Myxomycetes De México Iii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Fungi of Slapton Ley National Nature Reserve and Environs
THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546). -
Biodiversity of Plasmodial Slime Moulds (Myxogastria): Measurement and Interpretation
Protistology 1 (4), 161–178 (2000) Protistology August, 2000 Biodiversity of plasmodial slime moulds (Myxogastria): measurement and interpretation Yuri K. Novozhilova, Martin Schnittlerb, InnaV. Zemlianskaiac and Konstantin A. Fefelovd a V.L.Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, b Fairmont State College, Fairmont, West Virginia, U.S.A., c Volgograd Medical Academy, Department of Pharmacology and Botany, Volgograd, Russia, d Ural State University, Department of Botany, Yekaterinburg, Russia Summary For myxomycetes the understanding of their diversity and of their ecological function remains underdeveloped. Various problems in recording myxomycetes and analysis of their diversity are discussed by the examples taken from tundra, boreal, and arid areas of Russia and Kazakhstan. Recent advances in inventory of some regions of these areas are summarised. A rapid technique of moist chamber cultures can be used to obtain quantitative estimates of myxomycete species diversity and species abundance. Substrate sampling and species isolation by the moist chamber technique are indispensable for myxomycete inventory, measurement of species richness, and species abundance. General principles for the analysis of myxomycete diversity are discussed. Key words: slime moulds, Mycetozoa, Myxomycetes, biodiversity, ecology, distribu- tion, habitats Introduction decay (Madelin, 1984). The life cycle of myxomycetes includes two trophic stages: uninucleate myxoflagellates General patterns of community structure of terrestrial or amoebae, and a multi-nucleate plasmodium (Fig. 1). macro-organisms (plants, animals, and macrofungi) are The entire plasmodium turns almost all into fruit bodies, well known. Some mathematics methods are used for their called sporocarps (sporangia, aethalia, pseudoaethalia, or studying, from which the most popular are the quantita- plasmodiocarps). -
Slime Molds: Biology and Diversity
Glime, J. M. 2019. Slime Molds: Biology and Diversity. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 3-1-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SLIME MOLDS: BIOLOGY AND DIVERSITY TABLE OF CONTENTS What are Slime Molds? ....................................................................................................................................... 3-1-2 Identification Difficulties ...................................................................................................................................... 3-1- Reproduction and Colonization ........................................................................................................................... 3-1-5 General Life Cycle ....................................................................................................................................... 3-1-6 Seasonal Changes ......................................................................................................................................... 3-1-7 Environmental Stimuli ............................................................................................................................... 3-1-13 Light .................................................................................................................................................... 3-1-13 pH and Volatile Substances -
(Uplb- Mnh) Mycological Herbarium
Philippine Journal of Systematic Biology Vol. III (June 2009) Review STATUS OF THE MYXOMYCETE COLLECTION AT THE UPLB-MUSEUM OF NATURAL HISTORY (UPLB- MNH) MYCOLOGICAL HERBARIUM THOMAS EDISON E. DELA CRUZ1*, RUDOLF V. KUHN1, ANTON OLIVER M. JAVIER1, CHRISTIAN M. PARRA1 AND TRICITA H. QUIMIO2 1Department of Biological Sciences, College of Science University of Santo Tomas, España 1015 Manila, Philippines 2UPLB-MNH Mycological Herbarium, University of the Philippines-Los Baños, College 4031 Laguna, Philippines Email: [email protected] ABSTRACT The Philippines is considered one of the world’s megahotspots of biodiversity. Among the country’s fungal species, about 4,698 species belonging to 1,031 genera are currently known or described, of which only a small number of myxomycetes were included. At the UPLB-MNH Mycological Herbarium, one of the country’s premier depository institutions of fungal collections, only about 446 myxomycete specimens were recorded. In this review paper, progress made in myxomycete diversity in the Philippines is reported. The conservation status of the myxomycetes specimens deposited at the UPLB-MNH Mycological Herbarium is also assessed. Furthermore, hindrances to the discovery of new myxomycete species and challenges encountered by local researchers are also discussed. Keywords: myxomycetes, slime molds, biodiversity, conservation INTRODUCTION The Philippines is a vast archipelago of 7,107 islands located in the Southeast Asian region. Some 50 million years ago, the islands rose from the tectonic plates in the Pacific. Its coastlines now can be up to 17,500 km. Only the island of Palawan is believed to be previously connected to Mainland Asia (Vesilind, 2002). -
