Myxomycetes of the Urals

Total Page:16

File Type:pdf, Size:1020Kb

Myxomycetes of the Urals МИКОЛОГИЯ И ФИТОПАТОЛОГИЯ Том 44 2010 Вып.4 УДК 582.241(234.850) © K. A. Fefelov MYXOMYCETES OF THE URALS ФЕФЕЛОВ К.А. МИКСОМИЦЕТЫ УРАЛА Myxomycetes (plasmodial slime molds, class Myxogasteromycetes) are common inha- bitants in terrestrial ecosystems. They prefer to develop on different decaying plant materi- als. The first records of myxomycetes species from the Ural Mountains reported by A. A. Yachevskii (1907), where common species, like Lycogala epidendrum, were reported from Perm region. Lateron, A. V. Sirko collected myxomycetes in the 1960—1970 s. Ho- wever, her collections were identified only partly and are not published. The first special studies on myxomycetes have been begun at the end of 20th century. In the Subarctic and Arctic areas of Russia 31 species from the Polar Ural (Novozhilov et al., 1998; Karatygin et al., 1999) are known. The data on myxomycetes of south parts of the Urals include records from Sverdlovsk region (Novozhilov, Fefelov, 2001; Mukhin et al., 2003; Fefelov, 2006; Plotnikov, Fefelov, 2008) and the South Ural (Fefelov, 2003). Besides, there are known in- vestigations on myxomycetes of adjoining territories of the West Siberia: West-Siberian plain (Fefelov, 2002) and the Altay Mountains (Novozhilov, 1986; Barsukova, 2000; Novo- zhilov et al., in press). Our data are based on published records and collections obtained by author in numerous expeditions in the Urals. The field works were carried out during the field seasons of 1996—2007 in all vegetati- on types and typical habitats of studied region using transect method. Different substrates (decaying logs, litter, fungi, mosses, bark of living trees, dung of herbivorous mammals and birds) were studied to find mature myxomycete sporophores (fruit bodies). Additionally, bark from living trees, litter, dung of herbivorous animals, mosses were collected for moist chamber cultures. Altogether 1854 moist chamber cultures (Hдrkцnen, 1977; Novozhilov et al., 2000) were made in the Institute of Plants and Animals Ecology UrD RAS. A record is defined herein as one or more fruiting bodies of a species that developed from a moist chamber culture or found from one microhabitat (e. g. trunk, log etc.). Nomenclature used herein follows Lado (2001) for myxomycetes, and Gorchakov- skii (1975) for vascular plants and plant communities. Collections of the myxomycetes in- clud about 4000 specimens and deposited in the Institute of Plant and Animal Ecology RAS (SVER) and partly in the Komarov Botanical Institute RAS (LE), Russia. To compare the species communities in different geographical areas, an index of com- munity similarity (CC = Chekanovskii coefficient) was used as proposed by Zaitzev (1984). The formula CC = 2c/(a + b) used to calculate this index is based on the presence or absence of species; a, b — number of species in comparable lists of geographical areas; c — number of common species. Therefore, the value of CC ranges from 0 (the data sets share no com- mon species) to 1 (all species are present in both data sets). As an indicator for species diver- sity, we used the mean number of species per genus (S/G). Occurrence of a particular speci- es was estimated with a simple percentage scale. 340 We estimated the index of specificity for each territory (SI) to compare the species lists. This index was used only for comparison of two or several territories. The value of SI ranges from 0 (all species of the one territory are found on another) to 1 (no common species for this and other territories). The Urals (Ural Ridge, Ural Mountains) is north-south oriented ridge over 2000 km long, which extended across Russia from tundra of Arctic till steppe of Kazakhstan. The he- ight of some mountains is 1895 m in the north part and 1639 m in the south part of the ridge. The climate is heterogeneous and moderately continental, but with quite specific characters. The Ural Mts are a natural barrier on the way of air masses moving from west to east and therefore they deter the influence of the Atlantic Ocean. Climatic differentiation between the west and east slopes of the ridge is result of deformation of air current. Annual precipita- tion in the highest places on the north is over 800 mm and about 600 mm on the south. To the west and east this parameter is decrease till 300—400 mm. The driest regions are situa- ted in the eastern