together with updated assessment of 2281 species of fungi for the country, and an expectation of future perspectives for mycology in Egypt. -
Western Australia's Journal of Systematic Botany Issn 0085–4417
Nuytsia WESTERN AUSTRALIA'S JOURNAL OF SYSTEMATIC BOTANY ISSN 0085–4417 Knight, K.J. & Brims, M.H. Myxomycota census of Western Australia Nuytsia 20: 283–307 (2010) All enquiries and manuscripts should be directed to: The Managing Editor – NUYTSIA Western Australian Herbarium Telephone: +61 8 9334 0500 Dept of Environment and Conservation Facsimile: +61 8 9334 0515 Locked Bag 104 Bentley Delivery Centre Email: [email protected] Western Australia 6983 Web: science.dec.wa.gov.au/nuytsia AUSTRALIA All material in this journal is copyright and may not be reproduced except with the written permission of the publishers. © Copyright Department of Environment and Conservation NuytsiaK.J. Knight 20: 283–307& M.H. Brims, (2010) Myxomycota census of Western Australia 283 Myxomycota census of Western Australia Karina J. Knight and Margaret H. Brims Western Australian Herbarium, Department of Environment & Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Abstract Knight, K.J. & Brims, M.H. Myxomycota census of Western Australia. Nuytsia 20: 283–307 (2010). A census of the slime mould species found in Western Australia, based on publications recording slime mould species and collections housed at the Western Australian Herbarium (PERTH), is presented. A total of 159 species in 37 genera and 12 families are recorded. Introduction The phylum Myxomycota is comprised of plasmodial slime moulds which are fungi-like organisms with a two stage life cycle; the plasmodium (a slime-like single celled amoeboid stage) and sporangia (a multicellular spore producing organ required for identification) (Figure 1). This census is comprised of both classes of Myxomycota; Myxomycetes and Protosteliomycetes (Hawksworth et al. -
Some Critically Endangered Species from Turkey
Fungal Conservation issue 4: February 2014 Fungal Conservation Note from the Editor This issue of Fungal Conservation is being put together in the glow of achievement associated with the Third International Congress on Fungal Conservation, held in Muğla, Turkey in November 2013. The meeting brought together people committed to fungal conservation from all corners of the Earth, providing information, stimulation, encouragement and general happiness that our work is starting to bear fruit. Especial thanks to our hosts at the University of Muğla who did so much behind the scenes to make the conference a success. This issue of Fungal Conservation includes an account of the meeting, and several papers based on presentations therein. A major development in the world of fungal conservation happened late last year with the launch of a new website (http://iucn.ekoo.se/en/iucn/welcome) for the Global Fungal Red Data List Initiative. This is supported by the Mohamed bin Zayed Species Conservation Fund, which also made a most generous donation to support participants from less-developed nations at our conference. The website provides a user-friendly interface to carry out IUCN-compliant conservation assessments, and should be a tool that all of us use. There is more information further on in this issue of Fungal Conservation. Deadlines are looming for the 10th International Mycological Congress in Thailand in August 2014 (see http://imc10.com/2014/home.html). Conservation issues will be featured in several of the symposia, with one of particular relevance entitled "Conservation of fungi: essential components of the global ecosystem”. There will be room for a limited number of contributed papers and posters will be very welcome also: the deadline for submitting abstracts is 31 March. -
An Annotated Checklist Slime Molds (Myxomycetes = Myxogastrea) of Western Kazakhstan
doi:10.29203/ka.2020.493 Karstenia, Volume 58 (2020), Issue 2, pages 168-189 CHECKLIST www.karstenia.fi An annotated checklist slime molds (Myxomycetes = Myxogastrea) of western Kazakhstan Inna Zemlyanskaya1, Yuri Novozhilov2, Martin Schnittler3 Abstract 1 Volgograd State Medical University, Pavshikh Bortsov Winter-cold arid regions of western Kazakhstan Square 1, Volgograd 400131, Russia were surveyed for myxomycetes for a period of 20 2 Laboratory of Systematics and Geography of Fungi, years. A total of 3228 records belonging to 111 spe- Komarov Botanical Institute of the Russian Academy cies from 31 genera and 10 families are provided in of Sciences, Prof. Popov Str. 2, St. Petersburg 197376, an annotated checklist. The checklist contains data Russia on the localities, habitats, substrates, methods of 3 General Botany and Plant Systematics, Institute of collection and voucher numbers of specimens de- Botany and Landscape Ecology, University Greifswald, Soldmannstr. 15, Greifswald 17487, Germany posited in the mycological herbarium (LE) of the V.L. Komarov Botanical Institute of the Russian * Corresponding author: Academy of Sciences. Additionally the bibliographic [email protected] references of the myxomycete species findings in the study area are given. Due to the very arid climate of Keywords: Amoebozoa, arid regions, biodiversity, the region, 2911 specimens (ca. 90%) were obtained steppe, desert, slime molds, species inventory, from 1653 moist chamber cultures prepared with Myxogastria, Kazakhstan samples taken from bark of living plants, litter and the weathered dung of herbivorous animals. Only Article info: 317 specimens of myxomycetes were collected di- Received: 4 August 2020 rectly in the field, mostly in woody artificial plan- Accepted: 11 September 2020 tations. -
Myxomycetes of Mustafa Kemal University Campus and Environs (Turkey)
Turk J Bot 36 (2012) 769-777 © TÜBİTAK Research Article doi:10.3906/bot-1103-10 Myxomycetes of Mustafa Kemal University campus and environs (Turkey) Hayri BABA* Biology Department, Faculty of Science and Arts, Mustafa Kemal University, Alahan-31000, Antakya, Hatay - TURKEY Received: 22.03.2011 ● Accepted: 05.06.2012 Abstract: In this taxonomic study, myxomycetes of Tayfur Sökmen Campus (Hatay) were collected during 2010-2011. As a result of field and laboratory studies we reported 44 species of protosteliomycetes and myxomycetes. Three of these species (Diderma deplanatum Fr., Didymium megalosporum Berk & M.A.Curtis, and Lamproderma atrosporum Meyl.) are recorded for the first time from Turkey. Lamproderma atrosporum was treated with the moist chamber cultures method in the laboratory but Didymium megalosporum and Diderma deplanatum were determined naturally. The distribution, habitat, and collection numbers of the identified species are given. Key words: Hatay, fungal diversity, new records, myxomycetes, Turkey Introduction 1999). Bauldauf and Doolittle (1997) conducted a Myxomycetes (acellular, non-cellular, plasmodial, phylogenetic analysis of highly conserved, elongation or true slime moulds) are characterised by an factor 1-alpha (EF-1α) gene sequences and showed that myxomycetes are not fungi. Physiology, amorphous, multinucleate, protoplasmic mass called morphology, life history, and genetic analysis support the plasmodium as well as fruiting bodies (1-200 the classification of myxomycetes in the kingdom mm) with internally borne spores (5-20 µm). They Protoctista along with other eukaryotic micro- have been known for more than 350 years based organisms (Everhart & Keller, 2008). on Pankow’s figure and description of Lycogala epidendrum (L.) Fr. (Martin & Alexopoulos, 1969).