Myxomyceten (Schleimpilze) Und Mycetozoa (Pilztiere) - Lebensform Zwischen Pflanze Und Tier 7-37 © Biologiezentrum Linz/Austria; Download Unter
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stapfia Jahr/Year: 2000 Band/Volume: 0073 Autor(en)/Author(s): Nowotny Wolfgang Artikel/Article: Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere) - Lebensform zwischen Pflanze und Tier 7-37 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere) - Lebensformen zwischen Pflanze und Tier W. NOWOTNY Abstract Myxomycetes (slime molds) and Myce- structures is described in detail. In the tozoa (fungal animals) - Intermediate chapters "Distribution and Phenology" as forms between plant and animal. well as "Habitats and Substrata" mainly Myxomycetes and Mycetozoa are extra- own experiences from Upper Austria are ordinary, but not widely known largely taken into account. Relations to other or- microscopic organisms. Some terminologi- ganisms including humans could only be cal considerations are followed by a short exemplified. A glossary and a classification history of research. The complex life cycle of subclasses, orders, families and genera including spores, myxoflagellates, plasmo- of myxomycetes should fasciliate a basic dia and fructifications with their particular overview. Inhalt 1. Einleitung 8 2. Entwicklungszyklus der Myxomyceten 9 2.1. Sporen 11 2.2. Myxoflagellaten und Mikrozysten 13 2.3. Plasmodium und Sklerotium 14 2.4- Bildung der Fruktifikationen 16 2.4.1. Sporocarpien, Plasmodiocarpien, Aethalien und Pseudoaethalien 17 2.4.2. Strukturen der Fruktifikationen 19 3. Verbreitung und Phänologie 25 4- Lebensraum und Substrate 28 4-1. Myxomyceten auf Borke lebender Bäume in feuchter Kammer 29 42. Nivicole Myxomyceten 30 5. Beziehung zu anderen Lebewesen 31 6. Nomenklatur 32 7. Glossar 33 Stapfia 73, 8. -
The Myxomycetes of Athens Conty, Ohio
The Myxomycetes of Athens County, Ohio1 DAKKIN L. RUIJINO2 AND JAMKS C. CAVI;NI)KR, Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 ABSTRACT. The goal of this study was to document all reported collections of myxomycetes (slime molds) from Athens County, OH (USA). The compilation of several published and unpublished studies of myxomycete records from Athens County resulted in a total of 52 species. The species were distributed among 6 orders, 9 families, and 25 genera and represent 24% of the myxomycetes known from Ohio and approximately 15% of those recorded for North America. No new collections for the state of Ohio were reported. OHIO J SCI 102 (2):27-29, 2002 INTRODUCTION both authors. Nomenclature follows that of Keller and Although widely distributed, myxomycetes (true slime Braun (1999) [which closely follows the treatment of molds, acellular slime molds, or plasmodial slime molds) Martin and others (1983) and the synonymy of Martin have not been fully studied throughout Ohio. Despite and Alexopoulos (1969)]- major taxonomic works by Fulmer (1921) and Keller Collections made by Udall (1951) were from a beech- and Braun (1999), the distribution and ecology of the maple forest in Lee Township, and collections made by myxomycetes in several Ohio counties are not well Jones (1943) were from Athens Township (mesic forests known. For example, of the 88 counties in the state, only and Ohio University Campus). Jones' and Udall's theses 64 have recorded myxomycete collections, and many of are available from the Department of Environmental these counties have fewer than five recorded species and Plant Biology, Ohio University, Athens, OH. -
Arcyria Cinerea (Bull.) Pers
Myxomycete diversity of the Altay Mountains (southwestern Siberia, Russia) 1* 2 YURI K. NOVOZHILOV , MARTIN SCHNITTLER , 3 4 ANASTASIA V. VLASENKO & KONSTANTIN A. FEFELOV *[email protected] 1,3V.L. Komarov Botanical Institute of the Russian Academy of Sciences 197376 St. Petersburg, Russia, 2Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University D-17487 Greifswald, Germany, 4Institute of Plant and Animal Ecology of the Russian Academy of Sciences Ural Division, 620144 Yekaterinburg, Russia Abstract ― A survey of 1488 records of myxomycetes found within a mountain taiga-dry steppe vegetation gradient has identified 161 species and 41 genera from the southeastern Altay mountains and adjacent territories of the high Ob’ river basin. Of these, 130 species were seen or collected in the field and 59 species were recorded from moist chamber cultures. Data analysis based on the species accumulation curve estimates that 75–83% of the total species richness has been recorded, among which 