parts of study area. The west slopes adjoined with plains have maximum precipitation especially in summer period. Other climatic effect known as «rain shadow» is occurred over the Urals to the east lowlands. Precipitation on this territory has minimum va- lue in all study area, even including hills of the western Urals (Kaigorodov, 1955; Chiki- shev, 1966; Kuvshinova, 1968). Vegetation of the region is rather various. Taiga occupies major portion of the territory and is represented by different plant communities. Dominate tree species include: fir, larch, pine, and spruce. In the South Ural, taiga turns into broad-leaved forests with elm, linden, maple, and oak. Steppe communities occur in the southern areas of the Urals. Tundra and fo- rest-tundra cover large territories in the north (Gorchakovskii, 1975). In geography, the Ural Mts are divided into 5 geographical areas: Polar, Subpolar, North, Middle and the South Ural (Borisevich, 1968). Main study plots and geographical areas are shown on the figure below. Arctic territories of the Ural Mountains (AU) include the Polar (PU) and the Subpo- lar (SPU) Urals. This area begins on Barents Sea coast and stretches till 64°00S N, with ma- ximum elevation in the Subpolar Ural (Narodnaya Mt., 1895 m). Annual average air tempe- rature (AT) is –5—8 °С, AT of July (ATJ) is 5—15 °С, period without frost (PWF) — 67—91 days, annual precipitation (AP) — 400—600 mm, average temperature of soil (ATS) is –1.5 °С. Vegetation is represented by different types of tundra and forest-tundra communities with lichens, mosses, grasses and shrubs. Dominants are Duschekia fruticosa, Betula nana, B. tortuosa, Larix sibirica, L. sukaczewii, Picea obovata and numerous species of Salix. South- ward vegetation is formed by open coniferous forests (canopy coverage is less than 60 %) with spruce (Picea obovata) and birch (Betula pubescens) in the western regions. In the eas- tern regions dominant trees are larch (Larix sibirica) and pines (Pinus sibirica and P. sil- vestris). North Ural (NU: 64°00S—59°15S N) is characterized by high range of altitude. The highest point is Telpos-Iz Mt (1617 м). Main parameters of the climate are: AT is –1.5 °С, ATJ is 10—20 °С, PWF — 67—91 days, AP — 560—605 mm, ATS is –1.5 °С. The North Ural includes north and middle taiga vegetation subzones. Main tree species in forests of the north taiga is spruce, but along the river banks on the sand soil it is pine. Eastwards there are pine and spruce sometimes spruce-cedar pine forests. Aspen (Populus tremula) form rare riparian forests in the river valleys. In understory lichens and mosses pre- vail on soil. Westwards, spruce and pine forests prevail whereas eastwards — pine and fir-spruce-cedar pine forests. Secondary birch forests widely distributed in this area together with coniferous forests. In the middle taiga aspen grows out of river valley. Shrubs and tall herbs are well developed. In the highland, mountain tundra, as well as birch and larch open mountain forests dominate. Middle Ural (MU: 59°15S—55°54S N) is low part of the Ural Mts. Elevationis up to 1000 m. Climate: AT is — 0.8 °С, ATJ is — 15—20 °С, PWF — 84—115 days, AP — 460—620 mm, ATS is — 1.5 °С. Heve there are two vegetation zones: middle and south taiga. In the west, fir-spruce forests prevail over pine forests. In the east, there is an opposite situation. Species of birch (B. pu- 341 Studied areas and geographical division of the Ural Mountains. 1 — main study plots, 2 — border of geographical areas, 3 — border of the Ural Mountains. PU — Polar Ural, SPU — Subpolar Ural, NU — North Ural, MU — Middle Ural, SU — South Ural. bescens and, rarely, B. pendula) are presented in the coniferous forests as subdominants. Therefore, some areas are occupied by secondary forests. In the west, broad-leaved trees: linden (Tilia cordata), maple (Acer platanoides), elms (Ulmus laevis, U. scabra) are found in the spruce forests. Understory is good developed and has high species diversity. Vascular plants have particular importance in the overground coverage. Mosses coverage is sicker. South Ural (SU: 55°54S—51°00S N) is divided on two parts: north — mountainous and south — plateau. In this area mountain system is very wide (about 120 km) and represented by chains of mountains including the highest: Yremel Mt (1568 m) and Yamantau Mt (1639 m). Climate: AT is — 1.6 °С, ATJ is — 15—25 °С, PWF — 104—142 days, AP — 400— 570 mm, ATS is — 2.5 °С. 342 In this part of the Ural Mts vegetation is most various. There are four vegetation zones: taiga, broad-leaved forests, forest-steppe and steppe. Broad-leaved forest zone is characteri- zed by mixed broad-leaved-coniferous forests and European broad-leaved forests with oak (Quercus robur), hazel (Corylus avellana) and spindle (Euonymus verrucosa) and others ha- bitants of the south taiga. Forest-steppe includes a scattered forest islands with aspen, birch and pine within the north steppe and meadow vegetation. Aspen, birch, cottonwood (Popu- lus nigra and P. alba), pine and willow (Salix alba) are found in the steppe only in wet places near water. Analogs of tundra and forest-tundra, opened birch and fir-spruce park forests are distributed in highlands of the South Ural.
Recommended publications
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • Slime Moulds
    Queen’s University Biological Station Species List: Slime Molds The current list has been compiled by Richard Aaron, a naturalist and educator from Toronto, who has been running the Fabulous Fall Fungi workshop at QUBS between 2009 and 2019. Dr. Ivy Schoepf, QUBS Research Coordinator, edited the list in 2020 to include full taxonomy and information regarding species’ status using resources from The Natural Heritage Information Centre (April 2018) and The IUCN Red List of Threatened Species (February 2018); iNaturalist and GBIF. Contact Ivy to report any errors, omissions and/or new sightings. Based on the aforementioned criteria we can expect to find a total of 33 species of slime molds (kingdom: Protozoa, phylum: Mycetozoa) present at QUBS. Species are Figure 1. One of the most commonly encountered reported using their full taxonomy; common slime mold at QUBS is the Dog Vomit Slime Mold (Fuligo septica). Slime molds are unique in the way name and status, based on whether the species is that they do not have cell walls. Unlike fungi, they of global or provincial concern (see Table 1 for also phagocytose their food before they digest it. details). All species are considered QUBS Photo courtesy of Mark Conboy. residents unless otherwise stated. Table 1. Status classification reported for the amphibians of QUBS. Global status based on IUCN Red List of Threatened Species rankings. Provincial status based on Ontario Natural Heritage Information Centre SRank. Global Status Provincial Status Extinct (EX) Presumed Extirpated (SX) Extinct in the
    [Show full text]
  • Biodiversity of Plasmodial Slime Moulds (Myxogastria): Measurement and Interpretation
    Protistology 1 (4), 161–178 (2000) Protistology August, 2000 Biodiversity of plasmodial slime moulds (Myxogastria): measurement and interpretation Yuri K. Novozhilova, Martin Schnittlerb, InnaV. Zemlianskaiac and Konstantin A. Fefelovd a V.L.Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, b Fairmont State College, Fairmont, West Virginia, U.S.A., c Volgograd Medical Academy, Department of Pharmacology and Botany, Volgograd, Russia, d Ural State University, Department of Botany, Yekaterinburg, Russia Summary For myxomycetes the understanding of their diversity and of their ecological function remains underdeveloped. Various problems in recording myxomycetes and analysis of their diversity are discussed by the examples taken from tundra, boreal, and arid areas of Russia and Kazakhstan. Recent advances in inventory of some regions of these areas are summarised. A rapid technique of moist chamber cultures can be used to obtain quantitative estimates of myxomycete species diversity and species abundance. Substrate sampling and species isolation by the moist chamber technique are indispensable for myxomycete inventory, measurement of species richness, and species abundance. General principles for the analysis of myxomycete diversity are discussed. Key words: slime moulds, Mycetozoa, Myxomycetes, biodiversity, ecology, distribu- tion, habitats Introduction decay (Madelin, 1984). The life cycle of myxomycetes includes two trophic stages: uninucleate myxoflagellates General patterns of community structure of terrestrial or amoebae, and a multi-nucleate plasmodium (Fig. 1). macro-organisms (plants, animals, and macrofungi) are The entire plasmodium turns almost all into fruit bodies, well known. Some mathematics methods are used for their called sporocarps (sporangia, aethalia, pseudoaethalia, or studying, from which the most popular are the quantita- plasmodiocarps).