118 species are classified as rare (frequency < 0.5%) and 7 species as abundant (> 3% of all records). Among the 120 first species records for the Altay Mts. are 6 new records for Russia. The southeastern Altay taiga community assemblages appear highly similar to other taiga regions in Siberia but differ considerably from those documented from arid regions. The complete and comprehensive illustrated report is available at http://www.Mycotaxon.com/resources/weblists.html. Key words ― biodiversity, ecology, slime moulds Introduction Although we have a solid knowledge about the myxomycete diversity of coniferous boreal forests of the European part of Russia (Novozhilov 1980, 1999, Novozhilov & Fefelov 2001, Novozhilov & Lebedev 2006, Novozhilov & Schnittler 1997, Schnittler & Novozhilov 1996) the species associated with this vegetation type in Siberia are poorly studied. -
TR-083 MYXOMYCETES SPECIES CONCEPTS-HAROLD KELLER.Cdr
Myxomycete species concepts, monotypic genera, the fossil record, and additional examples of good taxonomic practice Harold W. Keller1 Sydney E. Everhart Department of Biology, University of Central Missouri, Warrensburg MO 64093, USA 8 0 Conceptos de especies en mixomicetos, géneros monotípicos, el registro 0 2 fósil y ejemplos adicionales de una buena práctica taxonómica , 9 1 - 9 Resumen. Se destacan y amplían algunos de los principales elementos para una buena : 7 2 práctica taxonómica. Se revisan los conceptos de especie en los mixomicetos, a la vez que se A Í discuten los géneros monotípicos, con ejemplos en Badhamiopsis ainoae, Protophysarum G O phloiogenum y Trabrooksia applanata. Se sugiere que las secuencias de ADN resolverán el L O C rango taxonómico al que los géneros monotípicos deben de asignarse en la clasificación de I M los mixomicetos. Se evalúa y discute por primera vez la evidencia fósil de mixomicetos E D encontrada en ámbar. Perichaena brevifila, P. microspora, P. pedata y P. syncarpon habitan A exclusivamente en la hojarasca y son un ejemplo como las diferencias ecológicas y los N A C patrones de estacionalidad basados en las observaciones de campo registradas en los datos I X de las colecciones, pueden complementar las diferencias morfológicas para la separación de E M las distintas especies. El futuro de la Sistemática de los mixomicetos requiere un cambio de la A T S taxonomía descriptiva a estudios de mayor profundidad basados en hipótesis para probar I V E relaciones filogéneticas, patrones biogeográficos y restricciones de las especies a hábitats con R características ecológicas especiales. -
A Checklist of Egyptian Fungi: I
Mycosphere 4 (4): 794–807 (2013) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2013 Online Edition Doi 10.5943/mycosphere/4/4/15 A checklist of Egyptian fungi: I. Protozoan fungal analogues Abdel-Azeem AM1* and Salem Fatma M1 1Laboratory of systematic Mycology, Botany and Microbiology Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt. e-mail: [email protected], [email protected] Abdel-Azeem AM, Salem Fatma M 2013 – A checklist of Egyptian fungi: I. Protozoan fungal analogues. Mycosphere 4(4), 794–807, Doi 10.5943/mycosphere/4/4/15 Abstract Records of Egyptian fungi are scattered through a wide array of journals, books, dissertations, and preliminary annotated checklists and compilations. By screening all available sources of information, it was possible to delineate 61 taxa, including 3 varieties, belonging to 29 genera of protozoan fungal analogues that have been reported from Egypt. A provisional key to the identification of reported taxa is given. This is the first species list of protozoan fungus-like analogues from Egypt. Key words – Amoebozoa – biodiversity – Cercozoa – documentation – Liceida – Mycobiota – Physarum Introduction For Egypt, only very few comprehensive assessments of local fungi have been published (e.g. El-Abyad and Abu-Taleb 1993; El-Abyad 1997; Abdel-Azeem, 2010). Documentation of the Egyptian fungi may be dated back to 4500 B.C., when ancient Egyptians produced a number of hieroglyphic reliefs of plants (many of which are psychedelic) on walls and within texts throughout Egypt (Abdel-Azeem 2010). Abdel-Azeem has traced the history of scientific work with fungi in Egypt from its earliest beginnings, almost 200 years ago, through to the present day and published a full review of the history of mycology in Egypt, together with updated assessment of 2281 species of fungi for the country, and an expectation of future perspectives for mycology in Egypt. -
Western Australia's Journal of Systematic Botany Issn 0085–4417