    [Show full text]
  • Slime Molds: Biology and Diversity
    Glime, J. M. 2019. Slime Molds: Biology and Diversity. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 3-1-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SLIME MOLDS: BIOLOGY AND DIVERSITY TABLE OF CONTENTS What are Slime Molds? ....................................................................................................................................... 3-1-2 Identification Difficulties ...................................................................................................................................... 3-1- Reproduction and Colonization ........................................................................................................................... 3-1-5 General Life Cycle ....................................................................................................................................... 3-1-6 Seasonal Changes ......................................................................................................................................... 3-1-7 Environmental Stimuli ............................................................................................................................... 3-1-13 Light .................................................................................................................................................... 3-1-13 pH and Volatile Substances
    [Show full text]
  • Special Issue
    OMPHALINA Special Issue ISSN 1925-1858 Newsletter of Sept 2019 • Vol X, No. 3 OMPHALINA, newsletter of Foray Newfoundland & Labrador, has no fi xed schedule of publication, and no promise to appear again. Its primary purpose is to serve as a conduit of information to registrants of the upcom- ing foray and secondarily as a communications tool with members. Issues of Omphalina are archived in: Board Directors C s ta s Library and Archives Canada’s Electronic Collection http://epe.lac-bac.gc.ca/100/201/300/omphalina/index.html President Mycological Centre for Newfoundland Studies, Queen Elizabeth II Michael Burzynski Dave Malloch Library (printed copy also archived) Treasurer NB MUSEUM http://collections.mun.ca/cdm/search/collection/omphalina Geoff Th urlow Auditor Secretary Gordon Janes Th e content is neither discussed nor approved by the Robert McIsaac BONNELL COLE JANES Board of Directors. Th erefore, opinions expressed do Legal Counsel not represent the views of the Board, the Corporation, Directors the partners, the sponsors, or the members. Opinions Bill Bryden Andrew May are solely those of the authors and uncredited opinions Shawn Dawson BROTHERS & BURDEN solely those of the Editor. Rachelle Dove Webmaster Chris Deduke Jim Cornish Please address comments, complaints, and contributions Jamie Graham to the Editor, Sara Jenkins at [email protected] Anne Marceau Past President Helen Spencer Andrus Voitk Foray Newfoundland and Labrador is an Accepting C tr i s amateur, volunteer-run, community, not-for-profit We eagerly invite contributions to Omphalina, organization with a mission to organize enjoyable dealing with any aspect even remotely related to NL and informative amateur mushroom forays in mushrooms.
    [Show full text]
  • (Uplb- Mnh) Mycological Herbarium
    Philippine Journal of Systematic Biology Vol. III (June 2009) Review STATUS OF THE MYXOMYCETE COLLECTION AT THE UPLB-MUSEUM OF NATURAL HISTORY (UPLB- MNH) MYCOLOGICAL HERBARIUM THOMAS EDISON E. DELA CRUZ1*, RUDOLF V. KUHN1, ANTON OLIVER M. JAVIER1, CHRISTIAN M. PARRA1 AND TRICITA H. QUIMIO2 1Department of Biological Sciences, College of Science University of Santo Tomas, España 1015 Manila, Philippines 2UPLB-MNH Mycological Herbarium, University of the Philippines-Los Baños, College 4031 Laguna, Philippines Email: [email protected] ABSTRACT The Philippines is considered one of the world’s megahotspots of biodiversity. Among the country’s fungal species, about 4,698 species belonging to 1,031 genera are currently known or described, of which only a small number of myxomycetes were included. At the UPLB-MNH Mycological Herbarium, one of the country’s premier depository institutions of fungal collections, only about 446 myxomycete specimens were recorded. In this review paper, progress made in myxomycete diversity in the Philippines is reported. The conservation status of the myxomycetes specimens deposited at the UPLB-MNH Mycological Herbarium is also assessed. Furthermore, hindrances to the discovery of new myxomycete species and challenges encountered by local researchers are also discussed. Keywords: myxomycetes, slime molds, biodiversity, conservation INTRODUCTION The Philippines is a vast archipelago of 7,107 islands located in the Southeast Asian region. Some 50 million years ago, the islands rose from the tectonic plates in the Pacific. Its coastlines now can be up to 17,500 km. Only the island of Palawan is believed to be previously connected to Mainland Asia (Vesilind, 2002).
    [Show full text]
  • The Mycetozoa of North America, Based Upon the Specimens in The
    THE MYCETOZOA OF NORTH AMERICA HAGELSTEIN, MYCETOZOA PLATE 1 WOODLAND SCENES IZ THE MYCETOZOA OF NORTH AMERICA BASED UPON THE SPECIMENS IN THE HERBARIUM OF THE NEW YORK BOTANICAL GARDEN BY ROBERT HAGELSTEIN HONORARY CURATOR OF MYXOMYCETES ILLUSTRATED MINEOLA, NEW YORK PUBLISHED BY THE AUTHOR 1944 COPYRIGHT, 1944, BY ROBERT HAGELSTEIN LANCASTER PRESS, INC., LANCASTER, PA. PRINTED IN U. S. A. To (^My CJriend JOSEPH HENRI RISPAUD CONTENTS PAGES Preface 1-2 The Mycetozoa (introduction to life history) .... 3-6 Glossary 7-8 Classification with families and genera 9-12 Descriptions of genera and species 13-271 Conclusion 273-274 Literature cited or consulted 275-289 Index to genera and species 291-299 Explanation of plates 301-306 PLATES Plate 1 (frontispiece) facing title page 2 (colored) facing page 62 3 (colored) facing page 160 4 (colored) facing page 172 5 (colored) facing page 218 Plates 6-16 (half-tone) at end ^^^56^^^ f^^ PREFACE In the Herbarium of the New York Botanical Garden are the large private collections of Mycetozoa made by the late J. B. Ellis, and the late Dr. W. C. Sturgis. These include many speci- mens collected by the earlier American students, Bilgram, Farlow, Fullmer, Harkness, Harvey, Langlois, Macbride, Morgan, Peck, Ravenel, Rex, Thaxter, Wingate, and others. There is much type and authentic material. There are also several thousand specimens received from later collectors, and found in many parts of the world. During the past twenty years my associates and I have collected and studied in the field more than ten thousand developments in eastern North America.
    [Show full text]
  • Myxomyceten (Schleimpilze) Und Mycetozoa (Pilztiere) - Lebensform Zwischen Pflanze Und Tier 7-37 © Biologiezentrum Linz/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stapfia Jahr/Year: 2000 Band/Volume: 0073 Autor(en)/Author(s): Nowotny Wolfgang Artikel/Article: Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere) - Lebensform zwischen Pflanze und Tier 7-37 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere) - Lebensformen zwischen Pflanze und Tier W. NOWOTNY Abstract Myxomycetes (slime molds) and Myce- structures is described in detail. In the tozoa (fungal animals) - Intermediate chapters "Distribution and Phenology" as forms between plant and animal. well as "Habitats and Substrata" mainly Myxomycetes and Mycetozoa are extra- own experiences from Upper Austria are ordinary, but not widely known largely taken into account. Relations to other or- microscopic organisms. Some terminologi- ganisms including humans could only be cal considerations are followed by a short exemplified. A glossary and a classification history of research. The complex life cycle of subclasses, orders, families and genera including spores, myxoflagellates, plasmo- of myxomycetes should fasciliate a basic dia and fructifications with their particular overview. Inhalt 1. Einleitung 8 2. Entwicklungszyklus der Myxomyceten 9 2.1. Sporen 11 2.2. Myxoflagellaten und Mikrozysten 13 2.3. Plasmodium und Sklerotium 14 2.4- Bildung der Fruktifikationen 16 2.4.1. Sporocarpien, Plasmodiocarpien, Aethalien und Pseudoaethalien 17 2.4.2. Strukturen der Fruktifikationen 19 3. Verbreitung und Phänologie 25 4- Lebensraum und Substrate 28 4-1. Myxomyceten auf Borke lebender Bäume in feuchter Kammer 29 42. Nivicole Myxomyceten 30 5. Beziehung zu anderen Lebewesen 31 6. Nomenklatur 32 7. Glossar 33 Stapfia 73, 8.