Nuytsia WESTERN AUSTRALIA'S JOURNAL OF SYSTEMATIC BOTANY ISSN 0085–4417 Knight, K.J. & Brims, M.H. Myxomycota census of Western Australia Nuytsia 20: 283–307 (2010) All enquiries and manuscripts should be directed to: The Managing Editor – NUYTSIA Western Australian Herbarium Telephone: +61 8 9334 0500 Dept of Environment and Conservation Facsimile: +61 8 9334 0515 Locked Bag 104 Bentley Delivery Centre Email: [email protected] Western Australia 6983 Web: science.dec.wa.gov.au/nuytsia AUSTRALIA All material in this journal is copyright and may not be reproduced except with the written permission of the publishers. © Copyright Department of Environment and Conservation NuytsiaK.J. Knight 20: 283–307& M.H. Brims, (2010) Myxomycota census of Western Australia 283 Myxomycota census of Western Australia Karina J. Knight and Margaret H. Brims Western Australian Herbarium, Department of Environment & Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Abstract Knight, K.J. & Brims, M.H. Myxomycota census of Western Australia. Nuytsia 20: 283–307 (2010). A census of the slime mould species found in Western Australia, based on publications recording slime mould species and collections housed at the Western Australian Herbarium (PERTH), is presented. A total of 159 species in 37 genera and 12 families are recorded. Introduction The phylum Myxomycota is comprised of plasmodial slime moulds which are fungi-like organisms with a two stage life cycle; the plasmodium (a slime-like single celled amoeboid stage) and sporangia (a multicellular spore producing organ required for identification) (Figure 1). This census is comprised of both classes of Myxomycota; Myxomycetes and Protosteliomycetes (Hawksworth et al. -
Some Critically Endangered Species from Turkey
Fungal Conservation issue 4: February 2014 Fungal Conservation Note from the Editor This issue of Fungal Conservation is being put together in the glow of achievement associated with the Third International Congress on Fungal Conservation, held in Muğla, Turkey in November 2013. The meeting brought together people committed to fungal conservation from all corners of the Earth, providing information, stimulation, encouragement and general happiness that our work is starting to bear fruit. Especial thanks to our hosts at the University of Muğla who did so much behind the scenes to make the conference a success. This issue of Fungal Conservation includes an account of the meeting, and several papers based on presentations therein. A major development in the world of fungal conservation happened late last year with the launch of a new website (http://iucn.ekoo.se/en/iucn/welcome) for the Global Fungal Red Data List Initiative. This is supported by the Mohamed bin Zayed Species Conservation Fund, which also made a most generous donation to support participants from less-developed nations at our conference. The website provides a user-friendly interface to carry out IUCN-compliant conservation assessments, and should be a tool that all of us use. There is more information further on in this issue of Fungal Conservation. Deadlines are looming for the 10th International Mycological Congress in Thailand in August 2014 (see http://imc10.com/2014/home.html). Conservation issues will be featured in several of the symposia, with one of particular relevance entitled "Conservation of fungi: essential components of the global ecosystem”. There will be room for a limited number of contributed papers and posters will be very welcome also: the deadline for submitting abstracts is 31 March. -
Myxomycetes (Myxogastria) of Nampo Shoto (Bonin & Volcano Islands)
Bull. Natl. Mus. Nat. Sci., Ser. B, 43(3), pp. 63–68, August 22, 2017 Myxomycetes (Myxogastria) of Nampo Shoto (Bonin & Volcano Islands) (3) Tsuyoshi Hosoya1,*, Kentaro Hosaka1 and Yukinori Yamamoto2 1 Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, Japan 2 1010–53 Ohtsu-ko, Kochi, Kochi 781–5102, Japan *E-mail: [email protected] (Received 18 April, 2017, accepted 28 June, 2017) Abstract In an exploration of Nampo Shoto (Southern Islands, consisting of the Ogasawara and Volcano islands) in June 2009, 22 myxomycete taxa were documented based on 44 specimens. Of these, Fuligo candida and Stemonitis pallida were newly documented. Key words : Kita-Iwojima Island, taxonomy. mately 200 km south of the Ogasawara Islands. Introduction Although Minami-Iwojima has been uninhabited To date, approximately 1000 taxa of myxomy- since recorded history, Kita-Iwojima was colo- cetes have been described worldwide, with some nized in 1899, but has been uninhabited since 400 taxa being recorded in Japan (Yamamoto, 1944 when the inhabitants were forced to evacu- 1998). The majority of the Japanese records are ate the island during the war. Because of their based on Japan’s main islands, whereas smaller geographical isolation and the relative lack of islands have not been well surveyed, with the human activity, the natural life on both islands exception some areas that have been surveyed has been receiving attention from researchers. with special attention (e.g., the islands of Yaku- However, because of severe geographical and shima and Iriomote). environmental conditions, approaching these Located in the mid-Pacific Ocean, the so- islands is generally extremely difficult.