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • The Myxomycetes of Athens Conty, Ohio
    The Myxomycetes of Athens County, Ohio1 DAKKIN L. RUIJINO2 AND JAMKS C. CAVI;NI)KR, Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 ABSTRACT. The goal of this study was to document all reported collections of myxomycetes (slime molds) from Athens County, OH (USA). The compilation of several published and unpublished studies of myxomycete records from Athens County resulted in a total of 52 species. The species were distributed among 6 orders, 9 families, and 25 genera and represent 24% of the myxomycetes known from Ohio and approximately 15% of those recorded for North America. No new collections for the state of Ohio were reported. OHIO J SCI 102 (2):27-29, 2002 INTRODUCTION both authors. Nomenclature follows that of Keller and Although widely distributed, myxomycetes (true slime Braun (1999) [which closely follows the treatment of molds, acellular slime molds, or plasmodial slime molds) Martin and others (1983) and the synonymy of Martin have not been fully studied throughout Ohio. Despite and Alexopoulos (1969)]- major taxonomic works by Fulmer (1921) and Keller Collections made by Udall (1951) were from a beech- and Braun (1999), the distribution and ecology of the maple forest in Lee Township, and collections made by myxomycetes in several Ohio counties are not well Jones (1943) were from Athens Township (mesic forests known. For example, of the 88 counties in the state, only and Ohio University Campus). Jones' and Udall's theses 64 have recorded myxomycete collections, and many of are available from the Department of Environmental these counties have fewer than five recorded species and Plant Biology, Ohio University, Athens, OH.
    [Show full text]
  • Arcyria Cinerea (Bull.) Pers
    Myxomycete diversity of the Altay Mountains (southwestern Siberia, Russia) 1* 2 YURI K. NOVOZHILOV , MARTIN SCHNITTLER , 3 4 ANASTASIA V. VLASENKO & KONSTANTIN A. FEFELOV *[email protected] 1,3V.L. Komarov Botanical Institute of the Russian Academy of Sciences 197376 St. Petersburg, Russia, 2Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University D-17487 Greifswald, Germany, 4Institute of Plant and Animal Ecology of the Russian Academy of Sciences Ural Division, 620144 Yekaterinburg, Russia Abstract ― A survey of 1488 records of myxomycetes found within a mountain taiga-dry steppe vegetation gradient has identified 161 species and 41 genera from the southeastern Altay mountains and adjacent territories of the high Ob’ river basin. Of these, 130 species were seen or collected in the field and 59 species were recorded from moist chamber cultures. Data analysis based on the species accumulation curve estimates that 75–83% of the total species richness has been recorded, among which 118 species are classified as rare (frequency < 0.5%) and 7 species as abundant (> 3% of all records). Among the 120 first species records for the Altay Mts. are 6 new records for Russia. The southeastern Altay taiga community assemblages appear highly similar to other taiga regions in Siberia but differ considerably from those documented from arid regions. The complete and comprehensive illustrated report is available at http://www.Mycotaxon.com/resources/weblists.html. Key words ― biodiversity, ecology, slime moulds Introduction Although we have a solid knowledge about the myxomycete diversity of coniferous boreal forests of the European part of Russia (Novozhilov 1980, 1999, Novozhilov & Fefelov 2001, Novozhilov & Lebedev 2006, Novozhilov & Schnittler 1997, Schnittler & Novozhilov 1996) the species associated with this vegetation type in Siberia are poorly studied.
    [Show full text]